U.S. Space Programs: Civilian, Military, and Commercial
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Using Earth Observation Data to Improve Health in the United States Accomplishments and Future Challenges
a report of the csis technology and public policy program Using Earth Observation Data to Improve Health in the United States accomplishments and future challenges 1800 K Street, NW | Washington, DC 20006 Tel: (202) 887-0200 | Fax: (202) 775-3199 Author E-mail: [email protected] | Web: www.csis.org Lyn D. Wigbels September 2011 ISBN 978-0-89206-668-1 Ë|xHSKITCy066681zv*:+:!:+:! a report of the csis technology and public policy program Using Earth Observation Data to Improve Health in the United States accomplishments and future challenges Author Lyn D. Wigbels September 2011 About CSIS At a time of new global opportunities and challenges, the Center for Strategic and International Studies (CSIS) provides strategic insights and bipartisan policy solutions to decisionmakers in government, international institutions, the private sector, and civil society. A bipartisan, nonprofit organization headquartered in Washington, D.C., CSIS conducts research and analysis and devel- ops policy initiatives that look into the future and anticipate change. Founded by David M. Abshire and Admiral Arleigh Burke at the height of the Cold War, CSIS was dedicated to finding ways for America to sustain its prominence and prosperity as a force for good in the world. Since 1962, CSIS has grown to become one of the world’s preeminent international policy institutions, with more than 220 full-time staff and a large network of affiliated scholars focused on defense and security, regional stability, and transnational challenges ranging from energy and climate to global development and economic integration. Former U.S. senator Sam Nunn became chairman of the CSIS Board of Trustees in 1999, and John J. -
Evaluation of Stereoscopic Geoeye-1 Satellite Imagery to Assess Landscape and Stand Level Characteristics
EVALUATION OF STEREOSCOPIC GEOEYE-1 SATELLITE IMAGERY TO ASSESS LANDSCAPE AND STAND LEVEL CHARACTERISTICS K. Kliparchuk, M.Sc, GISP a, Dr. D. Collins, P.Geo. b a Hatfield Consultants Partnership, 200-850 Harbourside Drive, North Vancouver, BC, V7P0A3 Canada – [email protected] b BC Ministry of Forests and Range, Coast Forest Region, 2100 Labieux Road, Nanaimo, BC, V9T6E9, Canada - [email protected] Commission I, WG I/3 KEY WORDS: Remote sensing, GeoEye-1, effectiveness evaluation, forest resource management, stereo, photogrammetry ABSTRACT: An ongoing remote sensing project has been underway within the Coast Forest Region since 2000. The initial parts of the project investigated the application of commercially available high-resolution satellite imagery to resource feature mapping and compliance and enforcement surveillance. In the current project, stereo imagery from the new GeoEye-1 satellite was acquired. This system provides 0.5m panchromatic and 1.65m colour imagery, which is approximately a four time increase in spatial resolution compared to IKONOS imagery. Stereo imagery at this resolution enables the delineation of single trees, coarse woody debris measurement and the generation of Digital Elevation Models and estimation of volumes of material displaced by landslides. Change detection and identification of high priority zones for Compliance & Enforcement investigation is greatly enhanced. Results of this research are presented and discussed. 1. INTRODUCTION 1.1 Introduction The initial focus of the project was to investigate the application of commercially available high-resolution satellite imagery to resource feature mapping and compliance and enforcement surveillance. A previous published study by the authors in 2008 extended the use of high resolution IKONOS imagery through Figure 1. -
GEO and GEOSS……
