Phd Thesis Tese De Doutoramento NM Xavier

Total Page:16

File Type:pdf, Size:1020Kb

Phd Thesis Tese De Doutoramento NM Xavier Universidade de Lisboa Institut National des Faculdade de Ciências Sciences Appliquées de Lyon Departamento de Química e Bioquímica Synthesis of New Sugar Derivatives Containing an α,β-Unsaturated Carbonyl System in Their Structure and Biological Evaluation Nuno Manuel Ribeiro Martins Xavier Doutoramento em Química Doctorat en Chimie (Química Orgânica) (Spécialité Chimie) 2010 Universidade de Lisboa Institut National des Faculdade de Ciências Sciences Appliquées de Lyon Departamento de Química e Bioquímica Synthesis of New Sugar Derivatives Containing an α,β-Unsaturated Carbonyl System in Their Structure and Biological Evaluation Nuno Manuel Ribeiro Martins Xavier Doutoramento em Química Doctorat en Chimie (Química Orgânica) (Spécialité Chimie) Supervised by: Amélia Pilar Rauter , Professora Associada com Agregação Yves Queneau , Directeur de Recherche au CNRS 2010 Acknowledgements During the last three years as a PhD student I had the opportunity to benefit from the contribution of many people. Here I would like to thank all of them. First, I wish to express my respect and gratitude to my two supervisors: Prof. Dr. Amélia Pilar Rauter from the Faculdade de Ciências da Universidade de Lisboa (FCUL) and Dr. Yves Queneau from the Institut National des Sciences Appliquées de Lyon (INSA-Lyon). Prof. Rauter first taught me carbohydrate chemistry during my undergraduate studies, and motivated me to undertake doctoral studies in this field. I thank her for receiving me in a pleasant scientific environment, providing me guidance, encouragement and freedom to develop my ideas. Dr. Queneau has received me in his laboratory in July 2007 under a collaborative Luso-French project co-supervised by Prof. Rauter and encouraged the continuation of such collaboration in a PhD program. I acknowledge his active supervision and his invaluable enthusiasm which resulted in many excellent suggestions for my subject. I would like to thank Prof. Dr. Joachim Thiem from the Universität Hamburg, who has kindly given me the opportunity to join his group, for helpful advice and fruitful discussions. I gratefully acknowledge Prof. Dr. Alain Doutheau, director of the Laboratoire de Chimie Organique de l’INSA Lyon (LCO-INSA) for having received me in the team. I am grateful to Dr. Stéphane Chambert, Maître de Conferences at INSA-Lyon for his collaboration in part of the work developed during the research program in Lyon. I would like to thank Prof. Jorge Justino and his research team at the Escola Superior Agrária de Santarém , especially Dr. Ana Neves, Dr. Margarida Goulart and Dr. Filipa Silva for the biological activity assays performed with our compounds. Within the Centro de Química e Bioquímica of FCUL, I would like to express my gratitude to Prof. Helena Florêncio and to my colleague Paulo Madeira from the Environmental and Biological Mass Spectrometry Group for the mass spectrometry i analysis and their collaboration in investigating the ionization fragmentation mechanisms of some of our compounds. I would like to thank my dear lab colleagues at the Carbohydrate Chemistry Group of FCUL in Lisbon and at the Laboratory of Organic Chemistry of INSA-Lyon for their kindness, friendship and support all the time. In particular I thank Ana Rita Jesus, Madan Kumar Singh, Susana Dias Lucas and Sandrina Silva with whom I have shared the lab bench. Last but not least I would like to thank my parents and my sister for their unwavering care and support through these years, being there whenever I needed and giving me encouragement to reach my goals. ii Abstract This PhD research work was focused on the synthesis and uses of bicyclic carbohydrate lactones, in the context of the access to new sugar derivatives containing an α,β- unsaturated carbonyl function. These molecular targets, chosen for the intrinsic bioactivity associated to the conjugated carbonyl system, were synthesized and submitted to biological evaluation, particularly their effect towards fungi and bacteria. Moreover, the inclusion of conjugated carbonyl systems in carbohydrates provides suitable templates for further derivatization, to which a variety of reactions may be applied. Three types of bicyclic sugar lactones were investigated: furanose C-C-linked butenolides (compounds type I), pyranose-fused butenolides, including S- or NH - analogues (compounds type II −IV ), and carboxymethyl glycoside-derived lactones (CMGLs, compounds type V). The access to butenolide containing-sugars was explored. The synthetic methodology was based on the Wittig olefination of easily prepared 3- or 5-keto sugars and spontaneous intramolecular lactonization of the intermediate γ-hydroxy α,β-unsaturated esters. In the case of the bicyclic fused derivatives, furanos-3-uloses containing acid labile 5-O or 5,6-di-O-protecting groups were used as precursors and converted into the corresponding (Z)- or ( E)-3-C-(ethoxycarbonyl)methylene furanoses. Further acid- mediated hydrolysis made possible their isomerization to the pyranose ring and concomitant intramolecular transesterification leading directly to the target compounds in good overall yields. Such bicyclic systems featured the butenolide moiety annelated at C-2-C-3 (compounds type II ) or at C-3-C-4 of the sugar backbone, depending on the stereochemistry of the C3-C3’double bond. The introduction of a sulfur function at C-5 of the furanoid 3-C-α,β-unsaturated esters, widened the scope of this methodology to thiosugar analogues of type III . When this approach was applied to related 5-azido v furanoid esters aiming at imino sugar-based molecules of type IV , different carbohydrate derivatives comprising both an amide functionality and an α,β-unsaturated carbonyl system were obtained. The (E)- and (Z)-3-C-(ethoxycarbonyl)methylene 5- amino furanoses were converted to a furanose-fused α,β-unsaturated δ-lactam and to a butenolide-containing N-ethylformamide, respectively. Moreover, the hydrolysis of the 1,2-O-isopropylidene group of the ( Z)-5-azido furanose precursor, followed by azide reduction, provided a 2-keto iminopyranose, which led to the 1,2-dihydropyridin-3-one system upon acetylation. CMGLs (compounds type V) were used as precursors for 3-enopyranosid-2-uloses (compounds type VI ). The opening of the lactone moiety by amines provided tri-O- acylated 2-hydroxy pyranosides which by oxidation/elimination generated the enone system. Further Wittig olefination afforded 2-C-branched-chain conjugated dienepyranosides (compounds type VII ). Glycosides bearing a propargyl moiety were engaged in “click” chemistry reactions leading to the corresponding 1,2,3-triazoles (compounds type VIII −IX ). OAc OAc O O O O O O NHR NH AcO AcO X N N R X N VI X = O VIII X = O VII X = CHCO2Et IX X = CHCO2Et Among the molecular targets obtained, the furanose-linked butenolides, the pyranose- fused butenolides, the conjugated carbonyl sugar derivatives synthesized from CMGLs and the triazole-containing glycosides were submitted to antimicrobial activity assays. The butenolide-containing sugars did not show satisfactory antibacterial or antifungal activities. Such weak effect is probably due to the presence of a quaternary β-carbon in the conjugated system of these molecules, which is specially hindered in the fused systems, reducing their Michael acceptor ability. In contrast, significant efficacy was observed for 3-enopyranosid-2-uloses and conjugated diene pyranosides. In particular, (N-dodecylcarbamoyl)methyl enulosides vi displayed strong and very strong activities against some of the pathogen microbes tested, being in some cases similar to those of the standard antibiotics. The α-enuloside exhibited very strong effect towards Bacillus cereus and Bacillus subtillis and strong activity against Enterococcus faecalis and the fungal pathogen Penicillium aurantiogriseum . The β-anomer presented a very strong inhibitory effect against the fungi Aspergillus niger and Penicillium aurantiogriseum . Dienepyranosides exhibited a strong activity selectively towards Enterococcus faecalis . Triazole derivatives were virtually ineffective. Three of the bioactive compounds, including the most active one, i.e. the α-(N-dodecylcarbamoyl)methyl enuloside, showed low acute toxicity in eukaryotic hepatoma cells. vii Resumo O trabalho desenvolvido no âmbito deste Doutoramento centrou-se na síntese e no uso de biciclolactonas glicídicas com o objectivo de se obterem novos derivados de açúcares contendo um sistema carbonílico α,β-insaturado na sua estrutura. Estes alvos moleculares foram sintetizados no sentido de se avaliarem posteriormente as suas propriedades biológicas, nomeadamente a nível de actividade antifúngica e antibacteriana. O sistema carbonílico α,β-insaturado é frequentemente encontrado em produtos naturais e de síntese que possuem uma variedade de actividades biológicas. A bioactividade exibida por estes compostos está geralmente associada à capacidade da função conjugada para reagir segundo adição de Michael com nucleófilos existentes em proteínas. Em particular, derivados de açúcares contendo lactonas α,β-insaturadas foram descritos como fungicidas ou como insecticidas potentes. Por outro lado, a inclusão destas unidades em carbo-hidratos conduz a moléculas funcionalizadas que poderão ser úteis para posterior derivatização, devido à reactividade do sistema conjugado. As moléculas-alvo tiveram como base três tipos de lactonas bicíclicas (Fig. 1): butenolidas ligadas a anéis de furanose (compostos tipo I), butenolidas fundidas a anéis de pyranose, incluindo tio- e iminoaçúcares análogos
