<<

Index

A external gas pressure, see external gas disc, 58 pressure Ambipolar diffusion, 4–5 lifetime, 20–22 magnetic fields, 9 mass, 9 B morphology, 10 Bok globule, 19 pre-brown-dwarf, 116–117 Bonnor-Ebert stability, 18–19 prestellar, 8 Cepheus Flare, 188–191 stability, 15–19 Ophiuchus, 112–114 Bonnor-Ebert stability, see Bonnor- Taurus, 163–164 Ebert stability stability, see Jeans mass virial stability, see virial stability C starless, 8 Cepheus Flare Shell, 172, 176, 191 temperature, 8 Clouds Core size dark, 172 cross-region comparison, 208 Clouds, molecular, see molecular clouds Critical density, 99 Clustering, 210–217 Column density continuum, 94, 180 D spectral-line, 99 Dust emissivity index C18O, 100 Cepheus Flare, 180 + N2H , 101 Ophiuchus, 94 Completeness testing, 86–90 Taurus, 139–140 Convolution kernels, 139 Core Mass Function (CMF), 22–25 Cepheus Flare, 181–186 E cumulative distribution function, 96 Evolutionary model, 221–238 Ophiuchus, 95–98 adiabatic evolution, 231–232 Cores, 8–22 application to Ophiuchus, 227–229 environment, 12 critical discussion, 236–238 evolution, 20–22 description, 221–223

© Springer International Publishing AG 2017 251 K.M. Pattle, Submillimetre Studies of Prestellar and Starless Cores in the Ophiuchus, Taurus and Cepheus Molecular Clouds, Springer Theses, DOI 10.1007/978-3-319-56520-0 252 Index

isothermal evolution, 231, 232 SPIRE, 52 magnetic field, 233–236 data reduction, 52–53 non-thermal motions, 232–233 Hertzsprung- diagram, 28 virial plane, 229–231 Hii regions, 13 Excitation temperature, 99–100 Hydrostatic equilibrium, 11 External gas pressure, 10 Cepheus Flare 13CO-derived, 191–194 I Bonnor-Ebert stable, 188–191 Ideal gas law, 10, 11 Ophiuchus, 105, 106 Initial Mass Function (IMF), 22–25, 182, Taurus, 149–156 183 External heating, 9, 128, 218 Internal energy Cepheus Flare, 194 Ophiuchus, 103–104 F Taurus, 148–149 Filaments, 127 Interstellar medium, 2 Fourier transform operators, 61–62 Interstellar Radiation Field (ISRF), 9, 12 Fraunhofer diffraction, 58 Ionising photon pressure, 107–108 Freefall time, 20 IRAM 30m Telescope, 55 IRAM observations Ophiuchus, 77 G IRAS measurements Galactic plane, 169 Cepheus Flare, 170 Gaussian distribution, 12 Gould Belt, 29–32 Herschel Gould Belt Survey, 32 J JCMT Gould Belt Survey, 31 James Clerk Maxwell Telescope (JCMT), 37 Grain growth, 140 HARP, see HARP Gravitational potential energy, 11 SCUBA-2, see SCUBA-2 Cepheus Flare, 194 weather bands, 43 relation to external gas pressure, 194– Jeans mass, 13, 15 200 Gaussian distribution, 104–105 Ophiuchus, 104–105 K Taurus, 147 Kelvin-Helmholtz timescale, 28 Bank Telescope measurements Taurus, 148–149 L Larson relations, 3, 200, 232 H Local Bubble, 169 HARP, 48–51 Local Thermodynamic Equilibrium (LTE), HARP observations 99 Ophiuchus, 72 Taurus, 149 Hayashi track, 28 M Herschel observations Magnetic energy Ophiuchus, 78, 85, 90 Ophiuchus, 108–109 Taurus, 126 Taurus, 156–161 Herschel Space Observatory, 6, 51–52 Magnetic fields, 9 absolute calibration, 54–55 Mass PACS, 52 continuum, 140, 180 data reduction, 54 cross-region comparison, 205 SCUBA-2 compatibility, see SCUBA-2- Mass determination Herschel compatibility continuum, 94 Index 253

Mass/size plane, 20 NGC7023, 177 Cepheus Flare, 181 Regional variations cross-region, 205–208 Cepheus Flare, 186–188, 191 Ophiuchus, 95 cross-region comparison, 217–221 Taurus, 143 mass, 218–219 Molecular clouds, 2–8 size, 219–220 Cepheus Flare, 169–172 temperature, 218 L1147/58, 173–175 volume density, 220–221 L1172/74, 175 Ophiuchus, 114–120 L1228, 176 Taurus, 164–166 L1251, 175–176 Resolution effects, 213–217 filamentary structure, 6–8 critical line mass, 7 magnetic fields, 3–6 S Ophiuchus, 72 SCUBA-2, 38–43 Taurus, 125–126 CO contamination, 51, 77–78 turbulence, 3–6 Cepheus Flare, 173, 177 turbulence-dominated paradigm, 5 data reduction, 43–48 flux conversion factors (FCFs), 41 Herschel compatibility, see SCUBA-2- N Herschel compatibility Nagoya 4-m telescope measurements, 191– PONG observing mode, 41–43 193 SCUBA-2-Herschel compatibility, 55–67 convolution kernels, 56–67 beam-map, 64–67 O Double-Gaussian, 63–64 OB associations, 13, 72 Fourier transforms, 61–62 Sco OB2, 72 Gaussian, 62–63 Optical depth spatial filtering, 55–56, 78 C18O, 100 SCUBA-2 observations + N2H , 100–101 Cepheus Flare, 172–173 Optical extinction, 12 Ophiuchus, 72 Cepheus Flare, 170 Taurus, 126 SCUBA-2 selection effects surface brightness, 143–146 P Separation, 210–211 Plummer model, 11 Single Isothermal Sphere model, 11 Press-Schechter formalism, 25 Sound speed, 7 Prestellar cores, see cores, prestellar Source classification Protostars, 8, 27–29 Ophiuchus, 85–86 Class 0, 27 Source extraction Class I, 27, 186 comparison of methods, 209–210 Class II, 28, 186, 187 CSAR, 129–130, 177 Class III, 29, 186 CuTEx, 78 Classical T Tauri (CTT), 28 getsources, 134 evolutionary sequence, 8 multiple-Gaussian fitting, 79–85, 177 Flat, 28, 186 Spectral energy distribution (SED), 139 Weak-line T Tauri (WTT), 29 fitting, 93 Ophiuchus, 93–94 Taurus, 139 R greybody model, 93 Rayleigh criterion, 59 Spitzer c2d survey, 170 Reflection nebulae, 190 254 Index

Star formation Turbulence, 24 clustered, 72, 209 dissipation in Ophiuchus, 103–104 isolated, 209 sequential, 12 triggered, 13, 176 V Star formation rate Virial plane, 109–112 Cepheus Flare, 186–188 Cepheus Flare, 200 Starless cores, see cores, starless Ophiuchus, 109–112 Supernovae, 13 Taurus Surface density 12 of sources, 211–213 CO-determined, 157 13CO-determined, 162 Virial stability T Cepheus Flare, 191–200 Temperature Ophiuchus, 102–112 cross-region comparison, 209 Taurus, 147–163 Herschel-derived, 177–180 12CO-determined, 156–157 SCUBA-2/Herschel determined, 93 13CO-determined, 161–163 Temperature/density plane Virial theorem, 15–18 Cepheus Flare, 181 Visual extinction, see optical extinction cross-region, 208–209 Volume density, 94, 140, 180 Taurus, 141 cross-region comparison, 209