“Polyols: a Primer for Dietetic Professionals” Is a Self-Study
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
GRAS Notice 789 for Erythritol
GRAS Notice (GRN) No. 789 https://www.fda.gov/food/generally-recognized-safe-gras/gras-notice-inventory. Toi• Strategies ~~~~G~~[)) JUN 7 20'8 Innovative solutions Sound science OFFICE OF FOOD ADDITIVE SAFE1Y June 5, 2018 Dr. Dennis Keefe Director, Division of Biotechnology and GRAS Notice Review Office of Food Additive Safety (HFS-200) Center for Food Safety and Applied Nutrition Food and Drug Administration 5100 Paint Branch Parkway College Park, MD 20740-3835 Subject: GRAS Notification - Erythritol Dear Dr. Keefe: On behalf of Cargill, Incorporated, ToxStrategies, Inc. (its agent) is submitting, for FDA review, a copy of the GRAS notification as required. The enclosed document provides notice of a claim that the food ingredient, erythritol, described in the enclosed notification is exempt from the premarket approval requirement of the Federal Food, Drug, and Cosmetic Act because it has been determined to be generally recognized as safe (GRAS), based on scientific procedures, for addition to food. If you have any questions or require additional information, please do not hesitate to contact me at 630-352-0303, or [email protected]. Sincerely, (b) (6) Donald F. Schmitt, M.P.H. Senior Managing Scientist ToxStrategies, Inc., 931 W. 75th St. , Suite 137, PMB 263, Naperville, IL 60565 1 Office (630) 352-0303 • www.toxstrategies.com GRAS Determination of Erythritol for Use in Human Food JUNES,2018 Innovative solutions s ,..,.,',--.r-.r--.r--. OFFICE OF FOOD ADDITIVE SAFE1Y GRAS Determination of Erythritol for Use in Human Food SUBMITTED BY: Cargill, Incorporated 15407 McGinty Road West Wayzata, MN 55391 SUBMITTED TO: U.S. Food and Drug Administration Center for Food Safety and Applied Nutrition Office of Food Additive Safety HFS-200 5100 Paint Branch Parkway College Park MD 20740-3835 CONTACT FOR TECHNICAL OR OTIIER INFORMATION Donald F. -
Preparation of Renewable Bio-Polyols from Two Species of Colliguaja for Rigid Polyurethane Foams
materials Article Preparation of Renewable Bio-Polyols from Two Species of Colliguaja for Rigid Polyurethane Foams Diana Abril-Milán 1 , Oscar Valdés 2,* , Yaneris Mirabal-Gallardo 3, Alexander F. de la Torre 4 , Carlos Bustamante 5 and Jorge Contreras 5 1 Departamento de Biología y Química, Facultad de Ciencias Básicas, Universidad Católica del Maule, 3460000 Talca, Chile; [email protected] 2 Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, 3460000 Talca, Chile 3 Instituto de Ciencias Químicas Aplicadas, Facultad de Ingeniería Civil, Universidad Autónoma de Chile, 3460000 Sede Talca, Chile; [email protected] 4 Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad de Concepción, Casilla 160-C, 4030000 Concepción, Chile; [email protected] 5 Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, 3460000 Talca, Chile; [email protected] (C.B.); [email protected] (J.C.) * Correspondence: [email protected]; Tel.: +56(71)-2203304 Received: 27 September 2018; Accepted: 8 November 2018; Published: 11 November 2018 Abstract: In this study, we investigated the potential of two non-edible oil extracts from seeds of Colliguaja integerrima (CIO) and Colliguaja salicifolia (CSO) to use as a renewable source for polyols and, eventually, polyurethane foams or biodiesel. For this purpose, two novel polyols from the aforementioned oils were obtained in a one-single step reaction using a mixture of hydrogen peroxide and acetic acid. The polyol derivatives obtained from the two studied oils were characterized by spectral (FTIR, 1H NMR, and 13C NMR), physicochemical (e.g., chromatographic analysis, acid value, oxidizability values, iodine value, peroxide value, saponification number, kinematic viscosity, density, theorical molecular weight, hydroxyl number, and hydroxyl functionality) and thermal (TGA) analyses according to standard methods. -
Novel Insights Into Mannitol Metabolism in the Fungal Plant
