Determination of Maltitol, Isomaltitol, and Lactitol by High-Ph Anion-Exchange Chromatography with Pulsed Amperometric Detection

Total Page:16

File Type:pdf, Size:1020Kb

Determination of Maltitol, Isomaltitol, and Lactitol by High-Ph Anion-Exchange Chromatography with Pulsed Amperometric Detection J. Agric. Food Chem. 1999, 47, 157−163 157 Determination of Maltitol, Isomaltitol, and Lactitol by High-pH Anion-Exchange Chromatography with Pulsed Amperometric Detection Tommaso R. I. Cataldi,* Cristiana Campa, Innocenzo G. Casella, and Sabino A. Bufo‡ Dipartimento di Chimica, Universita` degli Studi della Basilicata, Via N. Sauro, 85-85100 Potenza, Italy Disaccharide alditols (DAs) such as maltitol, isomaltitol, and lactitol are increasingly being employed in food industry by virtue of their low hydroscopicity, high stability, and good bulking properties. Still, these compounds are reduced-calorie sweeteners, so they are successfully employed in many dietetic foods, like candies, chocolates, baked products, ice creams, and beverages. Here we describe the determination of maltitol, isomaltitol, and lactitol, along with other common carbohydrates, in some foodstuffs such as toffees, biscuits, creams, sponge cakes, chocolates, roasted malt, and chicory leaves. Separations were accomplished by high-pH anion-exchange chromatography (HPAEC) with pulsed amperometric detection using 40 mM NaOH + 1 mM Ba(CH3COO)2 as the mobile phase. The optimal detection potential (EDET )+0.10 V) was established in voltammetric experiments carried out in batch and flowing stream solutions. Under optimized conditions there was no need for both postcolumn addition of strong bases to the eluent and, even more important, column regeneration between runs. A pellicular column with a relatively low ion-exchange capacity was adopted, which allows a rapid separation of sorbitol, isomaltitol, lactitol, maltitol, glucose, fructose, sucrose, and lactose. The presence in the alkaline mobile phase of barium ions improved selectivity and reproducibility besides shorter analysis times as well. Limits of detection were on the order of 10-20 pmol injected. The contents of DAs and other free sugars in some dietetic foods were evaluated by calibration graphs. Keywords: Alditols; chromatography; amperometric detection; dietetic foodstuffs INTRODUCTION Table 1. Structures of Disaccharide Alditols Studied Traditional synthetic sweeteners such as saccharin and aspartame provide a very low amount of calories and, at the same time, have a sweetening power 200- 300 times higher than that of sucrose. Despite these features, they possess only limited bulking properties and cannot be largely employed in the confectionery industries. Disaccharide alditols (DAs), also known as disaccharide sugar alcohols, are the reduced forms of the corresponding disaccharide compounds (Table 1); they are characterized by lower caloric values but similar sweetening power compared to that of sucrose. Maltitol, 4-O-R-D-glucopyranosyl-D-sorbitol, exhibits re- duced laxative effects but similar high tolerance for humidity as D-mannitol, making it largely preferred in many dietetic products (Rapaille et al., 1995). Isomalt or palatinit is a white and crystalline mixture prepared from sucrose, which is composed of 6-O-R-D-glucopyra- nosyl-D-sorbitol, also known as isomaltitol (GPS), and 6-O-R-D-glucopyranosyl-D-mannitol (GPM). Isomalt has only 45-65% of sucrose’s sweetening power and is then often used in combination with other sweeteners (Willi- bald-Ettle and Schiweck, 1996). The even milder sweet- ening power of lactitol (4-O-â-D-galactopyranosyl-D- sorbitol), which is equivalent to ca. 40%, makes it a very Together with traditional sweeteners or other alditols, versatile ingredient in many low-calorie products (Grim- it is especially employed for confectionery manufactures ble et al., 1988; Van Velthuijsen and Blankers, 1991). (Blankers, 1995; Armstrong, 1998). Conceivably, these compounds are provoking a growing interest in the food * To whom correspondence should be addressed (fax, +39- industry because they are characterized by low hydro- 0971-474223; e-mail, [email protected]). scopicity, high stability, and good bulking properties ‡ Dipartimento di Produzione Vegetale. (McNutt et al., 1996; Koutsou et al., 1996). Indeed, DAs 10.1021/jf9807059 CCC: $18.00 © 1999 American Chemical Society Published on Web 12/08/1998 158 J. Agric. Food Chem., Vol. 47, No. 1, 1999 Cataldi et al. are easily incorporated into processed foods and bever- Voltammetric