Sweet Sensations by Judie Bizzozero | Senior Editor

Total Page:16

File Type:pdf, Size:1020Kb

Sweet Sensations by Judie Bizzozero | Senior Editor [Confections] July 2015 Sweet Sensations By Judie Bizzozero | Senior Editor By R.J. Foster, Contributing Editor For many, terms like “reduced-sugar” or “sugar-free” do not go with the word “candy.” And yet, the confectionery industry is facing growing demand for treats that offer the taste people have grown to love without the adverse health effects they’re looking to avoid. Thankfully, there is a growing palette of ingredients from which candy makers can paint a new picture of sweetness that will be appreciated by the even most discerning of confectionery critics. SUGAR ALCOHOLS Also referred to as polyols, sugar alcohols are a common ingredient in reduced-sugar and sugar-free applications, especially confections. Funny thing, they’re not sugars or alcohols. Carbohydrate chains composed of monomeric, dimeric and polymeric units, polyols resemble both sugars and alcohols, but do not contain an ethanol molecule. All but two sugar alcohols are less sweet than sugar. Being only partially digestible, though, replacing a portion of a formulation’s sugar with a sugar alcohol reduces total calories without losing bulk (which can occur when replacing sugar with high-intensity sweeteners). Unique flavoring, texturizing and moisture-controlling effects also make polyols well-suited for confectionery products. Two very common and very similar monomeric polyols are sorbitol and mannitol. Present in a variety of fruits and vegetables, both are derived from products of cornstarch hydrolysis. Sorbitol is made via hydrogenation of glucose, which is why sorbitol is sometimes referred to as glucitol. Mannitol is created when fructose hydrogenation converts fructose into mannose, for which the final product, mannitol, is named. Both are approximately 60 percent as sweet as sugar (sucrose); however, sorbitol brings 2.6 calories per gram—about 1/3 less than sugar—where mannitol delivers 1.6 calories per gram—about half that of sugar. In addition to sweetening, sorbitol functions as a humectant, providing moisture-stabilizing, texturizing and anti-crystallizing effects. It is also heat-stable and chemically unreactive, making it well-suited for an array of confectionery applications. Mannitol is non-hygroscopic, making it well-suited for use as a dusting agent for chewing gums. A high melting point (165°-169°C) makes mannitol a good choice for chocolate-flavored coatings for ice cream products as well. While serving sizes for confections are typically small, overconsumption of sorbitol and mannitol can cause abdominal gas and discomfort, gastrointestinal distress and laxation. FDA regulations permit sorbitol and mannitol to be used in food “at levels not to exceed good manufacturing practices (GMPs),” and require that any foods whose consumption would add 50 g (1-3/4 ounces) of sorbitol or 20 g (less than 3/4 of an ounce) of mannitol to a person’s diet must be labeled with the statement, “Excess consumption may have a laxative effect.” Erythritol is another monomeric polyol with several unique characteristics. “Produced from a carbohydrate source like dextrose or sucrose via a natural fermentation process, it has no impact on the glycemic and insulinemic index,” said Ravi Nana, polyols technical service manager for Cargill, Minneapolis. www.naturalproductsinsider.com Page 1 [Confections] July 2015 He continued, “It has a clean, sweet taste profile similar to sucrose with a sweetness of about 65-to-70 percent [of sugar]. It has the highest digestive tolerance compared to other polyols, and is clinically shown to be superior to sorbitol and xylitol at reducing dental plaque and caries for better tooth protection in oral care.” In addition to taste, Nana suggests erythritol offers many benefits to confectionery applications including a cooling effect, moisture management and dental health. “In chewing gum, erythritol improves processability, texture (flexibility) and shelf life,” he said. “ In mint-flavored products, erythritol provides an enhanced and long-lasting cooling effect. Erythritol can be used in crystalline or powder form to provide high cooling effect in a sherbet filling in stamped hard candies, or in double or triple- layered hard candies. Compared to sugar-based formulas, erythritol-based lozenges require shorter drying time and improved shelf life. “Erythritol is also the only polyol that allows a greater than 30-percent calorie reduction in chocolate. It allows for higher conching temperatures than most polyols, resulting in an enhanced flavor development,” Nana continued., “Erythritol-based chocolate is non-hygroscopic, presents an excellent gloss, good snap and melting properties, and cooling effect, particularly for mint-flavored chocolate products. If desired, the cooling