Novel insights into mannitol metabolism in the fungal plant pathogen Botrytis cinerea Thierry Dulermo, Christine Rascle, Geneviève Billon-Grand, Elisabeth Gout, Richard Bligny, Pascale Cotton To cite this version: Thierry Dulermo, Christine Rascle, Geneviève Billon-Grand, Elisabeth Gout, Richard Bligny, et al.. Novel insights into mannitol metabolism in the fungal plant pathogen Botrytis cinerea. Biochemical Journal, Portland Press, 2010, 427 (2), pp.323-332. 10.1042/BJ20091813. hal-00479283 HAL Id: hal-00479283 https://hal.archives-ouvertes.fr/hal-00479283 Submitted on 30 Apr 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Biochemical Journal Immediate Publication. Published on 05 Feb 2010 as manuscript BJ20091813 1 NOVEL INSIGHTS INTO MANNITOL METABOLISM IN THE FUNGAL PLANT 2 PATHOGEN BOTRYTIS CINEREA 3 4 Authors : Thierry Dulermo*†, Christine Rascle*, Geneviève Billon-Grand*, Elisabeth Gout‡, 5 Richard Bligny‡ and Pascale Cotton§ 6 7 Address 8 *Génomique Fonctionnelle des Champignons Pathogènes des Plantes, UMR 5240 9 Microbiologie, Adaptation -
Mdi), 1,6 Hexamethylene Diisocyanate (Hdi
4.03.11. PRODUCTION OF ISOCYANATES FOR POLYURETHANE PRO- DUCTION CHEMICALS AND ALLIED APPLICATION NOTE 4.03.11 PRODUCTION OF ISOCYANATES FOR POLYURETHANE PRODUCTION METHYLENE DIPHENYL DIISOCYANATE (MDI), 1,6 HEXAMETHYLENE DIISOCYANATE (HDI) Typical end products Polyurethane foam for different applications, for example, bedding, of materials can be produced to meet the needs for furniture, packaging, coatings and elastomers. specific applications. Chemical curve: R.I. for MDI at Ref. Temp. of 25˚C Application The most commonly used isocyanates for the production of PU are methylene diphenyl diisocyanate (MDI) and toluene diisocyanate (TDI). If color and transparency are important, an aliphatic diisocyanate such as hexamethylene diisocyanate (HDI) is used. The first step in the production of polyurethane is the synthesis of the raw materials. The diisocyanate is typically produced from basic raw materials via nitration, hydrogenation and phosgenation. The feedstock and initial processing steps depend on the Introduction desired isocyanate, but all go through a phosgenation step. Polyurethanes (PUs) are a class of versatile materials with great potential for use in different applications. For instance, for the production of MDI, benzene and They are used in the manufacture of many different nitric acid are reacted to produce nitrobenzene. After items, such as paints, liquid coatings, elastomers, a hydrogeneration step, the nitrobenzene is converted insulators, elastics, foams and integral skins. to aniline. It is then condensed with formaldehyde to produce methylene diphenyl diamine (MDA), the Polyurethanes are produced by polymerization of precursor for MDI. The MDA is fed to a phosgenation a diisocyanate with a polyol. Because a variety of reactor where it reacts with phosgene to produce the diisocyanates and a wide range of polyols can be end-product MDI. -
Review of the Role of Mannitol in the Therapy of Children
18th Expert Committee on the Selection and Use of Essential Medicines (21 to 25 March 2011) Section 16: Diuretics -- Mannitol review (Children) Review of the role of mannitol in the therapy of children Dr Fatemeh Tavakkoli M.D. Pharm. D Candidate, University of Maryland, School of Pharmacy, Baltimore, Maryland, USA Contents Introduction......................................................................................................................................... 3 Background ......................................................................................................................................... 3 Table 1: available guidelines for Mannitol ................................................................................ 3 Public Health Burden.......................................................................................................................... 5 Table 2: Indications and dose regimens for Mannitol in children .............................................. 6 Search methods for identification of safety and efficacy data............................................................ 7 Results................................................................................................................................................. 8 Systematic reviews.............................................................................................................................. 8 Individual studies (categorized by therapeutic use of mannitol): ..................................................... 10 -
