Novel Insights Into Mannitol Metabolism in the Fungal Plant
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
METACYC ID Description A0AR23 GO:0004842 (Ubiquitin-Protein Ligase
Electronic Supplementary Material (ESI) for Integrative Biology This journal is © The Royal Society of Chemistry 2012 Heat Stress Responsive Zostera marina Genes, Southern Population (α=0. -
“Polyols: a Primer for Dietetic Professionals” Is a Self-Study
1 “Polyols: A primer for dietetic professionals” is a self-study module produced by the Calorie Control Council, an accredited provider of continuing professional education (CPE) for dietetic professionals by the Commission on Dietetic Registration. It provides one hour of level 1 CPE credit for dietetic professionals. The full text of the module is in the notes section of each page, and is accompanied by summary points and/or visuals in the box at the top of the page. Directions for obtaining CPE are provided at the end of the module. 2 After completing this module, dietetic professionals will be able to: • Define polyols. • Identify the various types of polyols found in foods. • Understand the uses and health effects of polyols in foods. • Counsel clients on how to incorporate polyols into an overall healthful eating pattern. 3 4 Polyols are carbohydrates that are hydrogenated, meaning that a hydroxyl group replaces the aldehyde or ketone group found on sugars. Hydrogenated monosaccharides include erythritol, xylitol, sorbitol, and mannitol. Hydrogenated disaccharides include lactitol, isomalt, and maltitol. And hydrogenated starch hydrolysates (HSH), or polyglycitols (a wide range of corn syrups and maltodextrins), are formed from polysaccharides (Grabitske and Slavin 2008). 5 Nearly 54 percent of Americans are trying to lose weight, more than ever before. Increasingly, they are turning toward no- and low-sugar, and reduced calorie, foods and beverages to help them achieve their weight loss goals (78% of Americans who are trying to lose weight) (CCC 2010). Polyols, found in many of these foods, are becoming a subject of more interest. 6 They are incompletely digested , therefore are sometimes referred to as “low- digestible carbohydrates.” Polyols are not calorie free, as there is some degree of digestion and absorption of the carbohydrate. -
Review of the Role of Mannitol in the Therapy of Children
18th Expert Committee on the Selection and Use of Essential Medicines (21 to 25 March 2011) Section 16: Diuretics -- Mannitol review (Children) Review of the role of mannitol in the therapy of children Dr Fatemeh Tavakkoli M.D. Pharm. D Candidate, University of Maryland, School of Pharmacy, Baltimore, Maryland, USA Contents Introduction......................................................................................................................................... 3 Background ......................................................................................................................................... 3 Table 1: available guidelines for Mannitol ................................................................................ 3 Public Health Burden.......................................................................................................................... 5 Table 2: Indications and dose regimens for Mannitol in children .............................................. 6 Search methods for identification of safety and efficacy data............................................................ 7 Results................................................................................................................................................. 8 Systematic reviews.............................................................................................................................. 8 Individual studies (categorized by therapeutic use of mannitol): ..................................................... 10 -
Amino Mannitol Dehydrogenases on the Azasugar Biosynthetic Pathway
