Boiler (Steam Generator)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Historical Study of Management-Labor Relations Pertaining to the Dieselization of Railroads in the United States
This dissertation has been microfilmed exactly as received 66—15,063 A D L E R , Jr., Philip, 1930— A HISTORICAL STUDY OF MANAGEMENT-LABOR RELATIONS PERTAINING TO THE DIESELIZATION OF RAILROADS IN THE UNITED STATES. The Ohio State University, Ph.D., 1966 Economics, commerce-business University Microfilms, Inc., Ann Arbor, Michigan A HISTORICAL STUDY OF laiAOSRSLT-IABCB RELATIONS PERTAINING TO THE DISSSIJSATIOE OF RAILROADS IK THE UNITED STATES DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohic State University 2y Philip Adler, Jr., B. 3 B. A. The Ohio State University 1?66 sproved b y : r~Advig? Jy Depai'tment of Business Organisation ACKNOWLEDGMENTS I wish to express sincere appreciation to those who have helped in the organization and development of this investigation. It is impossible to list here the names of all who have given so generously of their time and knowledge to make this study possible. I am particularly indebted to my adviser, Dr. Michael Jucius, without whose guidance, patience, and inspiration this study would not have been possible. I would like to thank the members of ny reading committee, Professor Charles B. Hicks, Professor Rate Howell, and Professor Reed M. Powell for their valuable criticisms and suggestions. I also would like to thank the various individuals from the railroad industry for their enthusiastic cooperation throughout the research for this study. The encouragement provided by Mrs. Mildred Chavous of the Graduate School is most deeply appreciated, as is the guidance provided by the editorial staff of the Graduate School. -
Potterton Osprey 2 Cfl 125-150-180-220
Osprey 2 CFL 125 - 150 - 180 - 220 Gas Fired Floor Standing Boiler Installation and Servicing Instructions Please leave these instructions with the user Natural Gas Potterton Osprey 2 CFL 125 G.C.No 41 590 54 Potterton Osprey 2 CFL 150 G.C.No 41 590 55 Potterton Osprey 2 CFL 180 The boiler meets the requirements of Statutory G.C.No 41 590 56 Instrument “ The Boiler (Efficiency) Regulations 1993 No 3083” and is deemed to meet the Potterton Osprey 2 CFL 220 G.C.No 41 590 57 requirements of Directive 92/42/EEC on the energy efficiency requirements for new hot water boilers fired with liquid or gaseous fuels:- Type test for purpose of Regulation 5 certified by: Notified Body 0049. Product/Production certified by: Notified Body 0049. For GB/IE only. 2 Contents Section Page 1.0 Introduction 4 2.0 General Layout 5 3.0 Technical Data 6 4.0 Dimensions 7 5.0 System Details 8 6.0 Site Requirements 10 7.0 Installation 13 8.0 Commissioning the Boiler 15 9.0 Servicing the Boiler 17 10.0 Changing Components 19 11.0 Illustrated Wiring Diagram 23 12.0 Fault Finding 24 13.0 Short Parts List 28 3 1.0 Introduction NOTE: This appliance must be installed in Potterton declare that no substances harmful to accordance with the manufacturer’s instructions health are contained in the appliance or used and the regulations in force. Read the instructions during appliance manufacture. fully before installing or using the appliance. 1.1 Description 1. The Potterton Osprey 2 CFL is a fully automatic gas fired floor standing conventionally flued boiler with a cast iron heat exchanger. -
Commercial Boiler Guide the UK’S Most Comprehensive Range of Commercial Boilers 30 to 4000Kw
Potterton Commercial Commercial Boiler Guide The UK’s most comprehensive range of Commercial Boilers 30 to 4000kW Condensing Aluminium 30 to 600kW Condensing Stainless Steel 50 to 160kW Heat Distribution Heating only and Heating & DHW Commercial Combination 100 and 150kW Biomass Boiler System 130 to 2000kW Modular and Prefabricated Solutions 56 to 230kW Condensing Oil 98 to 196kW floor standing Pressure Jet Commercial Boiler 105 to 4000kW Heat Pumps Gas Absorption Working towards a cleaner future heating specialists Potterton Commercial manufacture a comprehensive range of gas and oil boilers for commercial applications. A long established and prestigious company, the Potterton brand can be traced back as far as 1850 when Thomas Potterton established the company in Balham, London. Now