effect of erythritol can be masked by using mixtures with inulin, isomalt or maltitol.” The last monomeric polyol, xylitol, delivers approximately the same sweetness as sugar with 2.4 calories per gram (about 1/3 less than sugar). Xylitol has the greatest cooling effect of all the sugar alcohols, a pronounced mint flavor, and the ability to improve oral health by reducing dental caries and inhibiting the growth of S. mutans, the primary bacterium associated with dental caries. A popular choice for sugar-free gums, mints and candies, it can be used alone or in combination with other sweeteners to create unique flavoring effects or improve formulation cost. Like sorbitol and mannitol, xylitol can have a laxative effect, which requires xylitol-containing foods to carry a warning. Dimeric polyols include maltitol, lactitol and isomalt. Made from maltose, lactose and sucrose, respectively, each delivers a clean sweet taste with approximately 2 calories per gram. And while somewhat limited in usage by GRAS (generally recognized as safe) status, these unique bulk sweeteners are growing in popularity among confection manufacturers worldwide. Made by hydrogenating maltose, maltitol delivers a sugar-like taste with a negligible cooling effect (compared to other polyols). At 90 percent the sweetness of sugar, maltitol can be used as a 1:1 replacement for sugar to cut calories in half without the need for additional bulk. Low hygroscopicity, high melting point and thermal stability make maltitol uniquely suited for low-sugar chocolate coatings and confections. While also delivering a sugar-like taste, lactitol’s sweetness is 40 percent as strong. This makes lactitol a good choice for replacing bulk in formulations that include high-potency sweeteners. Good stability and solubility allow lactitol use in a variety of confectionery products as well as sugar substitutes. Sugar-like in appearance and taste, isomalt provides 45 to 65 percent the sweetness of sugar, depending on usage rate, with no cooling effect. Isomalt is made from sucrose using a two-step process that rearranges the glucose-fructose linkage and then adds oxygen to the fructose portion. The result is a single polyol consisting of two disaccharide alcohols; gluco-mannitol and gluco-sorbitol. www.naturalproductsinsider.com Page 2 [Confections] July 2015 Isomalt can be used to provide the volume and texture of sugar with no loss of sweetness through heating. It absorbs very little water, which helps reduce stickiness and improve shelf life. And with a slow dissolution rate, isomalt can enhance flavor transfer by creating a longer-lasting taste. Polymeric sugar alcohols include combinations of polyols called hydrogenated starch hydrolysates (HSH), a reference to their originating from corn, potato or wheat starch that is partially hydrolyzed at high temperature and pressure. HSHs are named for the predominant polyol present. Products with greater than 50 percent sorbitol are called sorbitol syrups, while those with 50 percent maltitol are called maltitol syrups or hydrogenated glucose syrups. Polyols with less than 50 percent of any single alcohol are referred to as polyglycitol syrups or the general term HSH. With 3 or less calories per gram, excellent humectancy and no crystallization, HSH offer synergies with high-potency sweeteners including a pleasant taste that can mask off-flavors. A BUNCH OF SWEETENERS WALK INTO A BAR…IT WAS INTENSE The term “high-intensity sweetener” has come to represent a variety of ingredients—both natural and artificial—that can be used to provide the sweetness consumers expect in confections. “They generally do not contribute to other functions provided by sugar, e.g., bulk, water management, crystallization control, etc.,” noted Mel Mann, director of flavor innovation at Wixon, St. Francis, Wisconsin. “For this, other ingredients are needed such as polydextrose, isomaltose, sugar polyols, tagatose, etc. The choice among these will be governed by calorie control desired, water content, product texture/mouthfeel, and, of course, cost.” One of the most familiar artificial sweeteners today is aspartame, better known to consumers by the brand name NutraSweet. A dipeptide composed of phenylalanine and aspartic acid, aspartame is considered to have a clean sweet taste similar to that of sucrose. “Although typically considered 200- times sweeter than sugar, in confections, it’s usually only considered 100 times,” Mann continued. “One benefit is it can be used alone as a sweetener in confections, usage level 150-300 ppm. Although heat labile, it can be used successfully in confections due to the low water activity and high viscosity, usually added toward end of processing to preserve content.” Another familiar artificial sweetener is acesulfame K (potassium). Derived from acetoacetic
Recommended publications