Apparatus. Voltammetric data were ages and successfully used in many reduced-calorie obtained at a rotating disk electrode (RDE) using a products, such as candies, lollipops, chocolates, cough model EDI101 rotator from Radiometer Analytical drops, baked products, and ice creams. Additionally, (Copenhagen, Denmark) and a model 263A potentiostat such compounds do not promote dental caries probably (EG&G Princeton Applied Research, Princeton, NJ). because they are not fermented significantly in the Data acquisition and potentiostat control were ac- mouth (Grenby et al., 1989). The wide variety of complished with a computer running the M270 electro- foodstuffs in which DAs can be used is particularly chemical research software (EG&G) version 4.11. Elec- helpful for diabetics, because alditols induce a reduced trochemical experiments were made using a conventional increase of insulin and glucose in the blood. single-compartment glass cell (PAR). A gold disk elec- The weak acidic properties of carbohydrates allow trode (2.0-mm diameter; Radiometer Analytical) was their chromatographic separation through ion-exchange used for all voltammetric investigations, and the gold mechanisms. Indeed, high-pH or high-performance anion- surface was polished with 0.05 µm of alumina oxide exchange chromatography coupled with pulsed ampero- powder on microcloth using water as the lubricant prior metric detection (HPAEC-PAD) is a very powerful tool to each series of experiments. A Pt auxiliary electrode for the determination of sugars and alditols (Johnson andaAg|AgCl (saturated KCl) reference electrode were and LaCourse, 1990, 1995; Lee, 1996). Sensitivity, used. High-purity N2 gas was bubbled through the cell selectivity, and reliability of this technique are relevant to remove dissolved O2 prior to scan sweeps, and an aspects for the analysis of food products, often charac- atmosphere of N2 was maintained over the cell solutions terized by complex matrixes. Sugar alcohols owing to during voltammetric experiments. The current-poten- their even weaker acidity are generally well-separated tial (i-E) curves reported correspond to the stable with a macroporous anion-exchange column using highly profiles obtained after four potential cycles. All experi- basic mobile phases, that is, 0.4-0.6 M NaOH (Dionex, ments were carried out at room temperature, ∼20 °C. 1994a,b; Corradini et al., 1997; Cataldi et al., 1997a). HPAEC-PAD System. Carbohydrates analyses were Interestingly, in this work a pellicular anion-exchange performed using a Dionex system (Dionex Corp., Sunny- column, characterized by a relatively lower ion-exchange vale, CA) composed of a metal-free isocratic pump model capacity (Dionex, 1995), was successfully employed for IP20 with on-line degas, a pulsed amperometric detector the separation of some relevant alditols and sugars. (model ED40), and a metal-free rotary injection valve Good resolution of commonly occurring carbohydrates equipped with an injection loop of 10 µL. A Dionex in dietetic foodstuffs was obtained upon optimization CarboPac PA100 analytical column (250-mm × 4-mm of the alkaline eluent composition. Efficiency and re- i.d.) preceded by a guard CarboPac PA100 column (50- producibility of the chromatographic results were sig- mm × 4-mm i.d.) was adopted for the optimized separa- nificantly improved by addition of barium ions to the tions. Such a column is composed by sulfonated eth- mobile phase as has been previously described (Cataldi ylvinylbenzene-divinylbenzene particles agglomerated et al., 1997b). We determined the linearity, sensitivity, with 350 µm of Micro Bead quaternary amine-function- reproducibility of response, and limits of detection. The alized latex. Alternatively, a Dionex CarboPac MA1 applicability of the method has been demonstrated by column, 8.5-µm bead diameter (250-mm × 4-mm i.d.), the analysis of some typical dietetic food products, where coupled with a guard CarboPac MA1 column (50-mm × maltitol, isomalt, and lactitol are used as sweeteners. 