<<

CrewExplorationVehicleCompositePressureVessel ThermalAssessment

LaurieY.Carrillo 1,ÁngelR.ÁlvarezHernández 2,andStevenLRickman 3 NASA Johnson Space Center (JSC), Houston, TX 77058

TheCrewExplorationVehicle(CEV)isthe nextgenerationspacevehicletofollowtheSpaceShuttle. A designwiththeinclusionofaCompositePressureVessel(CPV)hasbeenassessedforitsthermalresponse. ThetemperaturedistributionontheCPVthatresultsfromtheheatproducedbyinternalspacecraftsystems and external space environments was calculated as part of a projectlevel assessment to understand thermomechanical stresses. A finite element translation of the crew module CPV was integrated into an existingCEVThermalMathModel(TMM)basedonthe605baselineconfigurationandanalyzedforfour orbitalcases.Steadystatetemperatureprofilesweregeneratedbasedonorbitaverageheating.Preliminary thermalanalysisresultssuggestthattheCPVrequireslessmakeupenergywhencomparedtothebaseline aluminumpressurevessel.Itisemphasizedthatonlylocalmakeupenergywasconsideredinthestudy.The makeupenergydidnotincludethezoningconfigurationthatoccurswithheaters.Thisdocumentpresents theapproachandassumptionsusedforthisthermalassessment.

I. Introduction InanefforttoincreaseNASA'sexpertiseintheareaofcompositestructures,theNASAEngineeringandSafety Center (NESC) undertook a project to design, analyze and fabricate a pathfinder composite crew module. The NESC’sproposedcompositematerialdesigndiffersfromthecurrentCrewExplorationVehicle(CEV)baselinein whichanaluminumpressurevesselisused.Aspartoftheeffort,thedesignandanticipatedperformance were studied through analysis. One of the vital areas to understand in spacecraft analysis is the resulting thermal performanceofthevehiclewhenexposedtotheuniqueenvironmentofspacecoupledwiththeheatproducedfrom the spacecraft's myriad of internal systems. The resulting thermal performance is dependent on a complex combinationoffactorsthatincludethethermophysicalandopticalpropertiesofthemanymaterialsthatcomposethe spacecraft,theorientationofthespacecraftinorbitwithrespecttonearbyradiatingbodiessuchastheearth,sunand ,andthepowerdissipationoftheinternalsystems.Thispaperdescribesthethermalanalysisperformedwith theaimofprovidingameansbywhichtobeginathermomechanicalstressinvestigationofthespacecraft. AfiniteelementrepresentationoftheCPVwasimportedintotheJSCbuiltCEVThermalMathModel(TMM) basedonthe605baselineconfigurationutilizingtheSystemsImprovedNumericalDifferencingAnalyzer(SINDA) programforheattransfercalculations.ThismodelincludesCEV’sBackshell(BS),Heatshield(HS),structuralheat transfer paths of the Thermal Protection System (TPS),ServiceModule(SM)andLowImpactDockingSystem (LIDS). The onorbit thermal environments were calculated and the internal subsystem heat dissipation was included.Internalconvectioncouplingsweremodeled.Therequiredenergyappliedtospecificlocationswithinthe CPV to maintain the temperature above the dewpoint hasbeen defined as the local makeup energy. Abroad assessment of local makeup energy requirements is conducted as a preliminary step toward determining the requiredinputpower.Therigorouszoningconfigurationspecificationsrequiredtofullydetermineinternalheater powerisrelegatedtoafurtherstudy.Steadystatetemperatureprofileshavebeenproducedbasedonorbitaverage heating.

1 Aerospace Engineer, NASA Johnson Space Center, Structural Engineering Division, Thermal Design Branch, 2101NASAPkwy,Houston,TX77058 2 Aerospace Engineer, NASA Johnson Space Center, Structural Engineering Division, Thermal Design Branch, 2101NASAPkwy,Houston,TX77058 3ThermalDesignBranchChief,NASAJohnsonSpaceCenter,StructuralEngineering Division,Thermal Design Branch,2101NASAPkwy,Houston,TX77058 1 ThermalandFluidsAnalysisWorkshop 081808 Thispaperisorganizedasfollows:SectionIIgivestheformulationofthisanalysisincludingassumptions,TMM description/buildupandtheanalysiscasesconsidered.SectionIIIpresentsadescriptionandinterpretationofthe resultinganalysisdata.SectionIVcontainsrecommendationsforfurtherstudyandconcludingremarks.