  • “Polyols: a Primer for Dietetic Professionals” Is a Self-Study
    1 “Polyols: A primer for dietetic professionals” is a self-study module produced by the Calorie Control Council, an accredited provider of continuing professional education (CPE) for dietetic professionals by the Commission on Dietetic Registration. It provides one hour of level 1 CPE credit for dietetic professionals. The full text of the module is in the notes section of each page, and is accompanied by summary points and/or visuals in the box at the top of the page. Directions for obtaining CPE are provided at the end of the module. 2 After completing this module, dietetic professionals will be able to: • Define polyols. • Identify the various types of polyols found in foods. • Understand the uses and health effects of polyols in foods. • Counsel clients on how to incorporate polyols into an overall healthful eating pattern. 3 4 Polyols are carbohydrates that are hydrogenated, meaning that a hydroxyl group replaces the aldehyde or ketone group found on sugars. Hydrogenated monosaccharides include erythritol, xylitol, sorbitol, and mannitol. Hydrogenated disaccharides include lactitol, isomalt, and maltitol. And hydrogenated starch hydrolysates (HSH), or polyglycitols (a wide range of corn syrups and maltodextrins), are formed from polysaccharides (Grabitske and Slavin 2008). 5 Nearly 54 percent of Americans are trying to lose weight, more than ever before. Increasingly, they are turning toward no- and low-sugar, and reduced calorie, foods and beverages to help them achieve their weight loss goals (78% of Americans who are trying to lose weight) (CCC 2010). Polyols, found in many of these foods, are becoming a subject of more interest. 6 They are incompletely digested , therefore are sometimes referred to as “low- digestible carbohydrates.” Polyols are not calorie free, as there is some degree of digestion and absorption of the carbohydrate.
    [Show full text]
  • Novel Insights Into Mannitol Metabolism in the Fungal Plant
    Novel insights into mannitol metabolism in the fungal plant pathogen Botrytis cinerea Thierry Dulermo, Christine Rascle, Geneviève Billon-Grand, Elisabeth Gout, Richard Bligny, Pascale Cotton To cite this version: Thierry Dulermo, Christine Rascle, Geneviève Billon-Grand, Elisabeth Gout, Richard Bligny, et al.. Novel insights into mannitol metabolism in the fungal plant pathogen Botrytis cinerea. Biochemical Journal, Portland Press, 2010, 427 (2), pp.323-332. 10.1042/BJ20091813. hal-00479283 HAL Id: hal-00479283 https://hal.archives-ouvertes.fr/hal-00479283 Submitted on 30 Apr 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Biochemical Journal Immediate Publication. Published on 05 Feb 2010 as manuscript BJ20091813 1 NOVEL INSIGHTS INTO MANNITOL METABOLISM IN THE FUNGAL PLANT 2 PATHOGEN BOTRYTIS CINEREA 3 4 Authors : Thierry Dulermo*†, Christine Rascle*, Geneviève Billon-Grand*, Elisabeth Gout‡, 5 Richard Bligny‡ and Pascale Cotton§ 6 7 Address 8 *Génomique Fonctionnelle des Champignons Pathogènes des Plantes, UMR 5240 9 Microbiologie, Adaptation
    [Show full text]
  • Effects of Polyols on the Processing and Qualities of Wheat Tortillas'
    BREADMAKING Effects of Polyols on the Processing and Qualities of Wheat Tortillas' E. L. SUHENDRO, 2 R. D. WANISKA,2 L. W. ROONEY, 2 and M. H. GOMEZ 3 ABSTRACT Cereal Chem. 72(l):122-127 Effects of polyols on processing of hot-press wheat tortillas were evalu- Doughs containing 6% polyols, except maltitol, were stickier and less ated. Hot-press wheat tortillas with 0, 2, 4, or 6% glycerol were prepared machinable than control doughs. Tortillas prepared from 10.2% protein from wheat flour of 10.2, 11.0, or 11.5% protein content. Tortillas with flour with or without polyols were less rollable during storage compared 2, 4, or 6% propylene glycol, sorbitol, or maltitol were prepared from to those prepared from higher protein flours. Tortillas containing glycerol the 11.0% protein flour. Farinograph and alveograph values, dough mixing had less moisture, higher liquid content, and improved shelf-stability, characteristics and machinability, rollability over time, sensory evaluation, except when prepared from low protein flour. Water activity decreased water holding capacity, total liquid content, and water activity were deter- with increasing polyol level. Propylene glycol and glycerol were more mined. Low protein (10.2%) flour required less water, shorter mixing effective in decreasing water activity than sorbitol and maltitol. Formulas time, and yielded tortilla doughs that were less machinable compared containing 4% polyols and Ž11.0% protein flour had good machinability to other flours. Water absorption decreased with increasing polyol level. and yielded acceptable tortillas with improved rollability during storage. The increased production of wheat tortillas in the United States Propylene glycol (J.T.