4-mm i.d.) was used. The flow-through detection cell (Dionex) is made from a 1.0-mm diameter gold working - | MATERIALS AND METHODS electrode and a pH Ag AgCl combination reference electrode; the titanium body of the cell served as the Chemicals. Sodium hydroxide, 50% solution in water counter electrode. Sodium hydroxide eluents were kept (1.515 g/mL), Ba(CH3COO)2 (99%), R-D-lactose mono- in plastic bottles, and a nitrogen headspace was main- hydrate (97%), D-sorbitol (99+%), D-xylose (99%), lactitol tained on the solutions with a Dionex eluent organizer monohydrate (98%), and MgSO4 (99%) were purchased (EO1). A personal computer equipped with the Kontron from Aldrich Chemical Co. (St. Louis, MO), maltitol 98% PC Integration Pack software (Kontron Instruments, was from Fluka Chemie (Buchs, CH), NaN3, R-D-glucose Milan, Italy) allowed acquisition and processing of (99.5%), sucrose (>99.5%), D-fructose (99%), maltose chromatograms. Unless stated otherwise, the pulsed monohydrate (99%), and isomaltitol (98%) were from amperometric detector settings were the following: EDET )+ ) ) )+ Sigma Chemical Co. (Steinheim, Germany). Other chemi- 0.10 V (tDET 440 ms, tINT 240 ms), EOX 0.80 ) )- ) cals were purchased from Carlo Erba (Milan, Italy) and V(tOX 180 ms), ERED 0.80 V (tRED 360 ms); and
Recommended publications
  • “Polyols: a Primer for Dietetic Professionals” Is a Self-Study
    1 “Polyols: A primer for dietetic professionals” is a self-study module produced by the Calorie Control Council, an accredited provider of continuing professional education (CPE) for dietetic professionals by the Commission on Dietetic Registration. It provides one hour of level 1 CPE credit for dietetic professionals. The full text of the module is in the notes section of each page, and is accompanied by summary points and/or visuals in the box at the top of the page. Directions for obtaining CPE are provided at the end of the module. 2 After completing this module, dietetic professionals will be able to: • Define polyols. • Identify the various types of polyols found in foods. • Understand the uses and health effects of polyols in foods. • Counsel clients on how to incorporate polyols into an overall healthful eating pattern. 3 4 Polyols are carbohydrates that are hydrogenated, meaning that a hydroxyl group replaces the aldehyde or ketone group found on sugars. Hydrogenated monosaccharides include erythritol, xylitol, sorbitol, and mannitol. Hydrogenated disaccharides include lactitol, isomalt, and maltitol. And hydrogenated starch hydrolysates (HSH), or polyglycitols (a wide range of corn syrups and maltodextrins), are formed from polysaccharides (Grabitske and Slavin 2008). 5 Nearly 54 percent of Americans are trying to lose weight, more than ever before. Increasingly, they are turning toward no- and low-sugar, and reduced calorie, foods and beverages to help them achieve their weight loss goals (78% of Americans who are trying to lose weight) (CCC 2010). Polyols, found in many of these foods, are becoming a subject of more interest. 6 They are incompletely digested , therefore are sometimes referred to as “low- digestible carbohydrates.” Polyols are not calorie free, as there is some degree of digestion and absorption of the carbohydrate.
    [Show full text]
  • Effects of Polyols on the Processing and Qualities of Wheat Tortillas'
    BREADMAKING Effects of Polyols on the Processing and Qualities of Wheat Tortillas' E. L. SUHENDRO, 2 R. D. WANISKA,2 L. W. ROONEY, 2 and M. H. GOMEZ 3 ABSTRACT Cereal Chem. 72(l):122-127 Effects of polyols on processing of hot-press wheat tortillas were evalu- Doughs containing 6% polyols, except maltitol, were stickier and less ated. Hot-press wheat tortillas with 0, 2, 4, or 6% glycerol were prepared machinable than control doughs. Tortillas prepared from 10.2% protein from wheat flour of 10.2, 11.0, or 11.5% protein content. Tortillas with flour with or without polyols were less rollable during storage compared 2, 4, or 6% propylene glycol, sorbitol, or maltitol were prepared from to those prepared from higher protein flours. Tortillas containing glycerol the 11.0% protein flour. Farinograph and alveograph values, dough mixing had less moisture, higher liquid content, and improved shelf-stability, characteristics and machinability, rollability over time, sensory evaluation, except when prepared from low protein flour. Water activity decreased water holding capacity, total liquid content, and water activity were deter- with increasing polyol level. Propylene glycol and glycerol were more mined. Low protein (10.2%) flour required less water, shorter mixing effective in decreasing water activity than sorbitol and maltitol. Formulas time, and yielded tortilla doughs that were less machinable compared containing 4% polyols and Ž11.0% protein flour had good machinability to other flours. Water absorption decreased with increasing polyol level. and yielded acceptable tortillas with improved rollability during storage. The increased production of wheat tortillas in the United States Propylene glycol (J.T.