II. Formulation

A. Spacecraft TheCEVspacecraftwillbeusedfortraveltotheInternational Space Station (ISS), return to the moon, and futurevoyagesto.TheCrewModule(CM)oftheOrionCEVspacecraftisshownhereinFig.1andhasa shapeinspiredbytheApollospacecraftusedinpastlunarmissions.

Figure 1. CrewModule(CM)oftheC EV 1 WiththeouterskinoftheCMisremoved,thepressurevesselisrevealedasdepictedinFig2.Forthisanalysis,the pressurevesselisassumedtobecomposite.

Pressure vessel

Figure2.CrewmoduleoftheCEVwithouterskinremovedrevealingthepressurevessel 2

2 ThermalandFluidsAnalysisWorkshop 081808 B. CompositeMaterial TheschematicinFig.3isrepresentativeoftheCPVcompositematerialconfiguration.Thevesselcrosssection iscomposedofaninnerfacesheet(FS),outerFS,andhoneycomb(HC)section.

Figure3.Honeycomb(HC)andinnerandouterFaceSheet(FS)configuration 3 TheimportedNASTRANmodelassumedshellelementsfortheCPVstructure.Whilethismaybesuitableforan aluminum crew module, the HC/FS could sustain larger thermal gradients through the thickness. Hence, the NASTRAN surfaces were extruded into solid elements and aggregate HC/FS conductance was assumed for the conductance in order to obtain the throughthethickness HC/FS temperature gradient. Effective thermal conductivitieswerecalculatedforthedifferentHCareas.

C. Assumptions Theopticalpropertiesusedforradiativeheattransfercalculations withinthe modelarepresentedinTable1. MultiLayerInsulation(MLI)wasusedontheouterpressurevesselsurfaceusinganeffectiveemissivityofε *=0.03. For this analysis, the lowest directional thermal conductivity was used for the inner and outer FS areas. The numbersofpliesoffabricandtapethatcomposethedifferentFSareasanddetermineitsthicknessweretakenfrom thecurrentNESCdesignspecifications.TheHCwasassumedtobeevacuated.Tomodelthethermalconductivity throughthecompositeshell,aJSCHCTMMwasusedforthedifferentthicknesssectionsoftheHCarea. Table1.CMOpticalPropertyAssumptions Solar Infrared MaterialUsed εεε Absorptivity ,α Emissivity , TPS/Backshell Structure [Ref.4] [Ref.4] OuterBS ReactionCuredGlass(RCG) 0.85 0.85 [Ref.4] [Ref.4] OuterHS ReactionCuredGlass(RCG) 0.85 0.85 InnerFS Titanium N/A 0.2 [Ref.5] CPV [Ref.6] InnerFS Tape(M55J) N/A 0.72 [Ref.7] OuterBS KaptonFilm,AluminumBacking N/A 0.71 TheinnerCPVwallwassetto61.5°F(16.4°C)andenergywasaddedtomaintaineachnodeatthistemperature while not changing nodes that were already above the minimum temperature. Because the makeup energy was addedatmodelnodallocationsasopposedtooverzonedregions,theimpactofactualheaterzoningisneglected. Hence,thefullimpactofheaterpowercannotbeassesseduntilazoningschemeisestablishedandfullyanalyzed.

D. ModelDescriptionandBuildUp TheTMMincorporatesavarietyofdifferentfactorsintotheanalysis.Oncetheconversionandaugmentationof the finite element structure model was complete, the following subsystems were included in the TMM: Active Thermal Control System (ATCS), Avionics, Communications, Crew Systems, Electrical Power, Environmental Control,andLifeSupportSystem(ECLSS),Guidance,Navigation,andControl(GN&C),LandingandRecovery System(LRS),MechanicalSystem,Propulsion,andStructural.Agraphicoftheinternalandexternalequipment associatedwiththeseCMsubsystemsalongwiththeCPVaredepictedinFig.4andFig.5.