    [Show full text]
  • Review of the Role of Mannitol in the Therapy of Children
    18th Expert Committee on the Selection and Use of Essential Medicines (21 to 25 March 2011) Section 16: Diuretics -- Mannitol review (Children) Review of the role of mannitol in the therapy of children Dr Fatemeh Tavakkoli M.D. Pharm. D Candidate, University of Maryland, School of Pharmacy, Baltimore, Maryland, USA Contents Introduction......................................................................................................................................... 3 Background ......................................................................................................................................... 3 Table 1: available guidelines for Mannitol ................................................................................ 3 Public Health Burden.......................................................................................................................... 5 Table 2: Indications and dose regimens for Mannitol in children .............................................. 6 Search methods for identification of safety and efficacy data............................................................ 7 Results................................................................................................................................................. 8 Systematic reviews.............................................................................................................................. 8 Individual studies (categorized by therapeutic use of mannitol): ..................................................... 10
    [Show full text]
  • Popular Sweeteners and Their Health Effects Based Upon Valid Scientific Data
    Popular Sweeteners and Their Health Effects Interactive Qualifying Project Report Submitted to the Faculty of the WORCESTER POLYTECHNIC INSTITUTE in partial fulfillment of the requirements for the Degree of Bachelor of Science By __________________________________ Ivan Lebedev __________________________________ Jayyoung Park __________________________________ Ross Yaylaian Date: Approved: __________________________________ Professor Satya Shivkumar Abstract Perceived health risks of artificial sweeteners are a controversial topic often supported solely by anecdotal evidence and distorted media hype. The aim of this study was to examine popular sweeteners and their health effects based upon valid scientific data. Information was gathered through a sweetener taste panel, interviews with doctors, and an on-line survey. The survey revealed the public’s lack of appreciation for sweeteners. It was observed that artificial sweeteners can serve as a low-risk alternative to natural sweeteners. I Table of Contents Abstract .............................................................................................................................................. I Table of Contents ............................................................................................................................... II List of Figures ................................................................................................................................... IV List of Tables ...................................................................................................................................
    [Show full text]
  • Dental and Metabolic Effects of Lactitol in the Diet of Laboratory Rats
    Downloaded from British Journal of Nutrition (1989), 61, 17-24 17 https://www.cambridge.org/core Dental and metabolic effects of lactitol in the diet of labolratory rats BY T. H. GRENBY AND A. PHILLIPS Department of Oral Medicine and Pathology, United Medical and Dental Schools, Guy’s Hospital, London SEI 9RT . IP address: (Received 17 May 1988 - Accepted 30 August 1988) 170.106.35.93 I. Because so little is known about the properties of lactitol as a possible alternative bulk sweetener to sucrose, it was tested in two large-scale experiments in laboratory rats. Matched groups of caries-active Osborne-Mendel rats were fed.on uniform diets containing lactitol and compared with a sucrose control in both experiments, plus a xylitol control in the first experiment. , on 2. In the early stages of the experiments weight gains and food utilization were better on the Sucrose than on 26 Sep 2021 at 05:12:03 the lactitol regimens. Body-fat storage was higher on the sucrose than on the polyol regimens. 3. At the end of 8 weeks the mandibular molars were examined for dental plaque accumulation and dental caries. The dental caries scores when 160 g sucrose/kg in the diet was replaced by lactitol were lower by a highly significant margin, bringing them down to the same low level as those on a 160 g xylitol/kg regimen. 4. Testing lactitol in a manufactured food product, shortbread biscuits, in comparison with ordinary sucrose biscuits, showed differences in plaque scores (significant) and caries levels (highly significant), with 60 % fewer lesions on the lactitol regimen.
