<<

Conservation Science in Museum Vol. 2, pp. 19~25(2000)

  PEG, , Lactitol     

† *    , *  

Experiment on Conservation Treatment Method(PEG, Sucrose and Lactitol) and Degree of State-change with RH of Waterlogged Archaeological Wood

Yong-hee Yi†, Soo-choul Kim, Young-man Park* and Kyoung-su Kim Conservation Science Lab., The National Museum of Korea *Conservation Science Lab., The National Museum of Kwangju

            !" #  2$% "&' PEG(Poly-), Sucrose, Lactitol(  ! )*+ ,- . / % 0123 4. 56 78 9:. ; <= 5>?@A B"% PEG#200(MW:200)= !B "C% PEG#4000(MW:3,350) DE 2FG PEG(PEG-2Step) , FH>?@A PEG#4000I FJK ( E  LM NO ,- . >PQR:. S  T 0123 UV A 2FG PEG  WV% ,XYL LM Z[ >P\:. ]^ Sucrose_ Lactitol% `a )* bcdeL fgI SucroseA 84%% NO e32 hCD ijk lL ^ )*L :C E mR!, LactitolO 0123 T no pq= rs L tmA u5D vwmR:. S 0123 UV 2FG PEG' *x yz WV {|}D vw 9:. D~ UV<=   A 2F G PEG E `a ,- .D LM N! eXY  €.e 6 ‚K( >P\:.

Abstract In order to studies proper conservation treatment condition of waterlogged archaeological wood excavated from wetland in Shinchang-dong, Kwangju, 2 kinds of wooden objects were treated with PEG(Poly-Ethylene Glycol), sucrose and lactitol and their size stability and relative humidity were analyzed and compared each other. The result showed that Quercus spp. had the highest size stability in 2 Step- PEG treatment using PEG#200(MW:200) and PEG#4000 (MW:3,350) and Acer spp. was the highest in treatment using only PEG#4000. In relative humidity test after treatment 2 Step-PEG treatment showed the lowest size stability. In the meantime, sucrose and lactitol-treated sample was fast for penetration, sucrose-treated sample showed a sharp increase for penetration in as high as 84% humidity condition and medicine flew out a lot and lactitol-treated sample got enlarged with fine cracking(splitting) in relative humidity test. In relative humidity test, the samples showed cracking(splitting) in all treatment materials except for 2 Step-PEG treatment. This study showed that waterlogged archaeological wood excavated from Shinchang-dong had the highest size stability and highest adaptation to humidity change in case of treatment with 2 Step-PEG.

†Corresponding author : Yong-hee Yi, Conservation Science Lab., I.  The National Museum of Korea Tel : 02) 398-5145 1995     Fax : 02) 398-5130 E-mail : [email protected]         ! "

19 https://doi.org/10.22790/conservation.2000.2.0019 20   2 (2000)

#$#%&' () *+ ,-% ./0 Table 2. Treatment method 1) ! 12 3 45  67089 .  Treatment Concentration Temperature Solvent :0! &; 45< =>?  PEG#4000(MW:3,350) 80% 45oC  67+ 45 @ 45 AB B; 2Step-PEG PEG#200(20%) (10~50%) < ;C D0E 12 F 3;G H 3IE4 (MW:200, MW:3,350) PEG#3,350(30~80%) Water 5(JKLMN)OPQ R S# T60U VW Lactitol 80% 60oC XY0Z [P \] ^ 3 _G /`% 3a b[0 Sucrose 70% (60~80%) U cdE e9. fg < 3I45G  hDi 3jE #kl mhno pnE hq 3 r`s n# tC ! 45 V 3aG u % ºu» fg 3—¿ Á/  Ã/ ÄG Å nE vw 5xG yzn! p{|dW }~n9. RZ, ÆÁu»‰ uu» Ç] |d h Ä ÈÉ 5 € ! PEG(Poly-Ethylene Glycol), # ‰ ¶ÊG Ã/nÀ9. ‡H3µ‰ ¯¶G Ã/n# *‚kƒ, „Vƒ  3IE45 p{|d D tC 1Ë1Ë1cm Ì#% ¾R Ÿ5 ͌3 I *-% 0E r-†2-6) ‡ˆ