    [Show full text]
  • Dental and Metabolic Effects of Lactitol in the Diet of Laboratory Rats
    Downloaded from British Journal of Nutrition (1989), 61, 17-24 17 https://www.cambridge.org/core Dental and metabolic effects of lactitol in the diet of labolratory rats BY T. H. GRENBY AND A. PHILLIPS Department of Oral Medicine and Pathology, United Medical and Dental Schools, Guy’s Hospital, London SEI 9RT . IP address: (Received 17 May 1988 - Accepted 30 August 1988) 170.106.35.93 I. Because so little is known about the properties of lactitol as a possible alternative bulk sweetener to sucrose, it was tested in two large-scale experiments in laboratory rats. Matched groups of caries-active Osborne-Mendel rats were fed.on uniform diets containing lactitol and compared with a sucrose control in both experiments, plus a xylitol control in the first experiment. , on 2. In the early stages of the experiments weight gains and food utilization were better on the Sucrose than on 26 Sep 2021 at 05:12:03 the lactitol regimens. Body-fat storage was higher on the sucrose than on the polyol regimens. 3. At the end of 8 weeks the mandibular molars were examined for dental plaque accumulation and dental caries. The dental caries scores when 160 g sucrose/kg in the diet was replaced by lactitol were lower by a highly significant margin, bringing them down to the same low level as those on a 160 g xylitol/kg regimen. 4. Testing lactitol in a manufactured food product, shortbread biscuits, in comparison with ordinary sucrose biscuits, showed differences in plaque scores (significant) and caries levels (highly significant), with 60 % fewer lesions on the lactitol regimen.
    [Show full text]
  • Polyols Have a Variety of Functional Properties That Make Them Useful Alternatives to Sugars in Applications Including Baked Goods
    Polyols have a variety of functional properties that make them useful alternatives to sugars in applications including baked goods. Photo © iStockphoto.com/Synergee pg 22 09.12 • www.ift.org BY LYN NABORS and THERESA HEDRICK SUGAR REDUCTION WITH Polyols Polyols are in a unique position to assist with reduced-sugar or sugar-free reformulations since they can reduce calories and complement sugar’s functionality. ugar reduction will be an important goal over the of the product’s original characteristics may still be main- next few years as consumers, government, and in- tained with the replacement of those sugars by polyols. Sdustry alike have expressed interest in lower-calorie In addition, excellent, good-tasting sugar-free products and lower-sugar foods. The 2010 Dietary Guidelines for can be developed by using polyols. Polyols are in a unique Americans put a strong emphasis on consuming fewer position to assist with reduced-sugar or sugar-free refor- calories and reducing intake of added sugars. The In- mulations; since they are only partially digested and ab- stitute of Medicine (IOM) held a public workshop in sorbed, they can reduce calories and complement sugar’s November 2010 to discuss ways the food industry can functionality. Polyols provide the same bulk as sugars and use contemporary and innovative food processing tech- other carbohydrates. Additionally, polyols have a clean, nologies to reduce calorie intake in an effort to reduce sweet taste, which is important since consumers are not and prevent obesity, and in October 2011 recommended likely to sacrifice taste for perceived health benefits. Poly- front-of-package labeling that includes rating the product ols have a host of other functional properties that make based on added sugars content.