Recommended publications
  • “Polyols: a Primer for Dietetic Professionals” Is a Self-Study
    1 “Polyols: A primer for dietetic professionals” is a self-study module produced by the Calorie Control Council, an accredited provider of continuing professional education (CPE) for dietetic professionals by the Commission on Dietetic Registration. It provides one hour of level 1 CPE credit for dietetic professionals. The full text of the module is in the notes section of each page, and is accompanied by summary points and/or visuals in the box at the top of the page. Directions for obtaining CPE are provided at the end of the module. 2 After completing this module, dietetic professionals will be able to: • Define polyols. • Identify the various types of polyols found in foods. • Understand the uses and health effects of polyols in foods. • Counsel clients on how to incorporate polyols into an overall healthful eating pattern. 3 4 Polyols are carbohydrates that are hydrogenated, meaning that a hydroxyl group replaces the aldehyde or ketone group found on sugars. Hydrogenated monosaccharides include erythritol, xylitol, sorbitol, and mannitol. Hydrogenated disaccharides include lactitol, isomalt, and maltitol. And hydrogenated starch hydrolysates (HSH), or polyglycitols (a wide range of corn syrups and maltodextrins), are formed from polysaccharides (Grabitske and Slavin 2008). 5 Nearly 54 percent of Americans are trying to lose weight, more than ever before. Increasingly, they are turning toward no- and low-sugar, and reduced calorie, foods and beverages to help them achieve their weight loss goals (78% of Americans who are trying to lose weight) (CCC 2010). Polyols, found in many of these foods, are becoming a subject of more interest. 6 They are incompletely digested , therefore are sometimes referred to as “low- digestible carbohydrates.” Polyols are not calorie free, as there is some degree of digestion and absorption of the carbohydrate.
    [Show full text]
  • Polyols Have a Variety of Functional Properties That Make Them Useful Alternatives to Sugars in Applications Including Baked Goods
    Polyols have a variety of functional properties that make them useful alternatives to sugars in applications including baked goods. Photo © iStockphoto.com/Synergee pg 22 09.12 • www.ift.org BY LYN NABORS and THERESA HEDRICK SUGAR REDUCTION WITH Polyols Polyols are in a unique position to assist with reduced-sugar or sugar-free reformulations since they can reduce calories and complement sugar’s functionality. ugar reduction will be an important goal over the of the product’s original characteristics may still be main- next few years as consumers, government, and in- tained with the replacement of those sugars by polyols. Sdustry alike have expressed interest in lower-calorie In addition, excellent, good-tasting sugar-free products and lower-sugar foods. The 2010 Dietary Guidelines for can be developed by using polyols. Polyols are in a unique Americans put a strong emphasis on consuming fewer position to assist with reduced-sugar or sugar-free refor- calories and reducing intake of added sugars. The In- mulations; since they are only partially digested and ab- stitute of Medicine (IOM) held a public workshop in sorbed, they can reduce calories and complement sugar’s November 2010 to discuss ways the food industry can functionality. Polyols provide the same bulk as sugars and use contemporary and innovative food processing tech- other carbohydrates. Additionally, polyols have a clean, nologies to reduce calorie intake in an effort to reduce sweet taste, which is important since consumers are not and prevent obesity, and in October 2011 recommended likely to sacrifice taste for perceived health benefits. Poly- front-of-package labeling that includes rating the product ols have a host of other functional properties that make based on added sugars content.