Table 1. Maximum moisture content and specific gravity ‰ í G un# tC ! Wî  E–` |dW Maximum mois- dnï% 80% –`% |dnÀ9. w*|dW “Û Species Specific gravity ture content(%) +  Ÿ5 |dÒ ð€U ñZ ò]r! (Quercus spp.) 431.5 0.208 ‰Ê w* ó3Ñ% ô] *×  D€ u‚n (Acer spp.) 455.8 0.205 Q ¥VnÀ9. Ÿ5 ¶ÊbzW _G õß    PEG, Sucrose, Lactitol     !" #$ 21

V   ¶Ê‰ ‚3bz Ã/nÀ9. õ 9 Ÿ5 ð€U ñZ QÒG *×   0.001 g Rtß Ã/nÀ-† ¶Êbzµ2 Ô A% 2.2.   AnÀ9. ê w* HI|d  ¸ w*˜ ‚3m/ 3I45 p{|d! 5x-% vw  BG ¯°n# tC 3aµG Ã/nÀ9. 3aµÃ/ d§zã m/BG &QnQ b[‰ bxG u 2 Ÿ5 ÅRZO Ã/ Ä( l 0.5 mm)G Ç nE  hDi 3jE #kl ¾¢ ] uu»‰ ÆÁu»-% A;nQ w* HI |d öq 3 r`s n! ,9. fg p{|d h‰ |dÂ Ä ÈÉG Ã/nE 3aµ2 Ô B% C  [PW  ‹ ÷ =% 0U› AnÀ99). H2 ø  p+ jù Ú§` klb rT C „ C z C Uú /` :û 3 r`s nQ› 9 ­ ¶Êbzµ ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ– ˆ × . A: (%) = „ C 100 ¢ PEG, Sucrose• Š2 w*  p{|d B: 3aµ(%) = ! |d  45 óB ÍW, ` V fü w „ ‰% Šj T ‰% Šj * 6‰ 45 b[ OPbzW 45 p{ ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ– × „ ‰% Šj 100 dO ¶~ ý*W +9. ¤ DŸ ! • þnQ PEG, Sucrose, Lacti- «¬V DŸ ! 20È-% *+ ¸ ` tol ¸¸ w*% |d  ¥ V Ÿ5 9 V  ‰ “Û  4 ÈÉ-% Ÿ5 F `V n ÿ]¼E Ÿ5 ‚3• ¶Êb ¶ÊG Ã/nÀ9. ê `bz fü Ÿ5 zµG Ã/nE Ÿ5 S[ OPbz nQ ‚3bz \]p# tC ¸ `V  ‰ “ 453“‰ |dw*˜ ó¬V ­BG O® ¯°n Û 9 # Ä ÈÉG Ã/nÀ9. «¬V D À9. Table 3 • Š2 ¸¸ ÑzÒG n Ÿ  ¶Êbzµ‰ 3aµ2 Õ Ô A, B% A Q ' €& ` ¾nE Table 4 | nÀ9.  3“ fg % 9ü `V-% DŸnÀ912). O3di³Œ lâ hV  2 ` 2 ` III.   % 9 2 ` -% ` ¾nÀ-† R´ i³Œ lâ hV+ Ÿ5 2 ` 2  1.  `% 9 2 `  ¥V nÀ9. ¸¸ « w* HI ¶ ¶Êbzµ2 Fig. 1 | O3di ¬V DŸ2 Ÿ5 DÚ(25oC) 20È¿  ³Œ(Fig. 1a)• R´i³Œ(Fig. 1b) ¼ 3“ ÷¼ Š2 ' € u‚  ¶Êbz• ‚3bz ª l»G i€89. -% pE+ 2 –`(20~ -% Ã/n! uƒ-% XYnÀ9. 40%)    ¶ÊÍWµ‰ d Fig. 1 | ÷ |dw*W Xž ¶Ê ÍW pÀ9. ê w 2.3.    *“Œ˜ ¶ÊÍW pZ ¼ 3“ ÷¼ Lactitol ¶Êbzµ Ã/2 w* HI ¶ w* I¦§¨© lâW Wj  ¶ÊÍW i€8-†, 9Ó2 /` ¯°n# tC HI|d #È ¶ –` OÝ Sucrose% i9. PEG|d lâ PEG#4000e-% |d lâi PEG#200, PEG#4000 2RÜ PEG|d Table 3. Saturated salts solution × Š2 ¶ÊbzµG p† 60~70%  ! Relative Humidity Concentration ¶Ê ÍW e ,-% i9. • Š PEG Classification − o − o (%) 25 C (%) 25 C HI|d Ÿ5 ¶ÊÍWµ 10~15%ž Z

MgCl2(Magnesium Chloride) 33 35.4 Lactitol‰ Sucrose lâ ! PEG 2 Ož 25~ K CO (Potassium Nitrate) 43 35.4 2 3 30% ¶ÊÍWµG i€89. ,2 /#È m NaBr(Sodium Bromide) 58 48.6 KCl(Potassium Chloride) 84 26.4 PEGp9 ;¥Ê Lactitol‰ SucroseW o I¦§ KNO3(Potassium Carbonate) 94 27.5 ¨©G ¨žÞ89.