Dental and Metabolic Effects of Lactitol in the Diet of Laboratory Rats
Downloaded from British Journal of Nutrition (1989), 61, 17-24 17 https://www.cambridge.org/core Dental and metabolic effects of lactitol in the diet of labolratory rats BY T. H. GRENBY AND A. PHILLIPS Department of Oral Medicine and Pathology, United Medical and Dental Schools, Guy’s Hospital, London SEI 9RT . IP address: (Received 17 May 1988 - Accepted 30 August 1988) 170.106.35.93 I. Because so little is known about the properties of lactitol as a possible alternative bulk sweetener to sucrose, it was tested in two large-scale experiments in laboratory rats. Matched groups of caries-active Osborne-Mendel rats were fed.on uniform diets containing lactitol and compared with a sucrose control in both experiments, plus a xylitol control in the first experiment. , on 2. In the early stages of the experiments weight gains and food utilization were better on the Sucrose than on 26 Sep 2021 at 05:12:03 the lactitol regimens. Body-fat storage was higher on the sucrose than on the polyol regimens. 3. At the end of 8 weeks the mandibular molars were examined for dental plaque accumulation and dental caries. The dental caries scores when 160 g sucrose/kg in the diet was replaced by lactitol were lower by a highly significant margin, bringing them down to the same low level as those on a 160 g xylitol/kg regimen. 4. Testing lactitol in a manufactured food product, shortbread biscuits, in comparison with ordinary sucrose biscuits, showed differences in plaque scores (significant) and caries levels (highly significant), with 60 % fewer lesions on the lactitol regimen. -
Polyol Case Study
Polyol Case Study Case Study: Polyol Chewing Gums – A Systematic Review of the International Literature The effect of polyol containing chewing gums was evaluated in a systematic review published in 2008, in the Journal of the American Dental Association. 1 Eligible studies were retrieved from Medline, Google Scholar and the Cochrane Library and were published mainly from 1980-2001. Comparative studies were included, if they were published in English, in peer reviewed journals, including the evaluated effect of chewing gums containing at least one polyol (xylitol, sorbitol, mannitol or maltitol) on caries development. Data were extracted by two researchers on clinical and radiographic outcomes from original papers with a priority given to clinical outcomes. The quality of the studies was assessed using the Jadad scale. 2 The dose of the polyol was combined with the duration of use to produce a variable called poyol load. Preventive fractions were calculated with the following formula: PF= (XC − XE)/XC XC is the mean caries increment in the control group and XE is the mean caries increment in the group with the polyol-containing chewing gum. There were four groups of studies; 1) xylitol vs. no chewing gum; 2) xylitol and sorbitol vs. no chewing gum; 3) sorbitol vs. no chewing gum and; 4) sorbitol and mannitol vs. no chewing gum. www.allianceforacavityfreefuture.org | PAGE 1/3 The original literature search produced 231 articles with 19 deemed appropriate and meeting the study inclusion criteria for the meta-analysis. The studies included school children in the United States, Canada, Finland, Denmark as well as other European countries. -
Polyols Have a Variety of Functional Properties That Make Them Useful Alternatives to Sugars in Applications Including Baked Goods