Potterton Commercial is one of the most prestigious names in the commercial heating industry and remains firmly at the forefront of gas boiler production and development. Our commercial boiler range is highly regarded by specifiers and meets the Part L2 boiler operating efficiency legislation. In addition to our wide range of traditional commercial boilers, we have a technologically advanced range of condensing boilers and LZC solutions in order to meet the demand for higher efficiency and low carbon products. Condensing Aluminium Eurocondense three 4 Paramount three 6 Condensing Stainless Steel Sirius two WH 7 Sirius FS 8 Heat Interface Units Sirius SAT 9 Commercial Combination iHE 10 Biomass Boiler System BBS 11 Modular and Paramount three MB Series 12 Prefabricated Solutions Sirius two WH MB Series 14 Ecoskid 16 Condensing Oil LogoCondense and CarboCondense 18 Pressure Jet Commercial Boiler NXR3i 19 NXR4i 20 NXR5i 21 Arizona Evolution 22 Heat Pumps A-Cubed 24 Why Potterton 3 Commercial? High efficiency and the environment The Potterton Commercial boiler range has been highly regarded by specifiers and users for almost 50 years, and meets all current and proposed U.K & European standards. -
Steam As a General Purpose Technology: a Growth Accounting Perspective
Working Paper No. 75/03 Steam as a General Purpose Technology: A Growth Accounting Perspective Nicholas Crafts © Nicholas Crafts Department of Economic History London School of Economics May 2003 Department of Economic History London School of Economics Houghton Street London, WC2A 2AE Tel: +44 (0)20 7955 6399 Fax: +44 (0)20 7955 7730 1. Introduction* In recent years there has been an upsurge of interest among growth economists in General Purpose Technologies (GPTs). A GPT can be defined as "a technology that initially has much scope for improvement and evntually comes to be widely used, to have many uses, and to have many Hicksian and technological complementarities" (Lipsey et al., 1998a, p. 43). Electricity, steam and information and communications technologies (ICT) are generally regarded as being among the most important examples. An interesting aspect of the occasional arrival of new GPTs that dominate macroeconomic outcomes is that they imply that the growth process may be subject to episodes of sharp acceleration and deceleration. The initial impact of a GPT on overall productivity growth is typically minimal and the realization of its eventual potential may take several decades such that the largest growth effects are quite long- delayed, as with electricity in the early twentieth century (David, 1991). Subsequently, as the scope of the technology is finally exhausted, its impact on growth will fade away. If, at that point, a new GPT is yet to be discovered or only in its infancy, a growth slowdown might be observed. A good example of this is taken by the GPT literature to be the hiatus between steam and electricity in the later nineteenth century (Lipsey et al., 1998b), echoing the famous hypothesis first advanced by Phelps-Brown and Handfield-Jones, 1952) to explain the climacteric in British economic growth. -
QUIZ: Boiler System Components
9707 Key West Avenue, Suite 100 Rockville, MD 20850 Phone: 301-740-1421 Fax: 301-990-9771 E-Mail: [email protected] Part of the recertification process is to obtain Continuing Education Units (CEUs). One way to do that is to review a technical article and complete a short quiz. Scoring an 80% or better will grant you 0.5 CEUs. You need 25 CEUs over a 5-year period to be recertified. The quiz and article are posted below. Completed tests can be faxed (301-990-9771) or mailed (9707 Key West Avenue, Suite 100, Rockville, MD 20850) to AWT. Quizzes will be scored within 2 weeks of their receipt and you will be notified of the results. Name: ______________________________________________ Company: ___________________________________________ Address: ____________________________________________ City: ______________________ State: _____ Zip: ________ Phone: ______________________ Fax: __________________ E-mail: _____________________________________________ Boiler Systems – Boiler Components By Irvin J. Cotton, Arthur Freedman Associates, Inc. and Orin Hollander, Holland Technologies, Inc. This is part