3 ThermalandFluidsAnalysisWorkshop 081808 MechanicalSystem ForwardHatch

Landingand Guidance,Navigation,and RecoverySystem Control(GN&C)System Star Landingand (LRS) HeliumTank TrackerCameras RecoverySystem (LRS): Parachute

Landingand LandingandRecovery System(LRS) RecoverySystem FloatationBag (LRS): DrogueMortar CrewSystems ActiveThermalControl Display System(ATCS) Sublimator MechanicalSystem ServicesCarrier ElectricalPower PropulsionSystem: ActiveThermalControl StructuralSystem: System(EPS) Thrusters System(ATCS) UmbilicalPanel LandingBatteries WaterManifold

Propulsion System PropulsionSystem: Reaction ReactionControl ControlSystem System(RCS)GOx (RCS)Fuel Tank Electrical Tank PowerSystem ElectricalPower Environmental System(EPS) (EPS) ControlandLife BackUp MainBusSwitching ActiveThermal Environmental ActiveThermal SupportSystem Unit Batteries ControlSystem ControlandLife ControlSystem (ECLSS) (ATCS) SupportSystem (ATCS) PressureControl ColdPlates (ECLSS) FlowControlManifold Manifold ExteriorElectricalBox Figure 4. CPVwith external subsystem components fromTMM

4 ThermalandFluidsAnalysisWorkshop 081808 Guidance,Navigation, andControl(GN&C) VideoNavigationSystem

Guidance,Navigation, Environmental andControl(GN&C) ControlandLife VideoProcessor SupportSystem (ECLSS) WallSurface AvionicsSystem CrewSystem Vehicle Display Management Computer AvionicsSystem CrewSystem CrewSystem RemoteInterface FoodLocker SleepingBag Unit

Active Thermal Control System (ATCS) CrewSystem Survival FlowControl CrewSystem Items(RopeInsulated Communication Communication CrewSystem Valve Housekeeping blanket,etc.) System System CrewSystem CrewMedical Electronics Sband Bandpass Locker Sband Power WasteManagement Filter System Amplifier Figure5.CPVwithinternalsubsystemcomponentsfromTMM TheLowImpactDockingSystem(LIDS)isusedtodocktheCMwiththeISS.Agraphicalrepresentationofthe LIDSsubsystemfromtheTMMisshowninFig.6.

Figure6.LowImpactDockingSystem(LIDS)TMMrepresentation Fig.7showstheThermalProtectionSystem(TPS)configurationoftheCMincludedinthe model.TheTPSis composedoftheBackshell(BS),andHeatshield(HS)andprotectsthemoduleandcrewfromthereentryheating.

5 ThermalandFluidsAnalysisWorkshop 081808 Figure7.ThermalProtectionSystem(TPS) The TPS is a passive thermal control system with materials chosen based on thermal performance and weight efficiency.Thebackshellutilizes AluminaEnhancedThermalBarrier(AETB)8tile.Theheatshieldiscomposed ofPhenolicImpregnatedCarbonAblator(PICA).ThislayeriscoveringalayerofRoomTemperatureVulcanized (RTV)materialandStrainIsolationPad(SIP).Thereisanunderlyingstructuralsupportcomposedofinnerand outerTitaniumFSwithHC.DetailsofTPSstackupconfigurationareshowninTable2. Table2.ThermalProtectionSystem(TPS)/SupportStructureStackUpThicknesses Backshell(BS) Outer-most layer : 0.63in(1.6cm)AETB8solid 0.017in(0.043cm)OuterTiFS 0.75in(1.9cm)HCstructure Inner-most layer: 0.017in(0.043cm)InnerTiFS HeatShield(HS)dish Outer-most layer : 3.11in(7.90cm)PICAsolid 0.114in(0.290cm)RTVSIPlayer 0.04in(0.1cm)OuterTiFS 2.4in(6.1cm)HCstructure Inner-most layer: 0.04in(0.1cm)InnerTiFS HSshoulder Outer-most layer : 2.5in(6.4cm)PICAlayers(4) 0.114in(0.290cm)RTVSIPlayer Inner most layer: 0.04in(0.1cm)Tistructure CorrespondingTPSthermophysicalpropertiesweretakenfromRefs.812.Asasimplificationofthisanalysis,the SM was not explicitly included in this model. However, the effect of the SM blocking the heat shield from receiving view to deep space was simulated. Radiation conductors from the HS surface to an effective radiationnode(ERN)at50°F( 10°C)wereestablishedinordertosimulatetheeffectoftheSM. TheCPVmodelcontains7755planarelementsand7857nodes.TheseCPVplanarsurfaceswereextrudedinto solidsandassignedanequivalentthermalconductanceinordertocapturethroughthethicknessgradientswithinthe honeycombsandwich.ThestepbystepprocedureisshowninFig8.