Polyols have a variety of functional properties that make them useful alternatives to sugars in applications including baked goods. Photo © iStockphoto.com/Synergee pg 22 09.12 • www.ift.org BY LYN NABORS and THERESA HEDRICK SUGAR REDUCTION WITH Polyols Polyols are in a unique position to assist with reduced-sugar or sugar-free reformulations since they can reduce calories and complement sugar’s functionality. ugar reduction will be an important goal over the of the product’s original characteristics may still be main- next few years as consumers, government, and in- tained with the replacement of those sugars by polyols. Sdustry alike have expressed interest in lower-calorie In addition, excellent, good-tasting sugar-free products and lower-sugar foods. The 2010 Dietary Guidelines for can be developed by using polyols. Polyols are in a unique Americans put a strong emphasis on consuming fewer position to assist with reduced-sugar or sugar-free refor- calories and reducing intake of added sugars. The In- mulations; since they are only partially digested and ab- stitute of Medicine (IOM) held a public workshop in sorbed, they can reduce calories and complement sugar’s November 2010 to discuss ways the food industry can functionality. Polyols provide the same bulk as sugars and use contemporary and innovative food processing tech- other carbohydrates. Additionally, polyols have a clean, nologies to reduce calorie intake in an effort to reduce sweet taste, which is important since consumers are not and prevent obesity, and in October 2011 recommended likely to sacrifice taste for perceived health benefits. Poly- front-of-package labeling that includes rating the product ols have a host of other functional properties that make based on added sugars content. -
Sweet Sensations by Judie Bizzozero | Senior Editor
[Confections] July 2015 Sweet Sensations By Judie Bizzozero | Senior Editor By R.J. Foster, Contributing Editor For many, terms like “reduced-sugar” or “sugar-free” do not go with the word “candy.” And yet, the confectionery industry is facing growing demand for treats that offer the taste people have grown to love without the adverse health effects they’re looking to avoid. Thankfully, there is a growing palette of ingredients from which candy makers can paint a new picture of sweetness that will be appreciated by the even most discerning of confectionery critics. SUGAR ALCOHOLS Also referred to as polyols, sugar alcohols are a common ingredient in reduced-sugar and sugar-free applications, especially confections. Funny thing, they’re not sugars or alcohols. Carbohydrate chains composed of monomeric, dimeric and polymeric units, polyols resemble both sugars and alcohols, but do not contain an ethanol molecule. All but two sugar alcohols are less sweet than sugar. Being only partially digestible, though, replacing a portion of a formulation’s sugar with a sugar alcohol reduces total calories without losing bulk (which can occur when replacing sugar with high-intensity sweeteners). Unique flavoring, texturizing and moisture-controlling effects also make polyols well-suited for confectionery products. Two very common and very similar monomeric polyols are sorbitol and mannitol. Present in a variety of fruits and vegetables, both are derived from products of cornstarch hydrolysis. Sorbitol is made via hydrogenation of glucose, which is why sorbitol is sometimes referred to as glucitol. Mannitol is created when fructose hydrogenation converts fructose into mannose, for which the final product, mannitol, is named. -
Seaweed Bioethanol Production: a Process Selection Review on Hydrolysis and Fermentation
fermentation Review Seaweed Bioethanol Production: A Process Selection Review on Hydrolysis and Fermentation Felix Offei 1,*, Moses Mensah 2, Anders Thygesen 3 and Francis Kemausuor 1 1 Department of Agricultural and Biosystems Engineering, Kwame Nkrumah University of Science and Technology, AK-449-1916 Kumasi, Ghana; [email protected] 2 Department of Chemical Engineering, Kwame Nkrumah University of Science and Technology, AK-449-1916 Kumasi, Ghana; [email protected] 3 Department of Biotechnology and Biomedicine, Technical University of Denmark, DK2800 Lyngby, Denmark; [email protected] * Correspondence: [email protected]; Tel.: +233-267-766-644 Received: 31 October 2018; Accepted: 27 November 2018; Published: 29 November 2018 Abstract: The rapid depletion and environmental concerns associated with the use of fossil fuels has led to extensive development of biofuels such as bioethanol from seaweeds. The long-term prospect of seaweed bioethanol production however, depends on the selection of processes in the hydrolysis and fermentation stages due to their limiting