GEO - GEOSS Support of the CBD 2010 Targets CBD - SBSTTA Paris, 4 July 2007 Douglas Muchoney, GEO Secretariat © GEO Secretariat The Earth is a complex system of systems © GEO Secretariat Any Single Problem Requires Many Data Sets A Single Data Set Will Serve Many Communities © GEO Secretariat Solar Energy © GEO Secretariat GEOSS Implementation is a Non- binding, Voluntary Process • Relies on the Goodwill of Members and Participating Organizations • Efficient for Contribution of Components • Not a Funding Mechanism • GEO implements GEOSS © GEO Secretariat GEO Goal Improve and Coordinate Observation Systems Provide Easier & More Open Data Access Foster Use (Science, Applications, Capacity Bldg) … to answer Society’s need for informed decision making © GEO Secretariat GEOSS: A Global, Coordinated, Comprehensive and Sustained System of Observing Systems © GEO Secretariat GEOSS will Address Nine Societal Benefit Areas 1. Reduction and Prevention of Disasters 2. Human Health and Epidemiology 3. Energy Management 4. Climate Variability & Change 5. Water Management 6. Weather Forecasting 7. Ecosystems 8. Agriculture 9. Biodiversity © GEO Secretariat GEOSS achievement through 5 Transverse Areas 1. Architecture 2. Data Management 3. User Engagement 4. Capacity Building 5. Outreach © GEO Secretariat Envisat SORCE Aura/Aqua/Terra Sage QuikScat IKONOS CBERS SeaWiFS SPOT 4, 5 SPIN-2 SeaWinds Orbview 2, 3 TRMM DMC ACRIMSAT EROS A1 ERBS Radarsat ALOS Toms-EP QuickBird Grace Landsat 7 Jason UARS Space Observation© GEO Secretariat Systems In Situ Observation Systems © GEO Secretariat GEO Societal Benefit Areas 1. Reduction and Prevention of Disasters 2. Human Health 3. Energy Management 4. Climate Change 5. Water Management 6. Weather Forecasting 7. Ecosystems 8. Agriculture 9. -
Aerospace, Defense, and Government Services Mergers & Acquisitions
Aerospace, Defense, and Government Services Mergers & Acquisitions (January 1993 - April 2020) Huntington BAE Spirit Booz Allen L3Harris Precision Rolls- Airbus Boeing CACI Perspecta General Dynamics GE Honeywell Leidos SAIC Leonardo Technologies Lockheed Martin Ingalls Northrop Grumman Castparts Safran Textron Thales Raytheon Technologies Systems Aerosystems Hamilton Industries Royce Airborne tactical DHPC Technologies L3Harris airport Kopter Group PFW Aerospace to Aviolinx Raytheon Unisys Federal Airport security Hydroid radio business to Hutchinson airborne tactical security businesses Vector Launch Otis & Carrier businesses BAE Systems Dynetics businesses to Leidos Controls & Data Premiair Aviation radios business Fiber Materials Maintenance to Shareholders Linndustries Services to Valsef United Raytheon MTM Robotics Next Century Leidos Health to Distributed Energy GERAC test lab and Technologies Inventory Locator Service to Shielding Specialities Jet Aviation Vienna PK AirFinance to ettain group Night Vision business Solutions business to TRC Base2 Solutions engineering to Sopemea 2 Alestis Aerospace to CAMP Systems International Hamble aerostructure to Elbit Systems Stormscope product eAircraft to Belcan 2 GDI Simulation to MBDA Deep3 Software Apollo and Athene Collins Psibernetix ElectroMechanical Aciturri Aeronautica business to Aernnova IMX Medical line to TransDigm J&L Fiber Services to 0 Knight Point Aerospace TruTrak Flight Systems ElectroMechanical Systems to Safran 0 Pristmatic Solutions Next Generation 911 to Management -
GST Responses to “Questions to Inform Development of the National Plan”
GST Responses to “Questions to Inform Development of the National Plan” Name (optional): Dr. Darrel Williams Position (optional): Chief Scientist, (240) 542-1106; [email protected] Institution (optional): Global Science & Technology, Inc. Greenbelt, Maryland 20770 Global Science & Technology, Inc. (GST) is pleased to provide the following answers as a contribution towards OSTP’s effort to develop a national plan for civil Earth observations. In our response we provide information to support three main themes: 1. There is strong science need for high temporal resolution of moderate spatial resolution satellite earth observation that can be achieved with cost effective, innovative new approaches. 2. Operational programs need to be designed to obtain sustained climate data records. Continuity of Earth observations can be achieved through more efficient and economical means. 