Send Orders for Reprints to [email protected] 10 Protein & Peptide Letters, 2014, 21, 10-14 Medium-Chain Dehydrogenases with New Specificity: Amino Mannitol Dehydrogenases on the Azasugar Biosynthetic Pathway Yanbin Wu, Jeffrey Arciola, and Nicole Horenstein* Department of Chemistry, University of Florida, Gainesville Florida, 32611-7200, USA Abstract: Azasugar biosynthesis involves a key dehydrogenase that oxidizes 2-amino-2-deoxy-D-mannitol to the 6-oxo compound. The genes encoding homologous NAD-dependent dehydrogenases from Bacillus amyloliquefaciens FZB42, B. atrophaeus 1942, and Paenibacillus polymyxa SC2 were codon-optimized and expressed in BL21(DE3) Escherichia coli. Relative to the two Bacillus enzymes, the enzyme from P. polymyxa proved to have superior catalytic properties with a Vmax of 0.095 ± 0.002 mol/min/mg, 59-fold higher than the B. amyloliquefaciens enzyme. The preferred substrate is 2- amino-2-deoxy-D-mannitol, though mannitol is accepted as a poor substrate at 3% of the relative rate. Simple amino alco- hols were also accepted as substrates at lower rates. Sequence alignment suggested D283 was involved in the enzyme’s specificity for aminopolyols. Point mutant D283N lost its amino specificity, accepting mannitol at 45% the rate observed for 2-amino-2-deoxy-D-mannitol. These results provide the first characterization of this class of zinc-dependent medium chain dehydrogenases that utilize aminopolyol substrates. Keywords: Aminopolyol, azasugar, biosynthesis, dehydrogenase, mannojirimycin, nojirimycin. INTRODUCTION are sufficient to convert fructose-6-phosphate into manno- jirimycin [9]. We proposed that the gutB1 gene product was Azasugars such as the nojirimycins [1] are natural prod- responsible for the turnover of 2-amino-2-deoxy-D-mannitol ucts that are analogs of monosaccharides that feature a nitro- (2AM) into mannojirimycin as shown in Fig. -
Robust Regression Analysis of GCMS Data Reveals Differential Rewiring of Metabolic Networks in Hepatitis B and C Patients
Article Robust Regression Analysis of GCMS Data Reveals Differential Rewiring of Metabolic Networks in Hepatitis B and C Patients Cedric Simillion 1,2, Nasser Semmo 2,3, Jeffrey R. Idle 2,3,4, and Diren Beyoğlu 2,4,* 1 Interfaculty Bioinformatics Unit and SIB Swiss Institute of Bioinformatics, University of Bern, Baltzerstrasse 6, 3012 Bern, Switzerland; [email protected] 2 Department of BioMedical Research, University of Bern, Murtenstrasse 35, 3008 Bern, Switzerland; [email protected] (N.S.); [email protected] (J.R.I.) 3 Department of Visceral Surgery and Medicine, Department of Hepatology, Inselspital, University Hospital of Bern, 3010 Bern, Switzerland 4 Division of Systems Pharmacology and Pharmacogenomics, Samuel J. and Joan B. Williamson Institute, Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, 11201 New York, NY, USA * Correspondence: [email protected]; Tel.: +41-31-632-87-11 Received: 11 September 2017; Accepted: 5 October 2017; Published: 8 October 2017 Abstract: About one in 15 of the world’s population is chronically infected with either hepatitis virus B (HBV) or C (HCV), with enormous public health consequences. The metabolic alterations caused by these infections have never been directly compared and contrasted. We investigated groups of HBV-positive, HCV-positive, and uninfected healthy controls using gas chromatography-mass spectrometry analyses of their plasma and urine. A robust regression analysis of the metabolite data was conducted to reveal correlations between metabolite pairs. Ten metabolite correlations appeared for HBV plasma and urine, with 18 for HCV plasma and urine, none of which were present in the controls. -
Role in Plant Stress Physiology and Regulation of Gene Expression