effect on ethanol yield. This review explored the factors influencing the hydrolysis and fermentation stages of seaweed bioethanol production with emphasis on process efficiency and sustainable application. Seaweed carbohydrate contents which are most critical for ethanol production substrate selection were 52 ± 6%, 55 ± 12% and 57 ± 13% for green, brown and red seaweeds, respectively. Inhibitor formation and polysaccharide selectivity were found to be the major bottlenecks influencing the efficiency of dilute acid and enzymatic hydrolysis, respectively. Current enzyme preparations used, were developed for starch-based and lignocellulosic biomass but not seaweeds, which differs in polysaccharide composition and structure. Also, the identification of fermenting organisms capable of converting the heterogeneous monomeric sugars in seaweeds is the major factor limiting ethanol yield during the fermentation stage and not the SHF or SSF pathway selection. -
DIVISION 15 Adulteration Adulteration of Food
DIVISION 15 Adulterationof food B.15.001. A food named in column III of an item of Table I to this Division is adulterated if the substance named in Column I of that item is present therein or has been added thereto in an amount exceeding the amount, expressed in parts per million, shown in column II of that item for that food. 22-1-81 B.15.002. (1) Subject to subsections (2) and (3), a food is adulterated if an agricultural chemical or any of its derivatives is present therein or has been added thereto, singly or in any combination, in an amount exceeding 0.1 part per million, unless it is listed and used in accordance with the tables to Division 16. (2) Subject to subsection (3), a food is exempt from paragraph 4(d) of the Act if the only agricultural chemicals that are present therein or have been added thereto are any of the following: (a) a fertilizer; (b) an adjuvant or a carrier of an agricultural chemical; (c) an inorganic bromide salt; (d) silicon dioxide; 8-3-79 (e) sulphur; or (f) viable spores of Bacillus thuringiensis Berliner. 26-1-98 (3) A food named in column IV of an item of Table II to this Division, a food that contains any such food or a food made from a product of any such food is exempt from the application of paragraph 4(d) of the Act if the agricultural chemicals named in columns I and II of that item are present in or have been added to the food in an amount not exceeding the maximum residue limit set out in column III of that item. -
Lactitol, Bulk Sweetener for Sugar Free and Reduced Calories Hard
Sugar Free Dental Properties Lactitol is noncariogenic. It is not fermented by the oral micro flora, so its consumption does not lead to Lactitol, Bulk Sweetener for the formation of acids that deminer- alize the tooth enamel. Also, the building up of tooth plaque is much less for lactitol-containing hard can- dies when compared to sugar. Its Sugar Free and Reduced noncariogenic properties have been shown in various clinical trials (Grenby and Desai, 1988; Grenby, 1989; Grenby and Phillips, 1989; Grenby et al., 1989; van der Calories Hard Candy Hoeven, 1986). REGULATORY ASPECTS A self-affirmation petition for the Generally Recognized as Safe status of lactitol, submitted by Purac, was his paper will discuss the prop- intense sweetener like aspartame or accepted for filing by the Food and Terties, regulatory aspects, and acesulfame-K. The taste, sweetening power, and Drug Administration in September applications of lactitol in hard can- 1993. The safety of lactitol has been dies. Lactitol is a disaccharide sugar profile of such sweetener combina- tions are very close to those of substantiated by numerous animal alcohol made from lactose by cat- and human studies. This safety alytic hydrogenation. sucrose. Its clean sweet taste allows a superb flavor release. research has been reviewed by sev- eral international authoritative bod- BENEFITS OF LACTITOL Reduced Calories ies (JEFCA, 1983; EEC, 1984). The Taste The FDA allows the use of a self- joint FAO/WHO Committee on Lactitol has a clean, sweet, sugar- determined value of 2.0 kilocalorie Food Additives has approved lacti- like taste without an aftertaste. The per gram for lactitol.