Table 4. Treatment method in controlled RH Species Step Time

Quercus spp. Oven Dried K2CO3 NaBr KCl KNO3 KCl NaBr MgCl2 Natural Dried 20days

Acer spp. KCl NaBr MgCl2 Oven Dried NaBr KCl KNO3 Natural Dried (1step) 22   2 (2000)

Fig. 1. Weight increases of solution-treated samples. Fig. 3. Shrinkage rate of each treatment in Quercus spp. and Acer spp.

Fig. 2. Shrinkage of untreated samples.

`bz fü ¶Êbzµ2 Fig. 4a | 2 ` 2 `% ¢  Ÿ5 óÊ 2 ª-% ÍWnQ E` ‡G i€8 -i Fig. 4b | #V E(84%RH)-% É ¢  Ÿ5 óÊ2 o i9. ,2 | d  45  45€& w*W `V fg  ü óp9! 2 ` 2 `% =dE / #È ~AG ¨žq 3 r89. E(84%) ó  fü w*˜ ¶ÊÍWµ2 SucroseW óÊ 1 ] ¶ÊÍWµ Wj é-† 9Ó PEG|d% PEG#4000|d• 2RÜ PEG|d! × Š2 ó ­ Fig. 4. Weight increase of treated samples in accordance with BG pÀE Lactitol lâ óÊ Wj 2 ,- Relative Humidity.    PEG, Sucrose, Lactitol     !" #$ 23

Fig. 5. Shrinkage rate of each treatment in 2 directions in accordance with reagents.

di³Œ! Fig. 3a | 2RÜ PEG|d 3aµ2 ÆÁ§uu» ÷¼ 0.5%% Wj ] ‚3m/B â3n† Sucrose|d lâ 3aµ ÆÁu» 5.13%, uu» 3.28%% ] ‚3m/B o i 9. Fig. 3b | R´i³Œ lâ PEG#4000|d  3aµ ÆÁu» −0.24%, uu» 0.01% % Wj -† Sucrose|d5 3aµ2 uu» 2.54%, ÆÁu» 0.81%% o i9. ­¢ 3“ Photo 1. Samples in 84% RH (a) Quercus spp. (b) Acer spp. fg PEG#4000|d• 2RÜ PEG|d ‚3m/zä (c) Acer spp. of Sucrose treatment. ‰W % 9”o iòG pQE r-† ¼ 3“ ÷ ¼ Sucrose|d Ÿ5 ‚3m/B2 o i9. % i9. ­¢ Sucrose lâ 9ü w*• d  `bz fü Ÿ5 3“˜ ‚3bz! Fig. 5 ` 84%RH p9 E(94%RH) V ¢ ¶ • Fig. 6 | `V fg ‚3bz &W Ê Îù+ ,2 Photo 1 p? ` 84%RH r8-† O3di³Œ p9 R´i³Œ Ÿ5 ` w 10 l‰  óÊ ÍW0Z Ÿ5% V fü ‚3bzW 2 ,-% i9. ê &' |dw*W 608E , #V   ¶ PEG, Sucrose, Lactitol% ¸¸ |d+ O3di³Œ ÊÎù% i ,-% !R+9. lâ Fig. 5 | 2RÜ PEG|d5! ÷ ` V ÆÁ§uu» ‚3bzW U `bz 2.  öB F® ,-% i9. Lactitol|d  w*|d n è2 OP% #V  Ÿ5 l⠟5! ÆÁu»-% í 0Z  ‚3bz pÀ 3a-% žC S[ "no #=‘$-† %ë3aµ 9. R´i³Œ lâ Sucrose|d Ÿ5!  2 ÆÁu» 61%, uu» 26%% i9. ¶Êbz ` 'AnE #V 3aµ Wj o i ¼ 3“ w* HI |d  #V 3aµ2 O3di -† PEG#4000|d Ÿ5! E`(94%) 3a ³Œ lâ 2RÜ PEG|d *S 9ü w*|d µ Wj o i9. ÷ 3“ 2RÜ PEG| 3aµ R´i³Œp9 2~3% o i9. O3 d Ÿ5! hV, E(94%), #VV 2%n 24   2 (2000)

• R´i³Œ Ÿ5W no ÆÁ, u Fu»- % í + ,-% i-† ÅRZO (² q ) 93 089.