Characterisation of selected Arabidopsis aldehyde dehydrogenase genes: role in plant stress physiology and regulation of gene expression Dissertation Zur Erlangung des Doktorgrades (Dr. rer. nat.) der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn vorgelegt von Tagnon Dègbédji MISSIHOUN aus Cotonou, Benin Bonn, November 2010 Angefertigt mit Genehmigung der Mathematisch- Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn Gedruckt mit Unterstützung des Deutschen Akademischen Austauschdienstes 1. Referentin: Prof. Dr. Dorothea Bartels 2. Koreferent: Priv. Doz. Dr. Hans-Hubert Kirch Tag der Promotion: 22. Februar 2011 Erscheinungsjahr: 2011 II DECLARATION I hereby declare that the whole PhD thesis is my own work, except where explicitly stated otherwise in the text or in the bibliography. Bonn, November 2010 ------------------------------------ Tagnon D. MISSIHOUN III DEDICATION To My wife: Fabienne TOSSOU-MISSIHOUN and our kids Floriane S. Jennifer and Sègnon Anges- Anis My parents: Lucrèce KOTOMALE and Dadjo MISSIHOUN My sister and brothers: Mariette, Marius, Ricardo, Renaud, Ulrich And my dearest aunts and uncles: Hoho, Rebecca, Cyriaque, Dominique, Alphonsine IV CONTENTS ABBREVIATIONS ...............................................................................................................................................X FIGURES AND TABLES ...............................................................................................................................XIII -
Sweet Sensations by Judie Bizzozero | Senior Editor
[Confections] July 2015 Sweet Sensations By Judie Bizzozero | Senior Editor By R.J. Foster, Contributing Editor For many, terms like “reduced-sugar” or “sugar-free” do not go with the word “candy.” And yet, the confectionery industry is facing growing demand for treats that offer the taste people have grown to love without the adverse health effects they’re looking to avoid. Thankfully, there is a growing palette of ingredients from which candy makers can paint a new picture of sweetness that will be appreciated by the even most discerning of confectionery critics. SUGAR ALCOHOLS Also referred to as polyols, sugar alcohols are a common ingredient in reduced-sugar and sugar-free applications, especially confections. Funny thing, they’re not sugars or alcohols. Carbohydrate chains composed of monomeric, dimeric and polymeric units, polyols resemble both sugars and alcohols, but do not contain an ethanol molecule. All but two sugar alcohols are less sweet than sugar. Being only partially digestible, though, replacing a portion of a formulation’s sugar with a sugar alcohol reduces total calories without losing bulk (which can occur when replacing sugar with high-intensity sweeteners). Unique flavoring, texturizing and moisture-controlling effects also make polyols well-suited for confectionery products. Two very common and very similar monomeric polyols are sorbitol and mannitol. Present in a variety of fruits and vegetables, both are derived from products of cornstarch hydrolysis. Sorbitol is made via hydrogenation of glucose, which is why sorbitol is sometimes referred to as glucitol. Mannitol is created when fructose hydrogenation converts fructose into mannose, for which the final product, mannitol, is named. -
Seaweed Bioethanol Production: a Process Selection Review on Hydrolysis and Fermentation
fermentation Review Seaweed Bioethanol Production: A Process Selection Review on Hydrolysis and Fermentation Felix Offei 1,*, Moses Mensah 2, Anders Thygesen 3 and Francis Kemausuor 1 1 Department of Agricultural and Biosystems Engineering, Kwame Nkrumah University of Science and Technology, AK-449-1916 Kumasi, Ghana; [email protected] 2 Department of Chemical Engineering, Kwame Nkrumah University of Science and Technology, AK-449-1916 Kumasi, Ghana; [email protected] 3 Department of Biotechnology and Biomedicine, Technical University of Denmark, DK2800 Lyngby, Denmark; [email protected] * Correspondence: [email protected]; Tel.: +233-267-766-644 Received: 31 October 2018; Accepted: 27 November 2018; Published: 29 November 2018 Abstract: The rapid depletion and environmental concerns associated with the use of fossil fuels has led to extensive development of biofuels such as bioethanol from seaweeds. The long-term prospect of seaweed bioethanol production however, depends on the selection of processes in the hydrolysis and fermentation stages due to their limiting effect on ethanol yield. This review explored the factors influencing the hydrolysis