    [Show full text]
  • Sweet Sensations by Judie Bizzozero | Senior Editor
    [Confections] July 2015 Sweet Sensations By Judie Bizzozero | Senior Editor By R.J. Foster, Contributing Editor For many, terms like “reduced-sugar” or “sugar-free” do not go with the word “candy.” And yet, the confectionery industry is facing growing demand for treats that offer the taste people have grown to love without the adverse health effects they’re looking to avoid. Thankfully, there is a growing palette of ingredients from which candy makers can paint a new picture of sweetness that will be appreciated by the even most discerning of confectionery critics. SUGAR ALCOHOLS Also referred to as polyols, sugar alcohols are a common ingredient in reduced-sugar and sugar-free applications, especially confections. Funny thing, they’re not sugars or alcohols. Carbohydrate chains composed of monomeric, dimeric and polymeric units, polyols resemble both sugars and alcohols, but do not contain an ethanol molecule. All but two sugar alcohols are less sweet than sugar. Being only partially digestible, though, replacing a portion of a formulation’s sugar with a sugar alcohol reduces total calories without losing bulk (which can occur when replacing sugar with high-intensity sweeteners). Unique flavoring, texturizing and moisture-controlling effects also make polyols well-suited for confectionery products. Two very common and very similar monomeric polyols are sorbitol and mannitol. Present in a variety of fruits and vegetables, both are derived from products of cornstarch hydrolysis. Sorbitol is made via hydrogenation of glucose, which is why sorbitol is sometimes referred to as glucitol. Mannitol is created when fructose hydrogenation converts fructose into mannose, for which the final product, mannitol, is named.
    [Show full text]
  • DIVISION 15 Adulteration Adulteration of Food
    DIVISION 15 Adulterationof food B.15.001. A food named in column III of an item of Table I to this Division is adulterated if the substance named in Column I of that item is present therein or has been added thereto in an amount exceeding the amount, expressed in parts per million, shown in column II of that item for that food. 22-1-81 B.15.002. (1) Subject to subsections (2) and (3), a food is adulterated if an agricultural chemical or any of its derivatives is present therein or has been added thereto, singly or in any combination, in an amount exceeding 0.1 part per million, unless it is listed and used in accordance with the tables to Division 16. (2) Subject to subsection (3), a food is exempt from paragraph 4(d) of the Act if the only agricultural chemicals that are present therein or have been added thereto are any of the following: (a) a fertilizer; (b) an adjuvant or a carrier of an agricultural chemical; (c) an inorganic bromide salt; (d) silicon dioxide; 8-3-79 (e) sulphur; or (f) viable spores of Bacillus thuringiensis Berliner. 26-1-98 (3) A food named in column IV of an item of Table II to this Division, a food that contains any such food or a food made from a product of any such food is exempt from the application of paragraph 4(d) of the Act if the agricultural chemicals named in columns I and II of that item are present in or have been added to the food in an amount not exceeding the maximum residue limit set out in column III of that item.
    [Show full text]
  • Sugar Alcohols a Sugar Alcohol Is a Kind of Alcohol Prepared from Sugars
    Sweeteners, Good, Bad, or Something even Worse. (Part 8) These are Low calorie sweeteners - not non-calorie sweeteners Sugar Alcohols A sugar alcohol is a kind of alcohol prepared from sugars. These organic compounds are a class of polyols, also called polyhydric alcohol, polyalcohol, or glycitol. They are white, water-soluble solids that occur naturally and are used widely in the food industry as thickeners and sweeteners. In commercial foodstuffs, sugar alcohols are commonly used in place of table sugar (sucrose), often in combination with high intensity artificial sweeteners to counter the low sweetness of the sugar alcohols. Unlike sugars, sugar alcohols do not contribute to the formation of tooth cavities. Common Sugar Alcohols Arabitol, Erythritol, Ethylene glycol, Fucitol, Galactitol, Glycerol, Hydrogenated Starch – Hydrolysate (HSH), Iditol, Inositol, Isomalt, Lactitol, Maltitol, Maltotetraitol, Maltotriitol, Mannitol, Methanol, Polyglycitol, Polydextrose, Ribitol, Sorbitol, Threitol, Volemitol, Xylitol, Of these, xylitol is perhaps the most popular due to its similarity to sucrose in visual appearance and sweetness. Sugar alcohols do not contribute to tooth decay. However, consumption of sugar alcohols does affect blood sugar levels, although less than that of "regular" sugar (sucrose). Sugar alcohols may also cause bloating and diarrhea when consumed in excessive amounts. Erythritol Also labeled as: Sugar alcohol Zerose ZSweet Erythritol is a sugar alcohol (or polyol) that has been approved for use as a food additive in the United States and throughout much of the world. It was discovered in 1848 by British chemist John Stenhouse. It occurs naturally in some fruits and fermented foods. At the industrial level, it is produced from glucose by fermentation with a yeast, Moniliella pollinis.