    [Show full text]
  • Sweet Sensations by Judie Bizzozero | Senior Editor
    [Confections] July 2015 Sweet Sensations By Judie Bizzozero | Senior Editor By R.J. Foster, Contributing Editor For many, terms like “reduced-sugar” or “sugar-free” do not go with the word “candy.” And yet, the confectionery industry is facing growing demand for treats that offer the taste people have grown to love without the adverse health effects they’re looking to avoid. Thankfully, there is a growing palette of ingredients from which candy makers can paint a new picture of sweetness that will be appreciated by the even most discerning of confectionery critics. SUGAR ALCOHOLS Also referred to as polyols, sugar alcohols are a common ingredient in reduced-sugar and sugar-free applications, especially confections. Funny thing, they’re not sugars or alcohols. Carbohydrate chains composed of monomeric, dimeric and polymeric units, polyols resemble both sugars and alcohols, but do not contain an ethanol molecule. All but two sugar alcohols are less sweet than sugar. Being only partially digestible, though, replacing a portion of a formulation’s sugar with a sugar alcohol reduces total calories without losing bulk (which can occur when replacing sugar with high-intensity sweeteners). Unique flavoring, texturizing and moisture-controlling effects also make polyols well-suited for confectionery products. Two very common and very similar monomeric polyols are sorbitol and mannitol. Present in a variety of fruits and vegetables, both are derived from products of cornstarch hydrolysis. Sorbitol is made via hydrogenation of glucose, which is why sorbitol is sometimes referred to as glucitol. Mannitol is created when fructose hydrogenation converts fructose into mannose, for which the final product, mannitol, is named.
    [Show full text]
  • DIVISION 15 Adulteration Adulteration of Food
    DIVISION 15 Adulterationof food B.15.001. A food named in column III of an item of Table I to this Division is adulterated if the substance named in Column I of that item is present therein or has been added thereto in an amount exceeding the amount, expressed in parts per million, shown in column II of that item for that food. 22-1-81 B.15.002. (1) Subject to subsections (2) and (3), a food is adulterated if an agricultural chemical or any of its derivatives is present therein or has been added thereto, singly or in any combination, in an amount exceeding 0.1 part per million, unless it is listed and used in accordance with the tables to Division 16. (2) Subject to subsection (3), a food is exempt from paragraph 4(d) of the Act if the only agricultural chemicals that are present therein or have been added thereto are any of the following: (a) a fertilizer; (b) an adjuvant or a carrier of an agricultural chemical; (c) an inorganic bromide salt; (d) silicon dioxide; 8-3-79 (e) sulphur; or (f) viable spores of Bacillus thuringiensis Berliner. 26-1-98 (3) A food named in column IV of an item of Table II to this Division, a food that contains any such food or a food made from a product of any such food is exempt from the application of paragraph 4(d) of the Act if the agricultural chemicals named in columns I and II of that item are present in or have been added to the food in an amount not exceeding the maximum residue limit set out in column III of that item.
    [Show full text]
  • Lactitol, Bulk Sweetener for Sugar Free and Reduced Calories Hard
    Sugar Free Dental Properties Lactitol is noncariogenic. It is not fermented by the oral micro flora, so its consumption does not lead to Lactitol, Bulk Sweetener for the formation of acids that deminer- alize the tooth enamel. Also, the building up of tooth plaque is much less for lactitol-containing hard can- dies when compared to sugar. Its Sugar Free and Reduced noncariogenic properties have been shown in various clinical trials (Grenby and Desai, 1988; Grenby, 1989; Grenby and Phillips, 1989; Grenby et al., 1989; van der Calories Hard Candy Hoeven, 1986). REGULATORY ASPECTS A self-affirmation petition for the Generally Recognized as Safe status of lactitol, submitted by Purac, was his paper will discuss the prop- intense sweetener like aspartame or accepted for filing by the Food and Terties, regulatory aspects, and acesulfame-K. The taste, sweetening power, and Drug Administration in September applications of lactitol in hard can- 1993. The safety of lactitol has been dies. Lactitol is a disaccharide sugar profile of such sweetener combina- tions are very close to those of substantiated by numerous animal alcohol made from lactose by cat- and human studies. This safety alytic hydrogenation. sucrose. Its clean sweet taste allows a superb flavor release. research has been reviewed by sev- eral international authoritative bod- BENEFITS OF LACTITOL Reduced Calories ies (JEFCA, 1983; EEC, 1984). The Taste The FDA allows the use of a self- joint FAO/WHO Committee on Lactitol has a clean, sweet, sugar- determined value of 2.0 kilocalorie Food Additives has approved lacti- like taste without an aftertaste. The per gram for lactitol.