6 ThermalandFluidsAnalysisWorkshop 081808 Figure8.PVThermalDesktopmodelbuildingprocedure The shaded area represents the original shell CPV surfaceand was madetobetheouterFS.Thedotted area representstheextrudedHCelement.ThestripedsurfacerepresentstheinnerFScreatedbycoatingtheinnersurface oftheHC.TheHC/FSeffectivethermalconductivitywascalculatedbasedonthethicknessesoftheHC/FSusing an inhouse JSC HC/FS TMM. Corresponding properties were applied to the CPV surfaces and solids. The sectionedareasoftheHC/FSandcorrespondingthicknesswerechosenbasedonthecurrentNESCdesign. Longerons were assumed for the CPV structural support as shown in Fig. 9. These create a linear heat conduction path from the CPV to the surrounding inner TPS FS. The aggregate contact conductance for the longeronFS areas used in the TMM were assumed to be 190Btu/hr ºF (100 Watts/°C). This value includes contributionsfromalllongeronsalongthetotallongeronsurfacearea.

Figure9.Assumedlongeronstructuralsupport AirnodeswerecreatedinsidetheCPVtoaccountforthetransferofheatfromthesystemcomponents,throughthe airandtotheCPVwall.Therewere5airnodesinsidetheCPVlocatedasshowninFig.10.

7 ThermalandFluidsAnalysisWorkshop 081808 Figure10.LocationofAirNodesandColdPlates Themaincabinairnodeismaintainedat75°F(24°C).ThecoldplatesarealsoshowninFig.10andweresetat 85°F (29°C). The estimated values for the unoccupiedvolumessurroundingeachairnodeweretakenfrom the currentaluminumCEVbaselinepressurevesselmodel.ThevaluesutilizedareshowninTable3. Table3.Estimatedunoccupiedvolumesper currentCEVbaseline Volume Area Volume(m 3) (ft 3) Main 368.3 10.43

Port 18 0.55

Starboard 18 0.55

Center 42 1.2

Undercrew 51.5 1.46 stowage

TheestimatedtotalCPVvolumeis718ft 3(20.3m 3)basedontheCEVbaselinedesign.Figs.11and12showthe airnodescouplingtotheCPVstructureandinnercomponents.

8 ThermalandFluidsAnalysisWorkshop 081808 Figure11.CPVmainairnodeconvectionconnectionstosurroundingPVwallandsystemsurfaces CenterAirNode Starboard PortAirNode AirNode