    [Show full text]
  • Effects of Polyols on the Quality Characteristics of Sucrose-Free Milk
    RSC Advances PAPER View Article Online View Journal | View Issue Effects of polyols on the quality characteristics of sucrose-free milk chocolate produced in a ball mill Cite this: RSC Adv.,2019,9, 29676 Aziz Homayouni Rad,ab Haniyeh Rasouli Pirouzian, *a Nevzat Konar,c Omer Said Tokerd and Derya Genc Polate Sucrose-free milk chocolates containing different types of bulk (isomalt, xylitol and maltitol) and high intensity (Stevia) sweeteners were produced by using a ball mill. The main quality characteristics of the formulated chocolates were evaluated and compared with those of the conventional sample containing sucrose. The Casson model was the best fitting model for the rheological data. Casson viscosity and Casson yield stress were significantly affected by the type of bulking agent in chocolates formulated with xylitol (p < 0.05). However xylitol notably improved the overall acceptability according to the sensory analysis results. Chocolates containing the sucrose replacers demonstrated lower Tonset values and higher enthalpy than the control sample. Sucrose-free chocolates illustrated a higher degree of particle agglomeration. Bulk sweeteners meanwhile seem to have high potential for milk chocolate production Creative Commons Attribution-NonCommercial 3.0 Unported Licence. with low calorie values by using the ball mill technique. Industrial applications: the production of sucrose-free chocolates with conventional methods requires a lot of time and energy. Recently, using alternative methods for chocolate production has been raising interest in many small industries. This study proposed a ball mill method for the preparation of sucrose-free milk chocolates with physiochemical properties almost ranging in the standard limit defined for chocolate.
    [Show full text]
  • Sugar Alcohols: a Review
    International Journal of PharmTech Research CODEN (USA): IJPRIF, ISSN: 0974-4304, ISSN(Online): 2455-9563 Vol.9, No.7, pp 407-413, 2016 Sugar alcohols: A review Ramezan Ali Mahian1, Vahid Hakimzadeh2* 1,2Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran Abstract : Sugar alcohols are extensively used as sweetening agents. They sometimes possess advantages over the parent sugars in sweetness, caloric reduction and non-cariogenicity. The physical status of carbohydrates in food and confectionery affects both the properties of the product during production and the quality of the final product. Sugar alcohols, such as xylitol, mannitol, sorbitol, and erythritol are emerging food ingredients that provide similar or better sweetness/sensory properties of sucrose, but are less calorigenic. Also, sugar alcohols can be converted into commodity chemicals through chemical catalysis. Biotechnological production offers the safe and sustainable supply of sugar alcohols from renewable biomass. These compounds are usually produced by a catalytic hydrogenation of carbohydrates, but they can be also found in nature in fruits, vegetables or mushrooms as well as in human organism. Due to their properties, sugar alcohols are widely used in food, beverage, confectionery and pharmaceutical industries throughout the world. They have found use as bulk sweeteners that promote dental health and exert prebiotic effect. They are added to foods as alternative sweeteners what might be helpful in the control of calories intake. Consumption of low-calorie foods by the worldwide population has dramatically increased, as well as health concerns associated with the consequent high intake of sweeteners. Key words: Sugar alcohols, low-calorie, Sugar-free products, sweetener.