two of a three-part series on boilers. In part one, the authors discussed boiler design and classification. Part two will discuss boiler components, and part three will describe the various chemistries used in boiler water treatment. Boiler Components The main components in a boiler system are the boiler feedwater heaters, deaerator, boiler, feed pump, economizer, boiler, superheater, attemperator, steam system, condenser and the condensate pump. In addition there are sets of controls to monitor water and steam flow, fuel flow, airflow and chemical treatment additions. Water sample points may exist at a number of places. Most typically the condensate, deaerator outlet, feedwater (often the economizer inlet), boiler, saturated steam and superheated steam will have sample points. -
RW Series Steam & Water Boilers
Form No. 6310 (09/03) Bryan “Flexible Water Tube” RW Series Steam & Water Boilers 8,500,000 to 21,000,000 BTUH Forced draft gas, oil or dual fuel fired Steam Boiler RW1050-S150-FDG Water Boiler RW2100-W-FDGO Originators of the “Flexible Water Tube” design A breakthrough in an industrial water tube boiler design. • True “flexible water tube” design F guaranteed shock free M • High quality steam for heat or C process J • Full five sq ft of heating surface K (2) D per BHP B E Quality construction features: G H A. Water side or steam side interior accessible for cleanout L and inspection, front and rear openings, upper and lower drums. I B. Large volume water leg downcomers promote rapid internal circulation, temperature equalization and efficient A heat transfer. C. Boiler tube and furnace area access panels: heavy gauge steel casing with 2" high-temperature ceramic fiber insula- tion, bolted and tightly sealed to boiler frame. D. Flame observation port in access door at rear of boiler. ensure exceptionally cool outer E. Dual side access; combustion chamber, tubes and burner surface. head are completely accessible from either side simplifying K. Bryan bent water tubes are maintenance and minimizing floor space. flexible, individually replaceable F. Minimum sized flue vent. without welding or rolling. Never more than two tube configura- G. Control panel: all controls installed with connections to tions. terminal strip. L. Pressurized design firebox H. Forced draft, flame retention head type burner. Efficient with internal water-cooled fur- combustion of oil or gas, plus quiet operation. -
24/28/Bi24/28/Bi
24/28/bi24/28/bi Installation & Servicing Instructions THESE INSTRUCTIONS TO BE RETAINED BY USER Supplied By www.heating spares.co Tel. 0161 620 6677 Contents Design principles and operating sequence Page Servicing instructions Page 1.1 Principle components 2 6.1 General 13 1.2 Mode of operation 2 6.2 Routine annual servicing 13 1.3 Safety devices 2 6.3 Replacement of components 13 6.4 Component removal procedure 13 Technical data Page 2.1 Central heating 3 Checks, adjustments and fault finding page 2.2 Gas pressure 3 7.1 Checking appliance operation 14 2.3 Expansion vessel 3 7.2 Appliance mode of operation 14 2.4 Dimensions 3 7.2.1 Selector switch in the OFF position 14 2.5 Clearances 3 7.2.2 Selector switch in the ON position 14 2.6 Connections 3 7.2.3 Appliance functions 14 2.7 Electrical 3 7.2.4 Heating mode 14 2.8 Flue details 3 7.2.5 Heating parameters 15 2.9 Emissions 3 7.3 Checking & adjusting burner pressure 15 2.10 Pump duty 4 7.3.1 Setting the maximum burner pressure 15 7.3.2 Setting the minimum burner pressure 15 General requirements Page 7.4 Combustion analysis test 15 3A.1 Related documents 5 7.5 Checking the expansion vessel 16 3A.2 Location of appliance 5 7.6 External faults 16 3A.3 Gas supply 5 7.6.1 Installation faults 16 3A.4 Flue system 5 7.7 Electrical checks 16 3A.5 Air supply 5 7.7.1 Earth continuity test 16 3A.6 Water circulation 5 7.7.2 Short circuit check 16 3A.6.1 Pipework 5 7.7.3 Polarity check 16 3A.6.2 Automatic by-pass 5 7.7.4 Reversed polarity or supply fault 16 3A.6.3 Drain cocks 5 7.7.5 Resistance to -
Boiler Feed Water Treatment