BottomAir Node Figure 12 :CPVport,st arboard ,center,andundercrewstowageairnodesconnection Theconvectiveheattransfercoefficientrepresentingairflowinducedheattransferinthebottom,center,port, andstarboardsectionsoftheCPVwasassumedtobe0.25Btu/hr/ft 2/°F(1.4W/m 2/°C)andistypicalofthevalue assumed for incabin convection on the Space ShuttleOrbiter.InthemaincabinsectionoftheCPV,the heat transfercoefficientwasassumedtobe0.5Btu/hr/ft 2/°F(3W/m 2/°C)toaccountforthemotionoftheair.Itshould benotedthattheseconvectiveheattransfercoefficientswerenotbasedonacomputationalfluiddynamicsanalysis. Itisrecommendedthatthesecoefficientsberefinedshouldadditionalanalysisbeperformed.Thereisnodirect couplingbetweenairnodes.Thetotalinternalpowerdissipationis7,582Btu/hrs(2,222W). To calculate the makeup energy, specialized SINDA codewaswrittenandincorporatedintotheTMM.The modelwasconfiguredtofirstrunthesteadystatesolutionwithoutanyconditioningoftheinnerwalls.Thiswasthe nomakeupenergycaseandinnerwallswereallowedtotrendtowhatevertemperatureresultedfromtheoverall heat balance (using SINDA diffusion nodes). Once the shell temperature distribution was determined for case withoutmakeupenergy,theprogramidentifiedeachnodewherethetemperaturewasbelowthe61.5°F(16.4°C) limit. The program then altered these nodes to become heater nodes that were set and held at the limit. The remaining shell node locations remained unconstrained. The steady state solution was then rerun with these alterationstoproducetheresultsforthemakeupenergycase. Fourorbitalconfigurationcaseswerechosenforthisstudybasedonanengineeringjudgementofwhichcases would likely cause the greatest high/low temperature extremes, and temperature gradients. Table 4 shows a breakdownoftheanalysiscasesconsideredaswellasitsassumedcharacteristics. 9 ThermalandFluidsAnalysisWorkshop 081808 Table4.OrbitalConfigurationAnalysisCases Case Orientation NaturalEnvironments Themainaxisofthevehicleisperpendicularto Hotsolarflux.Noalbedoor Lunartransit,broadside thesunvector.Halfofthevehiclereceivesfull, OutgoingLongwaveRadiation tosun constantsun,theotherhalfviewsdeepspace. (OLR). TheSMmainenginefacesthesun.Thusthe Lunartransit,afttosun entireCMiscontinuouslyshadedandseesdeep Coldsolarflux.NoalbedoorOLR. space. LowLunarOrbit(LLO), nosetosun,Beta Thehatch/dockingmechanismontheCMfaces Hotsolarflux,albedo,andOLR. (β)=90°,90kmaltitude thesunfullon. abovelunarsurface

LLO,afttosun,β=90°, TheSMmainenginefacesthesun.Thusthe 90kmaltitudeabove entireCMiscontinuouslyshadedandseesdeep Hotsolarflux,albedo,andOLR. lunarsurface space.ThereisminimalalbedoandOLRheating.

ForthetransitcasesitisassumedthatthespacecraftissufficientlyfarfromtheEarthandmoonsuchthatthereisno thermalinfluencefromthesebodies.HencealbedoandOLRareassumed0.0forthesecases.Forcaseswherethe spacecraft was expected to experience colder conditions, the minimum solar constant value of 417.2 Btu/Hr/ft 2 (1315W/m 2)waschosenasaconservativeassumption.Forcaseswherethespacecraftwasexpectedtoexperience hotconditions,themaximumsolarconstantof451.2Btu/Hr/ft 2(1422W/m 2)wasselected.

III. Results Steadystatetemperatureresults forthe fouronorbitanalysiscases wereproducedinNASTRANcompatible TEMP card format for direct input into the stress model. Temperature gradient maps were generated for each analysis case and are shown in Figs. 1316. Fig. 13 shows the temperature distribution of the outer wall of the pressurevesselatsteadystateforbroadsidetosun, withaminimuminnerwalltemperatureof61.5°F(16.4°C). Theeffectofsolarheatingfromthesidethatfacesthesunthroughouttheorbitisdisplayedasahotspotontheleft viewofFig.13.Thishotspotisatapproximately148°F(64°C).TheattachmentpointsofthelongeronstotheCPV aredemonstratedbythetwocoolerbandsshownontheleftviewofFig.13.

Figure 13. Steady State Temperature Results, Lunar Transit, Broadside to Sun, Minimum Inner Wall Temperature ≥61.5°F(16.4°C) Fig.14showsthesteadystatetemperatureresultsofalunartransitcasewiththeaftoftheCPVpointedtowards thesunthroughouttheorbit.TheSMislocatedontheaftsideoftheCPVandpreventsdirectsolarheatingofthe 10 ThermalandFluidsAnalysisWorkshop 081808 CPV.Theoppositesidefacesdeepspacethroughouttheorbit.Therefore,wewouldexpecttoseesomecolder temperaturesinthesecases.Thereisacoldspotontheleftviewwerethetemperaturereaches5°F(15°C).Here weseetheimpactofthethroughthethicknessgradientthatweinitiallyexpected.TheinnerFStemperaturewallis maintainedataminimumof61.5°F(16.4°C).TheouterFStemperaturesindicateatemperatureof5°F(15°C)in someregions.TheCPVinthisareasustainsathroughthethicknessgradientofT=56.5°F(T=31.4°C).This supportsourinitialassumptionofasignificantthroughthethicknessgradientrequiringextrusionofplanarelements toaccountforthis.