3. We need programs to address the integration of remotely sensed data with in situ data. GST has carefully considered these important national Earth observation issues over the past few years and has submitted the following RFI responses: The USGS RFI on Landsat Data Continuity Concepts (April 2012), NASA’s Sustainable Land Imaging Architecture RFI (September 2013), and This USGEO RFI (November 2013) relative to OSTP’s efforts to develop a national plan for civil Earth observations. In addition to the above RFI responses, GST led the development of a mature, fully compliant flight mission concept in response to NASA’s Earth Venture-2 RFP in September 2011. Our capacity to address these critical national issues resides in GST’s considerable bench strength in Earth science understanding (Drs. Darrel Williams, DeWayne Cecil, Samuel Goward, and Dixon Butler) and in NASA systems engineering and senior management oversight (Drs. -
Geoeye Corp Overview
GeoEye See our World…Better than Ever 1 GeoEye Focus on Africa Ms. Andrea Cook Senior Sales Manager Middle East, Africa & India GeoEye GeoEye: Company Overview OfferingOffering bestbest resolutionresolution –– colorcolor –– accuracyaccuracy commerciallycommercially availableavailable 3 GeoEye: IKONOS and GeoEye-1 IKONOS – Launched 24 September 1999 – World’s first commercial satellite with 1- meter resolution • 0.82 meter panchromatic, 3.2 meters multi-spectral • Over 300 million km² of world-wide archive • Extensive global network of ground stations __________________________________________________________ GeoEye-1 – Launched 6 September 2008 – Started Commercial Operations 5 February 2009 – Most advanced satellite commercially available • 0.41 meter panchromatic, 1.65 multi- spectral • Designed for <5m accuracy without ground control • Up to 700,000 km² per day collection capacity (panchromatic) • >7 year mission life 4 IKONOS: 1 meter imagery AlmostAlmost 1010 yearsyears ofof archivearchive –– stillstill collectingcollecting strongstrong 5 GeoEye-1: First Images NowNow CommerciallyCommercially AvailableAvailable –– CollectingCollecting WorldWorld WideWide 6 GeoEye Constellation Collection Capacity Faster Response Times Faster Project Completions More Opportunities Served • GeoEye Constellation Collection Capacity – GeoEye-1 • Image 350,000 km2/day in multi-spectral mode • 700,000 sq km/day panchromatic mode – IKONOS • 150,000 sq km/day • True Constellation Operations for GeoEye-1 and IKONOS – Phased orbit Key: – Access to all locations -
The International Space Station and the Space Shuttle
Order Code RL33568 The International Space Station and the Space Shuttle Updated November 9, 2007 Carl E. Behrens Specialist in Energy Policy Resources, Science, and Industry Division The International Space Station and the Space Shuttle Summary The International Space Station (ISS) program began in 1993, with Russia joining the United States, Europe, Japan, and Canada. Crews have occupied ISS on a 4-6 month rotating basis since November 2000. The U.S. Space Shuttle, which first flew in April 1981, has been the major vehicle taking crews and cargo back and forth to ISS, but the shuttle system has encountered difficulties since the Columbia disaster in 2003. Russian Soyuz spacecraft are also used to take crews to and from ISS, and Russian Progress spacecraft deliver cargo, but cannot return anything to Earth, since they are not designed to survive reentry into the Earth’s atmosphere. A Soyuz is always attached to the station as a lifeboat in case of an emergency. President Bush, prompted in part by the Columbia tragedy, made a major space policy address on January 14, 2004, directing NASA to focus its activities on returning humans to the Moon and someday sending them to Mars. Included in this “Vision for Space Exploration” is a plan to retire the space shuttle in 2010. The President said the United States would fulfill its commitments to its space station partners, but the details of how to accomplish that without the shuttle were not announced. The shuttle Discovery was launched on July 4, 2006, and returned safely to Earth on July 17. -
Highlights in Space 2010