Boiler Feed Water Treatment: A case Study Of Dr. Mohamod Shareef Thermal Power Station, Khartoum State, Sudan Motawakel Sayed Osman Mohammed Ahmed B.Sc. (Honours) in Textile Engineering Technology University of Gezira (2006) A Dissertation Submitted to the University of Gezira in Partial Fulfillment of the Requirements for the Award of the Degree of Master of Science In Chemical Engineering Department of Applied Chemistry and Chemical Technology Faculty of Engineering and Technology University of Gezira January,2014 I Boiler Feed Water Treatment: A case Study Of Dr. Mohamod Shareef Thermal Power Station, Khartoum State, Sudan Motawakel Sayed Osman Mohammed Ahmed Supervision Committee: Name Position Signature Dr. Bshir Mohammed Elhassen Main Supervisor …………………. Dr. Mohammed Osman Babiker Co-supervisor ………………….. Date : January , 2014 II Boiler Feed Water Treatment: A case Study Of Dr. Mohamod Shareef Thermal Power Station, Khartoum State, Sudan Motawakel Sayed Osman Mohammed Ahmed Examination Committee: Name Position Signature Dr. Bshir Mohammed Elhassen Chair Person ……………… Dr.Bahaaeldeen Siddig Mohammed External Examiner ………………… Dr. Mustafa Ohag Mohammed Internal Examiner ………………… Date of Examination : 6. January.2014 III Dedication This research is affectionately dedicated to the souls of my parents , To my family With gratitude and love To whom ever love knowledge I Acknowledgment I would like to thank Dr. Basher Mohammed Elhassan the main Supervisor for his guidance and help. my thank also extended to Dr. Mohammed Osman Babiker my Co-supervisor for his great help. my thanks also extended to Chemical Engineers in Dr. Mohamod Sharef Thermal Power Station. II Boiler Feed Water Treatment: A case Study Of Dr. Mohamod Sharef Thermal Power Station, Khartoum State, Sudan Motawakel Sayed Osman Mohammed Ahmed Abstract A boiler is an enclosed vessel that provides a means for combustion heat to be transferred to water until it becomes heated water or steam. -
Module BESTT MS1
Module BESTT MS1 Marine Steam Boiler Types, Construction and Maintenance. Aim This unit introduces learners to the wide variety of fuels which may be encountered in steam launches and small steam ships operating on inland waterways or sheltered coastal waters. The range of types of boilers is explained. In each case, the benefits of each fuel type or boiler type are explored. The reasons for caution when conducting external work on old boilers are explained. INTRODUCTION Boiler types considered Horizontal Fire Tube boilers (including locomotive type) Vertical Fire Tube boilers Horizontal Drum Water Tube boilers Vertical Drum Water Tube boilers Single coil (or Flash) boilers Construction, design and general arrangements Heat transfer Cleaning Considerations for boiler choice and design Options for materials and insulations Boiler cladding materials The sheer variety of boiler types used in marine applications is wider than anything we will encounter for railway locomotives or in road steam applications. Although fire tube boilers from earliest days have been the norm for railway locomotives, water tube boilers could also very occasionally be found in locomotives. The well-known Sentinel shunters had water tube boilers a little bigger but otherwise similar to the company’s steam wagon boilers, and Sir Nigel Gresley on the LNER experimented with a ‘Yarrow’ type boiler but dropped the idea and fitted Britain’s only 4-6-4 express engine with a traditional loco boiler. For shipping, various forms of the classic marine multi-furnace fire tube ‘Scotch’ boiler was a norm to the last, and vertical fire tube types were a standard for small steam launches, but alongside these a huge range of highly efficient water tube types was under constant development resulting in many different configurations. -
Generator in a Combined Cycle Power Plant
1 STEAM POWER PLANT 1.1. INTRODUCTION: A Generating station which converts heat energy of coal combustion into electrical energy is known as steam power station. A steam power station basically works on Rankin cycle. Steam is produced in the boiler by utilizing the heat of coal combustion or burning gases or fuel. Fig 1-1: Diagram of a steam power plant 2 Fig 1-2: Block diagram of a steam power plante 1.2. Power plants: Modern-day boilers, such as those in coal-fired power stations, are still fitted with economizers which are descendants of Green's original design. In this context they are often referred to as feed water heaters and heat the condensate from