IV. 

  67+ 3IE45(‡H3 µ : 443%) \™2 |dƒG š/n# tC ¥4  Ÿ5 PEG(Poly-Ethylene glycol), Sucrose, Lactitol 3 Ò HI|dnE w* I¦§¨©B‰ ‚3m/ B =dE |d  9F `bz  «¬V ­BG ¯°nÀ9. HI|d ¶ w* I¦§¨©2 ;¥Êž Sucrose• Lactitol|dW  V  E;¥Êž PEG#4000|d p9 2 O ¶Ê ÍW pQ < w*W p9 o I¦§¨©G \ 3 r89. w* “Œ• 3“ fü ‚3m/B2 O 3di³Œ lâ 2RÜ PEG|d, R´i³Œ lâ PEG#4000-% |d Ÿ5W Wj 2 ,-% i Fig. 6. Shrinkage rate of each treatment in 2 directions in 9 accordance with Relative Humidity. . 3IE45 p{|d  pkl‰ þ «¬ V DŸ ! O3di³Œ lâ 2RÜ PEG|d  Ÿ5, R´i³Œ! Sucrose |d Ÿ5 ‚3 bzW Wj U `bz  öB ¯° F ® ,-% i9. =‘i Sucrose|d5 lâ 84%RHO Ekl w*W 9Ê 60E V    q) ÖnÀ-† PEG#4000‰ 2RÜ PEG ƒ-% |d Ÿ5 lâ ` 84%O `V óÊ ÍWnZ Ÿ5 ñZ aaC! O2 *q 3 _89. Lactitol|d Ÿ5! ` b z fü ¶Ê ͧΠ 9ü w*  |d p9 E w* 6 O` ii èée «¬V DŸ  |d5W í 0Z (² q)  Ö0! ý*W r89. fg ¤ DŸ„‰ C EC ^õ   67 3IE45 lâ w* ¥+ 2 óB‰ E;¥ PEG#4000|d RÜ  I¦§¨©B n W R -% , 3 re PEG#200‰ PEG#4000G - 2RÜ PEG|d ¯° F® p{|d „ ‰ G 3 rG ,-% !R+9. . 3“ fü w*˜ ‚3m/B‰ ¶ÊÍWµ fü 3aµ % 9ü „‰ i€ï% 3IE45 p{|d rU 3“‰ w*“Œ, ;COP• HI#È 9F  V<  ªž AW }~q ,-% Ö¸+9. Photo 2. Samples after treatment (a) Quercus spp. (b) Acer spp.  %ë3aµG i€89. 9e Lactitol|d Ÿ5 lâ «¬VDŸ “Û+ RÜ O3di³Œ 1.  ,        PEG, Sucrose, Lactitol     !" #$ 25

I ,  !", 33, pp.120-129 (1997) 7. Per Hoffmann, Sucrose for Stabilizing Waterlogged 2. #$%, &'(, )*+ ,-./0 !123, !1 Wood some investigations into Antishrink-efficiency(ASE) 4 , 5, pp.109-132 (1986) and Penetration, Proceeding of the 4th ICOM Group 3. 5 6, )*78/90 : ;<4 4= !1 on Wet Organic Archaeological Materials Conference, 23, !14 , 5, pp.140-145 (1986) pp.317-328 (1990) 4. #> , )?@AB0 CD;E4 !123, ?@ 8. Imazu, Morgos, Conservaion of Waterlogged Wood FG AB HI:J !"K, .LMN!12 using Sugar and Comparison the Effectiveness O, pp.121-131 (1993) of Lactitol, Sucrose and PEG#4000 Treatment, Pro- 5. #P, QR, STU, )"VW 7".C0 X ceeding of the 6th ICOM Group on Wet Organic Y:Z [\ PEG ]2^@ _ T`a&3, !14 Archaeological Materials Conference, pp.4-5 (1996) b, 9(1), pp.40-47 (2000) 9. ?, Sfg, :6h, :$i, .C4eK , 6. #c, STU,)7.C0 XY: de!"3,  jklJ (1993) !14, 1, pp.27-36 (1999)