Figure 14. Steady State Temperature Results, Lunar Transit, Aft to Sun, Minimum Inner Wall Temperature ≥61.5°F(16.4°C) Fig.15showsteadystatetemperatureresultsforlowlunarorbitnose,nosetosun,β=90°,withaminimuminner walltemperatureof61.5°F(16.4°C).Notethatasexpected,thehighertemperaturesoccuratthetopoftheCPV whereexposuretosolarheatingisthegreatest.Thelinearconductionthroughthelongeronscanbeseenbythetwo yellowbandsintheleftandrightviewofFig.15.

Figure 15.SteadyStateTemperatureResults,LowLunarOrbit,NosetoSun,β=90 °°°,Minimum InnerWall Temperature ≥61.5°F(16.4°C) 11 ThermalandFluidsAnalysisWorkshop 081808 Fig.16givesthetemperaturedistributionresultsforthesteadystatecaseoflowlunarorbit,afttosun,β=90°, withaminimuminnerwalltemperatureof61.5°F(16.4°C).Thethroughthethicknessgradientisagainseenhere with the cold spot on the left view having a temperature of 10°F (12°C). In this case the gradient is 51.5°F (28.4°C).

Figure 16.SteadyStateTemperatureResults,LowLunarOrbit,AfttoSun,β=90 °°°,MinimumInnerWall Temperature ≥61.5°F(16.4°C) TheeffectofaddingmakeupenergyisshowninFigs.17and18.Fig.17showssteadystatetemperatureresults for a lunar transit broadside to sun case. Without makeup energy, the gradients are more extreme showing temperaturesatthecoldspotofapproximately30°F(34.4°C).Withmakeupenergy,thetemperatureinthesearea increasetoabove44°F(6.7°C).Thisisasignificantincreaseandmorerealisticfortheconditionsthatwouldbe acceptableinanactual mission.Eventhoughtheinsideisheldtoa61.5°F(16.4°C)minimumtemperature,the outsideisbelowthislimitduetothethroughthethicknessgradient. WithoutMakeUpEnergy WithMakeUpEnergy

Figure 17.EffectofMakeUpEnergy,SteadyStateTemperatureResults,LunarTransit,BroadsidetoSun, β=90 °°°,MinimumInnerWallTemperature≥61.5°F(16.4°C)forFigureontheRight,NoMinimumInner WallTemperaturefor FigureontheLeft

12 ThermalandFluidsAnalysisWorkshop 081808 Fig.18showstheeffectofmakeupenergyforthesteadystatecaseoflowlunarorbit,afttosun.Thecoldspotson theleftareremovedwiththeapplicationofmakeupenergyasseenintheviewontheright. WithoutMakeUpEnergy WithMakeUpEnergy