and fermentation stages of seaweed bioethanol production with emphasis on process efficiency and sustainable application. Seaweed carbohydrate contents which are most critical for ethanol production substrate selection were 52 ± 6%, 55 ± 12% and 57 ± 13% for green, brown and red seaweeds, respectively. Inhibitor formation and polysaccharide selectivity were found to be the major bottlenecks influencing the efficiency of dilute acid and enzymatic hydrolysis, respectively. Current enzyme preparations used, were developed for starch-based and lignocellulosic biomass but not seaweeds, which differs in polysaccharide composition and structure. Also, the identification of fermenting organisms capable of converting the heterogeneous monomeric sugars in seaweeds is the major factor limiting ethanol yield during the fermentation stage and not the SHF or SSF pathway selection. -
Chapter 1.1 Development of a Bladder Instillation of the Indoloquinone
CHAPTER 1 Pharmaceutical development, analysis & manufacture of EO-9 15 16 Chapter 1.1 Development of a bladder instillation of the indoloquinone anticancer agent EO-9 using tert-butyl alcohol as lyophilization vehicle S.C. van der Schoot, B. Nuijen, F.M. Flesch, A. Gore, D. Mirejovsky ,L. Lenaz, J.H. Beijnen Submitted for publication 17 18 Chapter 1.1 Abstract EO-9 is a bioreductive alkylating indoloquinone and an analogue of the antitumor antibiotic mitomycin C. EO-9 is an inactive prodrug, which is activated by reduction of the quinone moiety to semiquinone or hydroquinone, generating an intermediate with an electrophilic aziridine ring system, which serves as a target for nucleophilic DNA. For the treatment of superficial bladder cancer a pharmaceutical formulation for a bladder instillation with EO-9 was developed. To improve solubility and stability of EO-9, tert-butyl alcohol was chosen as co-solvent for the solution vehicle in the freeze-drying process. Because EO-9 is most stable at alkaline pH sodium bicarbonate was used as alkalizer. Stability and dissolution studies revealed an optimal formulation solution for freeze-drying composed of 4 mg/ml EO-9, 10 mg/ml sodium bicarbonate, and 25 mg/ml mannitol in 40% v/v tert-butyl alcohol in water for injection. Optimization of the freeze drying process was performed by determination of the freeze drying characteristics of tert-butyl alcohol/water systems and differential scanning calorimetry analysis of the formulation solution. Furthermore, the influence of the freeze drying process on crystallinity and morphology of the freeze dried product was determined with X-ray diffraction analysis and scanning electron microscopy, respectively. -
Clinical Efficacy of Mannitol 10% with Glycerol 10% Versus Mannitol 20% in Cerebral Edema
CLINICAL STUDY Indian Journal of Clinical Practice, Vol. 30, No. 5, October 2019 Clinical Efficacy of Mannitol 10% with Glycerol 10% versus Mannitol 20% in Cerebral Edema AVINASH SHANKAR*, SHUBHAM†, AMRESH SHANKAR‡, ANURADHA SHANKAR# ABSTRACT Introduction: Cerebral edema is a common cause of unconsciousness and a manifestation in cerebrovascular accident, head injury, convulsive disorder and encephalitis, either due to infection or toxin. Failure of energy-dependent sodium-potassium ATPase pump, results in accumulation of sodium and water. The release of free radicals and proteases due to activation of microglial cells disrupts cell membrane and capillaries. Objective of the study: Comparative assessment of clinical efficacy of mannitol 10% with glycerol 10% versus mannitol 20% in cerebral edema of varied origin. Material and methods: In this study, 1171 patients of cerebral edema of various etiology attending Medical Emergency of RA Hospital & Research Centre, Warisaliganj (Nawada), Bihar, were selected for comparative evaluation of mannitol 10% with glycerol 10% versus mannitol 20% intravenously to adjudge the clinical efficacy and safety profile. Results: Patients of Group A taking mannitol 10% with glycerol 10% had Grade I clinical response in 584/586 without any adversity, residual neurological deficit or mortality and morbidity while among patients of Group B on mannitol 20%, only 108/585 had Grade I clinical response with mortality in 92 cases and morbidity in 279 cases. Keywords: Cerebral edema, cerebrovascular accident, sodium potassium ATPase pump, free radicals, proteases, mortality, morbidity erebral edema is a common sequel of causes dysfunction but not necessarily permanent cerebrovascular accident (CVA), head injury, damage. Ultimately, hypoxia depletes the cells’ energy Cconvulsive disorder and infective or toxic stores and disables the sodium-potassium ATPase, involvement of brain. -
