Novel Approaches for Patterning Hierarchical Hydrogels
Total Page:16
File Type:pdf, Size:1020Kb
Novel Approaches for Patterning Hierarchical Hydrogels Submitted by Shuang Wang B. Eng. (Hons) M. Sc. Submitted in fulfilment of the requirements for the degree of IF80 Master of Philosophy Chemistry, Physics and Mechanical Engineering (CPME) Faculty of Science and Engineering (SEF) Queensland University of Technology 2018 Abstract Synthetic hydrogels featuring tunable biological functionalities and hierarchical structures are of compelling interest as scaffolds for tissue engineering applications. With the expectation of regulating cell fate within the soft materials, many efforts have been placed on creating niches that can mimic the complexity of the native extracellular matrix, where biological cues are presented and mass transportation is facilitated by interconnected pore network. In this study, sacrificial moulding process was used to produce porous hydrogels, while two patterning approaches were developed to site-specifically immobilize molecules inside the hydrogels via thiol- Michael addition, resembling natural extracellular matrix networks in terms of geometrical interconnectivity and cell-guidance functionalization. The simple approaches allow reproducible control over the size and architecture of the channels, as well as the spatial distribution and concentration of the patterning molecules, enabling controlled study of cell-substrate behaviour. i Keywords Hydrogel, fugitive ink, poly(ethylene glycol), spatial patterning, transfer molecules, fused deposition modelling, melt electrospinning writing, template, scaffold, adhesion peptide, perfusion, NIH-3T3 cells. ii Table of Contents Abstract ......................................................................................................................... i Keywords ..................................................................................................................... ii Table of Contents ....................................................................................................... iii List of Figures and Tables ........................................................................................... vi Publication and Conference Presentation................................................................... xii List of Abbreviations ............................................................................................... xiii Statement of Original Authorship ............................................................................. xvi Acknowledgements .................................................................................................. xvii Chapter 1 Introduction ................................................................................................. 1 1.1 Background ........................................................................................................ 1 1.2 Thesis Overview ................................................................................................ 3 Chapter 2 Literature Review ........................................................................................ 5 2.1 Introduction ........................................................................................................ 5 2.2 Patterning Biochemical Signals ......................................................................... 7 2.2.1 The Need for Modifying Biosignals ........................................................... 7 2.2.2 Chemistry Strategies for Gelation and Patterning ....................................... 8 2.2.3 Surface Patterning ..................................................................................... 11 2.2.4 Three-dimensional Patterning ................................................................... 15 2.3 Patterning Complex Geometry ......................................................................... 19 2.3.1 The Need and Challenges for Structural Manipulation ............................. 19 2.3.2 Soft Lithography ....................................................................................... 20 2.3.3 Template Moulding ................................................................................... 21 2.3.4 Site-specific Photoablation ....................................................................... 24 2.3.5 Layer-by-layer Photopatterning ................................................................ 25 2.4 Integrating Structural and Biochemical Features ............................................. 27 2.4.1 Patterned Microwells and Microgrooves .................................................. 27 2.4.2 Patterned Channels .................................................................................... 28 iii 2.4.3 Multi-compartmental Hydrogels ............................................................... 30 2.5 Overview and Perspectives .............................................................................. 31 Chapter 3 Spatial Patterning of Hydrogels via 3D Covalent Transfer Stamping from a Fugitive Ink ............................................................................................................. 33 Abstract .................................................................................................................. 33 3.1 Introduction ...................................................................................................... 33 3.2 Materials and Methods ..................................................................................... 35 3.2.1 Materials .................................................................................................... 35 3.2.2 Methods ..................................................................................................... 36 3.3 Results and Discussion ..................................................................................... 42 3.3.1 The Thiol-Michael Addition Reactions .................................................... 42 3.3.2 Fabrication of the Fugitive Ink Stamp ...................................................... 47 3.3.3 The Release Profile of CPM from the CPM/PCL Stamps ........................ 49 3.3.4 The 3D Covalent Transfer Stamping (3D-CTS) Process .......................... 51 3.3.5 Characterization of the Patterned Hydrogels ............................................ 53 3.4 Evaluation of the Approach ............................................................................. 56 3.4.1 Advantages of the Approach ..................................................................... 56 3.4.2 Limitations of the Approach ..................................................................... 57 3.5 Conclusions ...................................................................................................... 57 Chapter 4 Multi-scalable Peptide-modified Channels in Hydrogels for Cell Study .. 59 Abstract .................................................................................................................. 59 4.1 Introduction ...................................................................................................... 59 4.2 Materials and Methods ..................................................................................... 61 4.2.1 Materials .................................................................................................... 61 4.2.2 Methods ..................................................................................................... 62 4.3 Results and Discussion ..................................................................................... 70 4.3.1 Fabricating PCL Template using FDM and MEW ................................... 70 4.3.2 Characterization of the PEG-4Mal/PEG-4SH Hydrogels ......................... 71 4.3.3 The Efficiency of the Peptide Patterning .................................................. 74 4.3.4 Characterization of the Patterned Channels .............................................. 76 4.3.5 Cell Culture in the Channels ..................................................................... 79 4.4 Evaluation of the Approach ............................................................................. 83 4.4.1 Advantages of the Approach ..................................................................... 83 4.4.2 Limitations of the Approach ..................................................................... 84 iv 4.5 Conclusions ...................................................................................................... 84 Chapter 5 Conclusions and Future Directions ........................................................... 85 Reference.................................................................................................................... 88 v List of Figures and Tables Figure 2.1 Comparison between natural ECM and synthetic substrates Table 2.1 Chemical reactions for hydrogel synthesis and patterning Figure 2.2 Orthogonal chemistries for the creation of diverse biochemical patterns Figure 2.3 (a) Conventional μCP process (up) and trans-print process using a PVA film (down). (b) Polyacrylamide patterning from the patterned PNIPAM brushes grafted onto a glass template Figure 2.4 Fluorescence image of a PEGDA hydrogel patterned with ACRL-PEG- RGDS (in green) and ACRL-PEG-REDV (in red) (a). HDFs only bound to RGDS patterned region but not to REDV patterned regions (b). Phase contrast image of multilayer 3D patterns generated by sequential patterning of a PEGDA precursor solution on PEGDA hydrogel base Figure 2.5 Thiol-ene reaction for post network formation (a) to introduce three different fluorescently