    [Show full text]
  • Full Assessment Report. (Word5)
    ATTACHMENT 3 SAFETY ASSESSMENT REPORT APPLICATION A406 PERMISSION FOR USE OF NEOTAME SUMMARY Introduction The NutraSweet Company is seeking approval for the use of a new artificial sweetener (Neotame) in Australia and New Zealand. The proposed uses include, but are not limited to, soft drink beverages (both carbonated and non-carbonated), beverage concentrates, beverage mixes, dairy beverages, fruit juice products, alcoholic drinks, non-dairy desserts, gelatin, ice cream, breakfast cereals and as a tabletop sweetener for use in hot beverages such as tea or coffee. Neotame (L-phenylalanine, N-[N-(3,3-dimethylbutyl)-L-α-aspartyl]-,1-methyl ester; or NC- 00723) is a dipeptide methyl ester derivative, chemically-related to aspartame. It has a sweetness potency of 7000 to 13,000-times sweeter than sucrose, and 30 to 60-times that of aspartame, depending on the use. Neotame was very stable in mock beverage solutions simulating commercial formulations. The only degradation product formed at >1% was L-phenylalanine, N-[N-3,3-dimethylbutyl)- L-α-aspartyl (NC-00751), which is also the major metabolite in both animals and humans and other minor degradation products (each <1%) which are not expected to be detectable at actual use levels of Neotame. Metabolism and toxicokinetics A number of studies on the metabolism and toxicokinetics were performed in rats and dogs, mainly via the oral route, although the intravenous route was also investigated. Neotame was rapidly absorbed following oral dosing, with around 14% of the administered dose absorbed in a pilot metabolism study and around 20-30% absorbed in the definitive rat metabolism study.
    [Show full text]
  • The Reality of Artificial Sweeteners
    Review Article Curre Res Diabetes & Obes J Volume 7 Issue 2 - May 2018 Copyright © All rights are reserved by Rafia Bano DOI: 10.19080/CRDOJ.2018.07.555708 The Reality of Artificial Sweeteners Rafia Bano* Department of Clinical Nutrition, College of Applied medical Sciences, University of Hail, Saudi Arabia Submission: April 04, 2018; Published: May 09, 2018 *Corresponding author: Rafia Bano, Department of Clinical Nutrition, College of Applied medical Sciences, University of Hail, HAIL, KSA, Saudi Arabia, Email: Abstract Now a days we are facing serious obesity issues worldwide. More than half of people in the US are becoming overweight, of which more than half are obese. As a result the weight related disorders are on the rise. So with all of these weight related problems going around, increased number of people struggling with weight lost regimens. They are trying to change their eating habits to include more vegetables and whole grains in their diets. They’re trying to be more physically active. They’re trying to modify snacking choices to healthier ones. There has been found an increasing trend of substituting artificial sweeteners in the sweet snacks and drinks that make up the majority of the American diet. But the question is that - are these substitutes really going to help? Or are they going to do more harm than benefit? The research has shown mixed evidences, but more and more is showing that these artificial sweeteners are not a good substitute. Artificial sweeteners continue to be a controversial public health issue, and the research keeps coming. At one side, many people are strongly opposing the use of artificial sweeteners because of the reported connections with increased risk for cancer and other metabolic and degenerative diseases.
    [Show full text]
  • Enhancing Sweetness and Stability of the Single Chain Monellin MNEI
    www.nature.com/scientificreports OPEN Sweeter and stronger: enhancing sweetness and stability of the single chain monellin MNEI through Received: 08 July 2016 Accepted: 07 September 2016 molecular design Published: 23 September 2016 Serena Leone1, Andrea Pica1, Antonello Merlino1, Filomena Sannino1, Piero Andrea Temussi1,2 & Delia Picone1 Sweet proteins are a family of proteins with no structure or sequence homology, able to elicit a sweet sensation in humans through their interaction with the dimeric T1R2-T1R3 sweet receptor. In particular, monellin and its single chain derivative (MNEI) are among the sweetest proteins known to men. Starting from a careful analysis of the surface electrostatic potentials, we have designed new mutants of MNEI with enhanced sweetness. Then, we have included in the most promising variant the stabilising mutation E23Q, obtaining a construct with enhanced performances, which combines extreme sweetness to high, pH-independent, thermal stability. The resulting mutant, with a sweetness threshold of only 0.28 mg/L (25 nM) is the strongest sweetener known to date. All the new proteins have been produced and purified and the structures of the most powerful mutants have been solved by X-ray crystallography. Docking studies have then confirmed the rationale of their interaction with the human sweet receptor, hinting at a previously unpredicted role of plasticity in said interaction. Sweet proteins are a family of structurally unrelated proteins that can elicit a sweet sensation in humans. To date, eight sweet and sweet taste-modifying proteins have been identified: monellin1, thaumatin2, brazzein3, pentadin4, mabinlin5, miraculin6, neoculin7 and lysozyme8. With the sole exception of lysozyme, all sweet proteins have been purified from plants, but, besides this common feature, they share no structure or sequence homology9.