Triacylglyceride Metabolism by Fusarium Graminearum During Colonization and Sexual Development on Wheat
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications in Food Science and Technology Food Science and Technology Department 2009 Triacylglyceride Metabolism by Fusarium graminearum During Colonization and Sexual Development on Wheat John C. Guenther Michigan State University Heather E. Hallen-Adams University of Nebraska at Lincoln, [email protected] Heike Bücking South Dakota State University Yair Shachar-Hill Michigan State University Frances Trail Michigan State University, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/foodsciefacpub Part of the Food Science Commons Guenther, John C.; Hallen-Adams, Heather E.; Bücking, Heike; Shachar-Hill, Yair; and Trail, Frances, "Triacylglyceride Metabolism by Fusarium graminearum During Colonization and Sexual Development on Wheat" (2009). Faculty Publications in Food Science and Technology. 70. https://digitalcommons.unl.edu/foodsciefacpub/70 This Article is brought to you for free and open access by the Food Science and Technology Department at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications in Food Science and Technology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. MPMI Vol. 22, No. 12, 2009, pp. 1492–1503. doi:10.1094 / MPMI -22-12-1492. © 2009 The American Phytopathological Society e-Xtra* Triacylglyceride Metabolism by Fusarium graminearum During Colonization and Sexual Development on Wheat John C. Guenther,1 Heather E. Hallen-Adams,1 Heike Bücking,2 Yair Shachar-Hill,1 and Frances Trail1,3 1Department of Plant Biology, Michigan State University, East Lansing, MI 48824, U.S.A.; 2Biology and Microbiology Department, South Dakota State University, Northern Plains Biostress, Brookings, SD 57007, U.S.A.; 3Department of Plant Biology and Department of Plant Pathology, Michigan State University, East Lansing, MI 48824, U.S.A. -
Biomaterials Formed by Nucleophilic Addition
(19) & (11) EP 1 181 323 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: C08G 63/48 (2006.01) C08G 63/91 (2006.01) 29.06.2011 Bulletin 2011/26 C12N 11/02 (2006.01) C12N 11/04 (2006.01) C12N 11/06 (2006.01) C12N 11/08 (2006.01) (2006.01) (2006.01) (21) Application number: 00910049.6 G01N 33/544 G01N 33/545 G01N 33/546 (2006.01) G01N 33/549 (2006.01) A61K 9/00 (2006.01) A61K 9/06 (2006.01) (22) Date of filing: 01.02.2000 A61K 47/48 (2006.01) A61L 24/00 (2006.01) A61L 24/04 (2006.01) A61L 26/00 (2006.01) A61L 27/26 (2006.01) A61L 27/52 (2006.01) A61L 31/04 (2006.01) A61L 31/14 (2006.01) C08G 81/00 (2006.01) (86) International application number: PCT/US2000/002608 (87) International publication number: WO 2000/044808 (03.08.2000 Gazette 2000/31) (54) BIOMATERIALS FORMED BY NUCLEOPHILIC ADDITION REACTION TO CONJUGATED UNSATURATED GROUPS BIOMATERIALIEN DIE DURCH NUKLEOPHILE REAKTION AUF KONJUGIERTEN UNGESÄTTIGTEN GRUPPEN ADDIERT SIND BIOMATERIAUX FORMES PAR REACTION D’ADDITION NUCLEOPHILE A DES GROUPES NON SATURES CONJUGUES (84) Designated Contracting States: • LUTOLF, Matthias AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU CH-8005 Zurich (CH) MC NL PT SE • PRATT, Alison CH-8044 Zurich (CH) (30) Priority: 01.02.1999 US 118093 P • SCHOENMAKERS, Ronald CH-8044 Zurich (CH) (43) Date of publication of application: • TIRELLI, Nicola 27.02.2002 Bulletin 2002/09 CH-8006 Zurich (CH) • VERNON, Brent (60) Divisional application: CH-8157 Dielsdorf (CH) 10181654.4 / 2 311 895 (74) Representative: Klunker .