Figure18.EffectofMakeUpEnergy,SteadyStateTemperatureResults,LowLunarOrbit,Aft toSun, MinimumInnerWallTemperature≥61.5°F(16.4°C) forFigureontheRight,NoMinimumInnerWall TemperatureforFigureontheLeft IV.RecommendationsandConclusions The temperature gradients seen in this analysis raise the question as to whether or not the associated thermomechanicalstresseswouldcreateanyperformanceissues.Toaddressthisquestion,furtherinvestigationto quantifytheimpactofthermomechanicalstressesanditsimpactonoveralldesignisrecommended. Taking in to account the original intent of this study, and the limited heater zoning data available, a solely qualitativeoverviewofthemakeupenergyisgivenheretoreporttheoveralltrendsseenintheresults.Theresults acquiredsuggestthattheCPVrequiressignificantlylessmakeupenergytoholdtheinnerwalltemperatureabove 61.5°F(16.4°C).Onaveragearounda60%decreaseinmakeupenergyrequirementisindicatedwhenusingthe CPVversusthealuminumpressurevessel.Thegreatestdecreasewasseeninthenosetosuncasewhichindicated thatnomakeupenergyisrequiredtomaintaintheCPVabovethe61.5°F(16.4°C)limit.Thisisa100%decreasein the makeup energy requirements for the same case with an aluminum baseline pressure vessel. In the transit broadsidetosunCPVcase,a70%decreaseinmakeupenergyrequirementswasseencomparedtothealuminum baselinecase.Althoughnotasprominent,adecreasealsooccurredinthetransitafttosuncaseandthelowlunar orbit, aft to sun, β=90 ° case. These were on the order of a 3040% decrease. Hence, this initial qualitative assessmentuncoversthepotentialforasizableenergysavingsbyusingtheCPVinsteadofthealuminumpressure vessel. Although these results are promising, further refinement is recommended in order to conduct a more quantitativeassessmentoftheobservedgain.Itisagainemphasizedthatonlylocalmakeupenergywasconsidered inthestudy.Aheaterzoningstudytodeterminetheconfigurationoftherequiredheatersremainsasfuturework.It is recommended that the baseline CEV heater design be incorporated into this model to enable an accurate comparisonbetweenusingapressurevesselofcompositematerialversusaluminum.Itisalsosuggestedthatsome discussionwithinthecommunitybeinitiatedtoassesswhethertheCEVbaselineheaterdesignwouldbeusedor whetheraheaterdesignspecifictotheCPVwouldbeutilized. Resultsofthisthermalanalysissuggestpossibleimprovementstofutureanalyses.Aphysicalmeasurementof thecompositesandwichaggregatethermalconductanceisrecommendedsoastoacquireamoreaccurateinputfor themodel.ItisrecommendedthatlateralconductancewithintheCPVbeconsideredbyincorporatinganisotropic conductivityvalues.

Acknowledgments The authors wish to acknowledge Mike Kirsch, NESC Principal Engineer for providing the opportunity and guidance for this project. We also thank Jim Jeans, Genesis Engineering Solutions and Daniel Polis, NASA GoddardforprovidinguswithCEVcompositematerialpropertiesandstructuralspecificationdata,StephenMiller, 13 ThermalandFluidsAnalysisWorkshop 081808 CEV Passive Thermal Control System Manager for providing CEV baseline 605 modeling support and Alvaro RodriguezforhiscompositematerialHCpropertycalculationsupport.WerecognizeMavisBrandtforherexpert administrativesupportforcoordinatingthetraveltomeetingsassociatedwiththisproject.Wewouldalsoliketo expressourappreciationforthesupportfromStephanieMatyaswhoprovidedextensivematerialpropertyresearch assistance.

References 1JSC2007E20978,NASAimage,May2007. 2JSC2007E20979,NASAimage,May2007. 3Bednarcyk,B.,Arnold,S.,Collier,C.,andYarrington,P.“PreliminaryStructuralSizingandAlternative Material Trade StudyofCEVCrewModule,”NASA/TM2007214947,2007. 4Kourtides,D.,Tran,H.,andChiu,S.,“CompositeFlexibleInsulationforThermalProtectionofSpaceVehicles,”NASA /TM1991103836,1991. 5Touloukian, Y. S., “Recommended values of the thermophysical properties of eight alloys, major constituents and their oxides,February1,1965January31,1966,”NASACR71699,1966,p177. 6Amundsen,R.,Dec,J.,GasbarreJ.,“ThermalModelCorrelationforMarsReconnaissanceOrbiter,”NASAReport07ICES 64,2007. 7Gilmore, D. (ed.), Spacecraft Thermal Control Handbook Volume 1: Fundamental Technologies, Aerospace Press, El Segundo,CA,2002,pA5. 8DesignSpecificationforNaturalEnvironments(DSNE)Document,NASACxP70023,effectivedateAugust2006. 9NaturalEnvironmentsDefinitionforDesign,NASACxP70044,effectivedateAug.2006. 10SpaceShuttleProgramThermodynamicDesignDataBook,Volume3E,Book1,Part1,NASASD73SH0226,Jan.1981. 11MaterialsPropertyManual,Vol.3,OrbiterSpecificationMB0115049,Company,Aug.2005. 12Ed. T. Squire (ed.), “PICA”, NASA TPSXMaterialProperties Database [online Database], Web Edition 4, Jan. 2006. .

14 ThermalandFluidsAnalysisWorkshop 081808