    [Show full text]
  • Polyols Have a Variety of Functional Properties That Make Them Useful Alternatives to Sugars in Applications Including Baked Goods
    Polyols have a variety of functional properties that make them useful alternatives to sugars in applications including baked goods. Photo © iStockphoto.com/Synergee pg 22 09.12 • www.ift.org BY LYN NABORS and THERESA HEDRICK SUGAR REDUCTION WITH Polyols Polyols are in a unique position to assist with reduced-sugar or sugar-free reformulations since they can reduce calories and complement sugar’s functionality. ugar reduction will be an important goal over the of the product’s original characteristics may still be main- next few years as consumers, government, and in- tained with the replacement of those sugars by polyols. Sdustry alike have expressed interest in lower-calorie In addition, excellent, good-tasting sugar-free products and lower-sugar foods. The 2010 Dietary Guidelines for can be developed by using polyols. Polyols are in a unique Americans put a strong emphasis on consuming fewer position to assist with reduced-sugar or sugar-free refor- calories and reducing intake of added sugars. The In- mulations; since they are only partially digested and ab- stitute of Medicine (IOM) held a public workshop in sorbed, they can reduce calories and complement sugar’s November 2010 to discuss ways the food industry can functionality. Polyols provide the same bulk as sugars and use contemporary and innovative food processing tech- other carbohydrates. Additionally, polyols have a clean, nologies to reduce calorie intake in an effort to reduce sweet taste, which is important since consumers are not and prevent obesity, and in October 2011 recommended likely to sacrifice taste for perceived health benefits. Poly- front-of-package labeling that includes rating the product ols have a host of other functional properties that make based on added sugars content.
    [Show full text]
  • DIVISION 15 Adulteration Adulteration of Food
    DIVISION 15 Adulterationof food B.15.001. A food named in column III of an item of Table I to this Division is adulterated if the substance named in Column I of that item is present therein or has been added thereto in an amount exceeding the amount, expressed in parts per million, shown in column II of that item for that food. 22-1-81 B.15.002. (1) Subject to subsections (2) and (3), a food is adulterated if an agricultural chemical or any of its derivatives is present therein or has been added thereto, singly or in any combination, in an amount exceeding 0.1 part per million, unless it is listed and used in accordance with the tables to Division 16. (2) Subject to subsection (3), a food is exempt from paragraph 4(d) of the Act if the only agricultural chemicals that are present therein or have been added thereto are any of the following: (a) a fertilizer; (b) an adjuvant or a carrier of an agricultural chemical; (c) an inorganic bromide salt; (d) silicon dioxide; 8-3-79 (e) sulphur; or (f) viable spores of Bacillus thuringiensis Berliner. 26-1-98 (3) A food named in column IV of an item of Table II to this Division, a food that contains any such food or a food made from a product of any such food is exempt from the application of paragraph 4(d) of the Act if the agricultural chemicals named in columns I and II of that item are present in or have been added to the food in an amount not exceeding the maximum residue limit set out in column III of that item.
    [Show full text]
  • Lactitol, Bulk Sweetener for Sugar Free and Reduced Calories Hard
    Sugar Free Dental Properties Lactitol is noncariogenic. It is not fermented by the oral micro flora, so its consumption does not lead to Lactitol, Bulk Sweetener for the formation of acids that deminer- alize the tooth enamel. Also, the building up of tooth plaque is much less for lactitol-containing hard can- dies when compared to sugar. Its Sugar Free and Reduced noncariogenic properties have been shown in various clinical trials (Grenby and Desai, 1988; Grenby, 1989; Grenby and Phillips, 1989; Grenby et al., 1989; van der Calories Hard Candy Hoeven, 1986). REGULATORY ASPECTS A self-affirmation petition for the Generally Recognized as Safe status of lactitol, submitted by Purac, was his paper will discuss the prop- intense sweetener like aspartame or accepted for filing by the Food and Terties, regulatory aspects, and acesulfame-K. The taste, sweetening power, and Drug Administration in September applications of lactitol in hard can- 1993. The safety of lactitol has been dies. Lactitol is a disaccharide sugar profile of such sweetener combina- tions are very close to those of substantiated by numerous animal alcohol made from lactose by cat- and human studies. This safety alytic hydrogenation. sucrose. Its clean sweet taste allows a superb flavor release. research has been reviewed by sev- eral international authoritative bod- BENEFITS OF LACTITOL Reduced Calories ies (JEFCA, 1983; EEC, 1984). The Taste The FDA allows the use of a self- joint FAO/WHO Committee on Lactitol has a clean, sweet, sugar- determined value of 2.0 kilocalorie Food Additives has approved lacti- like taste without an aftertaste. The per gram for lactitol.
    [Show full text]