    [Show full text]
  • Effects of Sugars and Sugar Alcohols on the Gelatinization Temperatures of Wheat, Potato, and Corn Starches
    foods Article Effects of Sugars and Sugar Alcohols on the Gelatinization Temperatures of Wheat, Potato, and Corn Starches Matthew C. Allan, MaryClaire Chamberlain and Lisa J. Mauer * Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN 47907, USA; [email protected] (M.C.A.); [email protected] (M.C.) * Correspondence: [email protected]; Tel.: +1-(765)-494-9111 Received: 13 May 2020; Accepted: 3 June 2020; Published: 8 June 2020 Abstract: The gelatinization temperature (Tgel) of starch increases in the presence of sweeteners due to sweetener-starch intermolecular interactions in the amorphous regions of starch. Different starch botanical sources contain different starch architectures, which may alter sweetener-starch interactions and the effects of sweeteners on Tgels. To document these effects, the Tgels of wheat, potato, waxy corn, dent corn, and 50% and 70% high amylose corn starches were determined in the presence of eleven different sweeteners and varying sweetener concentrations. Tgels of 2:1 sweetener solution:starch slurries were measured using differential scanning calorimetry. The extent of Tgel elevation was affected by both starch and sweetener type. Tgels of wheat and dent corn starches increased the most, while Tgels of high amylose corn starches were the least affected. Fructose increased Tgels the least, and isomalt and isomaltulose increased Tgels the most. Overall, starch Tgels increased more with increasing sweetener concentration, molar volume, molecular weight, and number of equatorial and exocyclic hydroxyl groups. Starches containing more short amylopectin chains, fewer amylopectin chains that span through multiple clusters, higher number of building blocks per cluster, and shorter inter-block chain lengths exhibited the largest Tgel increases in sweetener solutions, attributed to less stable crystalline regions.
    [Show full text]
  • Isomalt in Hard Candy Applications
    Sugar Free fructose is isomerized into a much more stable 1,6 bond, making iso- maltulose considerably more resis- tant to acids and microbial influ- ences. By means of a further Isomalt in Hard Candy processing step, hydrogenation, it was possible to obtain the sugar alcohol isomalt from isomaltulose. A simplified flow-chart of the pro- Applications duction process is given in Figure 1. PRODUCTION PROCESS Starting from a sucrose solution, isomaltulose is obtained through transglucosidation as already men- he demand for low-fat and low- due to its sugar-comparable taste tioned. (Figure 2.1) Tcalorie confectionery increases and preferred shelf-life properties. After crystallization, isomaltulose steadily worldwide. Consumers Isomalt started to sell in the U.S. is hydrogenated in a neutral aqueous understand the message and func- when the intense sweeteners acesul- solution using a Raney nickel cata- tions of these product categories fame K and aspartame were regu- lyst. This produces isomalt, a mixture which serve their demands for lated for the use in confectionery of the isomers 1-O-α-D-glucopyra- “healthy eating” when thinking early in 1994 (which was important nosyl-mannitol, 1,1-GPM-dihydrate, α about less calories and kind-to-the- as isomalt is less sweet than sugar). and 6-O- -D-glucopyrano-syl-D-sor- teeth functions. Nowadays new There are still few companies in bitol, 1,6-GPS. (Figure 2.2) sugar replacers like isomalt can be the U.S. that are using isomalt, com- In the crystallization process, used providing sugar comparable pared to Europe where some major especially developed for isomalt, taste and texture to guarantee good brands build their success in sugar GPM crystallizes with 2 mol water quality products.
    [Show full text]
  • „Never Put Off Till Tomorrow the Pleasure You Can Have Today”
    „Never put off till tomorrow the pleasure you can have today” Natural beauty We do not compromise when it comes to our eco brand. We take responsible care in producing and packaging our products which is as important to us as the quality of our cosmetics. OUR MISSION • Back to nature - is not just an empty phrase, it is the beauty source. • Be eco-friendly - we are looking after our environment, and show you that being green can be easy. • Smile - the essence of natural beauty bottled in our products will make you shine with positive energy. OUR PHILOSOPHY • We use the power of plants and minerals and stay true to nature. • Our strength lies in the quality of our products, assessed and certified by experts. • We show the eco-friendly cosmetics can be healthy, beautiful and elegant. OUR COSMETICS ARE MADE OF: · natural ingredients · raw materials certified by Ecocert · organically grown produce from approved farms · chemical-free fragrances WE CHOOSE: · butter made from plants · cold pressed rich oils · natural ethereal oils · plant extracts · natural preservatives · certified active substances WE USE: · economical and eco-friendly packaging · bottles made from Post Consumer Recycling sources (PCR) and other recyclable sources such as aluminium and glass · cornstarch packing peanuts Line CLEANSING CLEANSING & MAKEUP REMOVAL SOOTHING ANTIOXIDANT TONER Active ingredients: Green Tea Extract & Ginkgo Biloba Extract Size: 100 ml / 250 ml (3.3 US fl. oz. / 8.4 US fl. oz.) Packaging: 100% PCR plastic Fragrance free Skin type: All skin types Details: Tones and restores its normal pH to the skin. The juice of aloe leaves soothes irritations, and the extract of ginkgo leaves has antioxidant properties that effectively counteract free radicals.