International Astronautical Federation Committee on Space Research International Institute of Space Law 94 bis, Avenue de Suffren c/o CNES 94 bis, Avenue de Suffren UNITED NATIONS 75015 Paris, France 2 place Maurice Quentin 75015 Paris, France Tel: +33 1 45 67 42 60 Fax: +33 1 42 73 21 20 Tel. + 33 1 44 76 75 10 E-mail: : [email protected] E-mail: [email protected] Fax. + 33 1 44 76 74 37 URL: www.iislweb.com OFFICE FOR OUTER SPACE AFFAIRS URL: www.iafastro.com E-mail: [email protected] URL : http://cosparhq.cnes.fr Highlights in Space 2010 Prepared in cooperation with the International Astronautical Federation, the Committee on Space Research and the International Institute of Space Law The United Nations Office for Outer Space Affairs is responsible for promoting international cooperation in the peaceful uses of outer space and assisting developing countries in using space science and technology. United Nations Office for Outer Space Affairs P. O. Box 500, 1400 Vienna, Austria Tel: (+43-1) 26060-4950 Fax: (+43-1) 26060-5830 E-mail: [email protected] URL: www.unoosa.org United Nations publication Printed in Austria USD 15 Sales No. E.11.I.3 ISBN 978-92-1-101236-1 ST/SPACE/57 *1180239* V.11-80239—January 2011—775 UNITED NATIONS OFFICE FOR OUTER SPACE AFFAIRS UNITED NATIONS OFFICE AT VIENNA Highlights in Space 2010 Prepared in cooperation with the International Astronautical Federation, the Committee on Space Research and the International Institute of Space Law Progress in space science, technology and applications, international cooperation and space law UNITED NATIONS New York, 2011 UniTEd NationS PUblication Sales no. -
Type Here Your Title
Envisat SORCE Aura/Aqua/Terra Sage QuikScat IKONOS CBERS SeaWiFS SPOT 4, 5 GEO-GLAM SPIN-2 SeaWinds GLOBAL AGRICULTURALOrbview 2, 3 MONITORINGTRMM DMC ACRIMSAT EROS A1 ERBS Radarsat Jai Singh PariharALOS for the GEOGLAM group and GEO Agriculture CommunityToms-EP of Practice QuickBird Grace Landsat 7 Jason UARS © GEO Secretariat Cereal grain production per hectare (Source: SAGE, Univ. of Wisconsin, Madison, Wisc., USA) 5th GEOSS-Asia Pacific Symposium, Tokyo, April 2-4, 2012 1. The GEO-GLAM Initiative : Objectives To reinforce the international community’s capacity to produce and disseminate relevant, timely and accurate forecasts of agricultural production at national, regional and global scales. Envisat SORCE Aura/Aqua/Terra Sage QuikScat IKONOS CBERS SeaWiFS SPOT 4, 5 SPIN-2 SeaWinds Orbview 2, 3 TRMM DMC ACRIMSAT EROS A1 ERBS Radarsat ALOS Toms-EP QuickBird Grace Landsat 7 Jason UARS © GEO Secretariat Agronomy Earth Observation Agro-economy Cultivated area / crop type area Meteorology Cereal grain production per hectare (Source: SAGE, Univ. of Wisconsin, Madison, Wisc., USA) Crop yield forecast 2 1. The GEO-GLAM Initiative : Background (G20 2011) 3 1. The GEO-GLAM Initiative : Background (G20 2011) G20 Final Declaration (Nov. 2011) 44. We commit to improve market information and transparency in order to make international markets for agricultural commodities more effective. To that end, we launched: • The "Agricultural Market Information System" (AMIS) in Rome on September 15, 2011, to improve information on markets ...; • The "Global Agricultural Geo-monitoring Initiative" (GEOGLAM) in Geneva on September 22-23, 2011, to coordinate satellite monitoring observation systems … to enhance crop production projections ... 4 2. -
Carbon Earth Observatory for Carbon Dioxide Reduction Robert D
Carbon Earth Observatory for Carbon Dioxide Reduction Robert D. Cormia Foothill College GHG Emissions / NET Strategies Terrestrial Options for Negative Emissions Earth System Observation Data Platform Technology (NET) The messaging from IPCC is clear; without significant and sustained • Argo • OCO-2/OCO-3 Carbon Dioxide Reduction (CDR) strategies, there is no realistic • Afforestation and reforestation, stop deforestation, • Aqua • GOSAT 2 chance of avoiding potentially disastrous climate change. increase biomass of forest and soils for decades In addition to emission reduction, “drawdown” of atmospheric • Terra • ECOSTRESS carbon dioxide must begin soon and remain in place through the • Monitor and enhance grassland productivity and • CloudSat • GEDI end of the century. There are carbon sinks in the terrestrial carbon sequestration, including hydrology • CALIPSO • LandSat biosphere that have the potential to remove gigatons of carbon Improve soil microbial activity, carbon uptake in soils, dioxide each year, for decades or more. An earth observatory • • SMAP • TROPOMI system, for analysis of carbon cycle processes throughout the userecommended management practices • ICESat-2 • GeoCARB (2022) biosphere, could help measure, inform, and optimize terrestrial • Restore wetlands and connect to ocean inlet to increase carbon sequestration projects. salinity and decrease methane emissions NASA Earth Observing System (EOS) • Enhance Net Primary Productivity (NPP) of oceans Integrated toolset to help achieve CDR Goals NASA’s Earth Observatory tools are designed for accurate and precise measurements of atmospheric gases, geometric aspects of land and biomass, and can sense biochemical changes in plants and biomass that may result from climate change. If we are to be effective in optimizing carbon dioxide reduction projects, we need an integrated data platform with both spatial and temporal resolution. -
Civilian, Military, and Commercial
Order Code IB92011 CRS Issue Brief for Congress Received through the CRS Web U.S. Space Programs: Civilian, Military, and Commercial Updated September 28, 2004 Marcia S. Smith Resources, Science, and Industry Division Congressional Research Service ˜ The Library of Congress CONTENTS SUMMARY MOST RECENT DEVELOPMENTS BACKGROUND AND ANALYSIS U.S. Government Civilian Space Programs National Aeronautics and Space Administration (NASA) Human Spaceflight and Space Launch Vehicles Science Programs Other Civilian Government Agencies Commercial Space Programs Military Space Programs Interagency Coordination International Cooperation and Competition NASA and DOD Space Budgets Space Program Issues NASA Issues Military Space Issues Early Warning Satellites: the SBIRS/STSS Programs Space-Based Lasers and Space-Based Kinetic Energy Weapons for Boost-Phase Missile Defense NFIRE Antisatellite Weapons and Space Control NRO, NIMA/NGA, and Imagery Space-Based Radar Developing New Space Launch Vehicles Commercial Space and Trade Issues International Relationships LEGISLATION For links to other current CRS reports on space activities, go to the CRS website [http://www.crs.gov] and click on “Science” in the list of Current Legislative Issues. Then click on “U.S. Space Programs.” IB92011 09-28-04 U.S. Space Programs: Civilian, Military, and Commercial SUMMARY The 108th Congress is addressing a broad SBIRS-High ( to develop a new early warning range of civilian, military, and commercial satellite), Space Based Radar, and NFIRE (in space issues. which a space-based “kinetic kill vehicle” may impact a missile as it makes close sensor The National Aeronautics and Space observations of the missile’s plume). Administration (NASA) conducts the most visible space activities. -
The New Vision for Space Exploration
Constellation The New Vision for Space Exploration Dale Thomas NASA Constellation Program October 2008 The Constellation Program was born from the Constellation’sNASA Authorization Beginnings Act of 2005 which stated…. The Administrator shall establish a program to develop a sustained human presence on the moon, including a robust precursor program to promote exploration, science, commerce and U.S. preeminence in space, and as a stepping stone to future exploration of Mars and other destinations. CONSTELLATION PROJECTS Initial Capability Lunar Capability Orion Altair Ares I Ares V Mission Operations EVA Ground Operations Lunar Surface EVA EXPLORATION ROADMAP 0506 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 LunarLunar OutpostOutpost BuildupBuildup ExplorationExploration andand ScienceScience LunarLunar RoboticsRobotics MissionsMissions CommercialCommercial OrbitalOrbital Transportation ServicesServices forfor ISSISS AresAres II andand OrionOrion DevelopmentDevelopment AltairAltair Lunar LanderLander Development AresAres VV and EarthEarth DepartureDeparture Stage SurfaceSurface SystemsSystems DevelopmentDevelopment ORION: NEXT GENERATION PILOTED SPACECRAFT Human access to Low Earth Orbit … … to the Moon and Mars ORION PROJECT: CREW EXPLORATION VEHICLE Orion will support both space station and moon missions Launch Abort System Orion will support both space stationDesigned and moonto operate missions for up to 210 days in Earth or lunar Designedorbit to operate for up to 210 days in Earth or lunar orbit Designed for lunar