    [Show full text]
  • Sugar Alcohols a Sugar Alcohol Is a Kind of Alcohol Prepared from Sugars
    Sweeteners, Good, Bad, or Something even Worse. (Part 8) These are Low calorie sweeteners - not non-calorie sweeteners Sugar Alcohols A sugar alcohol is a kind of alcohol prepared from sugars. These organic compounds are a class of polyols, also called polyhydric alcohol, polyalcohol, or glycitol. They are white, water-soluble solids that occur naturally and are used widely in the food industry as thickeners and sweeteners. In commercial foodstuffs, sugar alcohols are commonly used in place of table sugar (sucrose), often in combination with high intensity artificial sweeteners to counter the low sweetness of the sugar alcohols. Unlike sugars, sugar alcohols do not contribute to the formation of tooth cavities. Common Sugar Alcohols Arabitol, Erythritol, Ethylene glycol, Fucitol, Galactitol, Glycerol, Hydrogenated Starch – Hydrolysate (HSH), Iditol, Inositol, Isomalt, Lactitol, Maltitol, Maltotetraitol, Maltotriitol, Mannitol, Methanol, Polyglycitol, Polydextrose, Ribitol, Sorbitol, Threitol, Volemitol, Xylitol, Of these, xylitol is perhaps the most popular due to its similarity to sucrose in visual appearance and sweetness. Sugar alcohols do not contribute to tooth decay. However, consumption of sugar alcohols does affect blood sugar levels, although less than that of "regular" sugar (sucrose). Sugar alcohols may also cause bloating and diarrhea when consumed in excessive amounts. Erythritol Also labeled as: Sugar alcohol Zerose ZSweet Erythritol is a sugar alcohol (or polyol) that has been approved for use as a food additive in the United States and throughout much of the world. It was discovered in 1848 by British chemist John Stenhouse. It occurs naturally in some fruits and fermented foods. At the industrial level, it is produced from glucose by fermentation with a yeast, Moniliella pollinis.
    [Show full text]
  • Effects of Polyols on the Quality Characteristics of Sucrose-Free Milk
    RSC Advances PAPER View Article Online View Journal | View Issue Effects of polyols on the quality characteristics of sucrose-free milk chocolate produced in a ball mill Cite this: RSC Adv.,2019,9, 29676 Aziz Homayouni Rad,ab Haniyeh Rasouli Pirouzian, *a Nevzat Konar,c Omer Said Tokerd and Derya Genc Polate Sucrose-free milk chocolates containing different types of bulk (isomalt, xylitol and maltitol) and high intensity (Stevia) sweeteners were produced by using a ball mill. The main quality characteristics of the formulated chocolates were evaluated and compared with those of the conventional sample containing sucrose. The Casson model was the best fitting model for the rheological data. Casson viscosity and Casson yield stress were significantly affected by the type of bulking agent in chocolates formulated with xylitol (p < 0.05). However xylitol notably improved the overall acceptability according to the sensory analysis results. Chocolates containing the sucrose replacers demonstrated lower Tonset values and higher enthalpy than the control sample. Sucrose-free chocolates illustrated a higher degree of particle agglomeration. Bulk sweeteners meanwhile seem to have high potential for milk chocolate production Creative Commons Attribution-NonCommercial 3.0 Unported Licence. with low calorie values by using the ball mill technique. Industrial applications: the production of sucrose-free chocolates with conventional methods requires a lot of time and energy. Recently, using alternative methods for chocolate production has been raising interest in many small industries. This study proposed a ball mill method for the preparation of sucrose-free milk chocolates with physiochemical properties almost ranging in the standard limit defined for chocolate.
    [Show full text]
  • Sugar Alcohols: a Review
    International Journal of PharmTech Research CODEN (USA): IJPRIF, ISSN: 0974-4304, ISSN(Online): 2455-9563 Vol.9, No.7, pp 407-413, 2016 Sugar alcohols: A review Ramezan Ali Mahian1, Vahid Hakimzadeh2* 1,2Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran Abstract : Sugar alcohols are extensively used as sweetening agents. They sometimes possess advantages over the parent sugars in sweetness, caloric reduction and non-cariogenicity. The physical status of carbohydrates in food and confectionery affects both the properties of the product during production and the quality of the final product. Sugar alcohols, such as xylitol, mannitol, sorbitol, and erythritol are emerging food ingredients that provide similar or better sweetness/sensory properties of sucrose, but are less calorigenic. Also, sugar alcohols can be converted into commodity chemicals through chemical catalysis. Biotechnological production offers the safe and sustainable supply of sugar alcohols from renewable biomass. These compounds are usually produced by a catalytic hydrogenation of carbohydrates, but they can be also found in nature in fruits, vegetables or mushrooms as well as in human organism. Due to their properties, sugar alcohols are widely used in food, beverage, confectionery and pharmaceutical industries throughout the world. They have found use as bulk sweeteners that promote dental health and exert prebiotic effect. They are added to foods as alternative sweeteners what might be helpful in the control of calories intake. Consumption of low-calorie foods by the worldwide population has dramatically increased, as well as health concerns associated with the consequent high intake of sweeteners. Key words: Sugar alcohols, low-calorie, Sugar-free products, sweetener.