turbines before it is pumped to the boilers. Economizers are commonly used as part of a heat recovery steam generator in a combined cycle power plant. In an HRSG, water passes through an economizer, then a boiler and then a super heater. The economizer also prevents flooding of the boiler with liquid water that is too cold to be boiled given the flow rates and design of the boiler. A common application of economizers in steam power plants is to capture the waster heat from boiler stack gases (flue gas) and transfer it to the boiler feed water. This raises the temperature of the boiler feed water thus lowering the needed energy input, in turn reducing the firing rates to accomplish the rated boiler output. Economizers lower stack temperatures which may cause condensation of acidic combustion gases and serious equipment corrosion damage if care is not taken in their design and material selection 3 Fig 1-3: Block diagram of a steam power plant Elements of steam power plant: 01. -
Fourth Edit10 Building Services Handbook
FOURTH EDIT10 BUILDING SERVICES HANDBOOK Fourth edition Fred Hall and Roger Greeno AMSTERDAM BOSTON HEIDELBERG LONDON NEW YORK OXFORD PARIS SAN DIEGO SAN FRANCISCO SINGAPORE SYDNEY TOKYO ELSEVIER Butterworth-Heinemann is an imprint of Elsevier Butterworth-Heinemann is an imprint of Elsevier Ltd Linacre House, Jordan Hill, Oxford OX2 8DP 30 Corporate Road, Burlington, MA 01803 First published 2001 Reprinted 200 I, 2002 Second edition 2003 Reprinted 2004 (twice) Third edition 2005 Reprinted 2006 (twice) Fourth edition 2007 Copyright 0 2007, Roger Greeno and Fred Hall. Published by Elsevier Limited. All rights reserved The right of Roger Greeno and Fred Hall to be identified as the authors of this work has been asserted in accordance with the Copyright, Designs and Patents Act 1988 No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means electronic, mechanical, photocopying, recording or otherwise without the prior written permission of the publisher Permission may be sought directly from Elsevier’s Science & Technology Rights Department in Oxford, UK: phone (+ 44) (0) 1865 843830; fax (+44) (0) 1865 853333; email: [email protected]. Alternatively you can submit your request online by visiting the Elsevier web site at http://elsevier.com/locate/permissions,and selecting Obtaining permission to use Elsevier niaterial Notice No responsibility is assumed by the publisher for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions or ideas contained in the material herein. -
Passenger Rail (Edited from Wikipedia)
Passenger Rail (Edited from Wikipedia) SUMMARY A passenger train travels between stations where passengers may embark and disembark. The oversight of the train is the duty of a guard/train manager/conductor. Passenger trains are part of public transport and often make up the stem of the service, with buses feeding to stations. Passenger trains provide long-distance intercity travel, daily commuter trips, or local urban transit services. They even include a diversity of vehicles, operating speeds, right-of-way requirements, and service frequency. Passenger trains usually can be divided into two operations: intercity railway and intracity transit. Whereas as intercity railway involve higher speeds, longer routes, and lower frequency (usually scheduled), intracity transit involves lower speeds, shorter routes, and higher frequency (especially during peak hours). Intercity trains are long-haul trains that operate with few stops between cities. Trains typically have amenities such as a dining car. Some lines also provide over-night services with sleeping cars. Some long-haul trains have been given a specific name. Regional trains are medium distance trains that connect cities with outlying, surrounding areas, or provide a regional service, making more stops and having lower speeds. Commuter trains serve suburbs of urban areas, providing a daily commuting service. Airport rail links provide quick access from city centers to airports. High-speed rail are special inter-city trains that operate at much higher speeds than conventional railways, the limit being regarded at 120 to 200 mph. High-speed trains are used mostly for long-haul service and most systems are in Western Europe and East Asia.