    [Show full text]
  • Novel Approaches for Patterning Hierarchical Hydrogels
    Novel Approaches for Patterning Hierarchical Hydrogels Submitted by Shuang Wang B. Eng. (Hons) M. Sc. Submitted in fulfilment of the requirements for the degree of IF80 Master of Philosophy Chemistry, Physics and Mechanical Engineering (CPME) Faculty of Science and Engineering (SEF) Queensland University of Technology 2018 Abstract Synthetic hydrogels featuring tunable biological functionalities and hierarchical structures are of compelling interest as scaffolds for tissue engineering applications. With the expectation of regulating cell fate within the soft materials, many efforts have been placed on creating niches that can mimic the complexity of the native extracellular matrix, where biological cues are presented and mass transportation is facilitated by interconnected pore network. In this study, sacrificial moulding process was used to produce porous hydrogels, while two patterning approaches were developed to site-specifically immobilize molecules inside the hydrogels via thiol- Michael addition, resembling natural extracellular matrix networks in terms of geometrical interconnectivity and cell-guidance functionalization. The simple approaches allow reproducible control over the size and architecture of the channels, as well as the spatial distribution and concentration of the patterning molecules, enabling controlled study of cell-substrate behaviour. i Keywords Hydrogel, fugitive ink, poly(ethylene glycol), spatial patterning, transfer molecules, fused deposition modelling, melt electrospinning writing, template, scaffold, adhesion
    [Show full text]
  • Particulate Comprising a Calcium-Containing Compound and a Sugar Alcohol
    (19) TZZ_¥Z¥_T (11) EP 1 753 403 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: A61K 9/16 (2006.01) A61K 9/20 (2006.01) 13.08.2014 Bulletin 2014/33 A61K 33/06 (2006.01) (21) Application number: 05744248.5 (86) International application number: PCT/DK2005/000338 (22) Date of filing: 24.05.2005 (87) International publication number: WO 2005/115342 (08.12.2005 Gazette 2005/49) (54) PARTICULATE COMPRISING A CALCIUM-CONTAINING COMPOUND AND A SUGAR ALCOHOL PARTIKEL MIT EINER CALCIUMHALTIGEN VERBINDUNG UND EINEM ZUCKERALKOHOL PARTICULES COMPRENANT UN COMPOSE CONTENANT DU CALCIUM ET UN ALCOOL DE SUCRE (84) Designated Contracting States: • NIELSEN, Carsten Martini AT BE BG CH CY CZ DE DK EE ES FI FR GB GR DK-2860 Søborg (DK) HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR • OLSEN, Peder Mohr Designated Extension States: DK-4970 Kirke Hyllinge (DK) AL BA HR MK YU • BERTELSEN, Poul, Egon Himmelev, DK-4000 Roskilde (DK) (30) Priority: 24.05.2004 DK 200400813 (74) Representative: Prusko, Carsten Dietmar et al (43) Date of publication of application: Zacco GmbH 21.02.2007 Bulletin 2007/08 Bayerstraße 83 80335 München (DE) (73) Proprietor: Takeda Nycomed AS 1385 Asker (NO) (56) References cited: WO-A-00/28973 WO-A-98/52541 (72) Inventors: FR-A- 2 717 387 US-A1- 2003 194 440 • MATHIESEN, Jacob US-B1- 6 475 510 DK-9500 Hobro (DK) Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations.
    [Show full text]