    [Show full text]
  • Effects of Sugars and Sugar Alcohols on the Gelatinization Temperatures of Wheat, Potato, and Corn Starches
    foods Article Effects of Sugars and Sugar Alcohols on the Gelatinization Temperatures of Wheat, Potato, and Corn Starches Matthew C. Allan, MaryClaire Chamberlain and Lisa J. Mauer * Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN 47907, USA; [email protected] (M.C.A.); [email protected] (M.C.) * Correspondence: [email protected]; Tel.: +1-(765)-494-9111 Received: 13 May 2020; Accepted: 3 June 2020; Published: 8 June 2020 Abstract: The gelatinization temperature (Tgel) of starch increases in the presence of sweeteners due to sweetener-starch intermolecular interactions in the amorphous regions of starch. Different starch botanical sources contain different starch architectures, which may alter sweetener-starch interactions and the effects of sweeteners on Tgels. To document these effects, the Tgels of wheat, potato, waxy corn, dent corn, and 50% and 70% high amylose corn starches were determined in the presence of eleven different sweeteners and varying sweetener concentrations. Tgels of 2:1 sweetener solution:starch slurries were measured using differential scanning calorimetry. The extent of Tgel elevation was affected by both starch and sweetener type. Tgels of wheat and dent corn starches increased the most, while Tgels of high amylose corn starches were the least affected. Fructose increased Tgels the least, and isomalt and isomaltulose increased Tgels the most. Overall, starch Tgels increased more with increasing sweetener concentration, molar volume, molecular weight, and number of equatorial and exocyclic hydroxyl groups. Starches containing more short amylopectin chains, fewer amylopectin chains that span through multiple clusters, higher number of building blocks per cluster, and shorter inter-block chain lengths exhibited the largest Tgel increases in sweetener solutions, attributed to less stable crystalline regions.
    [Show full text]
  • Isomalt in Hard Candy Applications
    Sugar Free fructose is isomerized into a much more stable 1,6 bond, making iso- maltulose considerably more resis- tant to acids and microbial influ- ences. By means of a further Isomalt in Hard Candy processing step, hydrogenation, it was possible to obtain the sugar alcohol isomalt from isomaltulose. A simplified flow-chart of the pro- Applications duction process is given in Figure 1. PRODUCTION PROCESS Starting from a sucrose solution, isomaltulose is obtained through transglucosidation as already men- he demand for low-fat and low- due to its sugar-comparable taste tioned. (Figure 2.1) Tcalorie confectionery increases and preferred shelf-life properties. After crystallization, isomaltulose steadily worldwide. Consumers Isomalt started to sell in the U.S. is hydrogenated in a neutral aqueous understand the message and func- when the intense sweeteners acesul- solution using a Raney nickel cata- tions of these product categories fame K and aspartame were regu- lyst. This produces isomalt, a mixture which serve their demands for lated for the use in confectionery of the isomers 1-O-α-D-glucopyra- “healthy eating” when thinking early in 1994 (which was important nosyl-mannitol, 1,1-GPM-dihydrate, α about less calories and kind-to-the- as isomalt is less sweet than sugar). and 6-O- -D-glucopyrano-syl-D-sor- teeth functions. Nowadays new There are still few companies in bitol, 1,6-GPS. (Figure 2.2) sugar replacers like isomalt can be the U.S. that are using isomalt, com- In the crystallization process, used providing sugar comparable pared to Europe where some major especially developed for isomalt, taste and texture to guarantee good brands build their success in sugar GPM crystallizes with 2 mol water quality products.
    [Show full text]