<<

TurkishJournalofEarthSciences (TurkishJ.EarthSci.),Vol.15, 2006,pp.123-154. Copyright©TÜB‹TAK

3D-ArchitectureandNeogeneEvolutionofthe Basin:InferencesfortheKinematicsoftheMalatya andOvac›kFaultZones

NURETD‹NKAYMAKCI1,MURAT‹NCEÖZ2 &PINARERTEPINAR1

1RS-GISLaboratory,DepartmentofGeologicalEngineering,MiddleEastTechnicalUniversity, TR–06531,(E-mail:[email protected]) 2F›ratUniversity,DepartmentofGeologicalEngineering,TR–23119Elaz›¤,Turkey

Abstract: The3D-architectureoftheMalatyaBasinwasstudiedusingremotesensing,seismicinterpretation,and palaeostressanalysisinthecontextoftheMalatya-Ovac›kfaultzone.TheresultsindicatethattheOvac›kand Malatyafaultzonesarenotdifferentsegmentsofasingle‘socalled’Malatya-Ovac›kfaultzone;rather,theyare twodifferentfaultzonesthathaveoperatedindependently.Inaddition,theOvac›kfaultzoneisdelimitedinthe westbytheMalatyafaultzone,whichextendsfarthernorthfromthepointofsupposedjunction.Maximum individualdeflectionofstreamsalongtheOvac›kfaultzoneisabout9.3km,andsummationofallstream deflectionsalongdifferentsegmentsoftheOvac›kfaultzoneindicatesthatsinistraldisplacementoftheOvac›kfault zonehasbeennotmorethan20kmfollowingdevelopmentofthedrainagesystemintheregion. EvidenceforthreedifferentdeformationphaseswererecognizedintheMalatyaBasin.Deformationphase1 wascharacterizedbyNW–SE-directedextensionandoperatedintheEarlytoMiddleMioceneinterval.Deformation σ phase2wascharacterizedbyWNW–ESE-directedcompressionandavertical 2 whichindicatestranscurrent tectonics.ItoperatedintheLateMiocenetoMiddlePliocene.Deformationphase3wascharacterizedby σ σ NNE–SSW-directedcompression,andverticalstressisinterchangedwith 2 and 3;thisisinterpretedasdueto nearequalmagnitudesofthesestresses,resultinginstresspermutationandinterchangeofintermediateandminor stress.Deformationphase3commencedintheLatePlioceneandhasbeenactivesincethen. TheinfilloftheMalatyaBasinhaswedge-likegeometryinE–WandN–Sdirectionsandthebasinfeddetritus mainlyfromitseasternmargin.Duringfieldstudiesinthebasin,anumberofinvertednormalfaultswere encountered;theseapparentlydevelopedasgrowthfaultsintheEarlytoMiddleMiocenetimeintervalandthen werereactivatedorinvertedduringpost-MiddleMiocenecompressionalphases.

KeyWords: MalatyaBasin,Malatyafaultzone,Ovac›kfaultzone,palaeostress,reactivation,inversion

MalatyaHavzas›n›n3BoyutluMimarisiveNeojenEvrimi: MalatyaveOvac›kFayKuflaklar›yla‹lgiliÇ›kar›mlar

Özet: MalatyaHavzas›’n›n3boyutlumimarisiMalatya-Ovac›kfaykufla¤›ba¤lam›ndauzaktanalg›lama,sismik yorumlamavepaleostresanalizlerikullan›larakortayakonulmufltur.Var›lansonuçlargöstermektedirkiMalatya- Ovac›kfaykufla¤›olarakadland›r›lanhat,tekbirfaykufla¤›n›nikiayr›segmentiolmay›p,aksinebirbirinden ba¤›ms›zhareketedenikiayr›faykufla¤›d›r.Ayr›ca,Ovac›kfaykufla¤›bat›ucundaMalatyafaykufla¤›ilebirleflti¤i önesürülennoktadandahakuzeyedo¤rudevameden,Malatyafaykufla¤›taraf›ndansonland›r›lmaktad›r.Ovac›k faykufla¤›içerisindekiderelerinüzerindegörülenenbüyükötelenme9.3kmolup,derelerinhepsiüzerindekiat›m miktarlar›n›ntoplam›Ovac›kfaykufla¤›’n›n,bölgedekiakaçlamasistemininoluflumundanitibaren,toplam ötelenmesinin20kilometredenfazlaolamayaca¤›n›göstermektedir. MalatyaHavzas›’ndaüçfarkl›deformasyonevresitespitedilmifltir.‹lkevreKB–GDyönlübirgenifllemedönemi σ olupErkenileOrtaMiyosendönemindehükümsürmüfltür.‹kincievreise 2‘nindüfleyoldu¤uvebölgeseldo¤rultu at›ml›tektonizmayaiflaretedenDGD–BKByönlübirs›k›flmailetemsiledilir.BudönemGeçMiyosenileOrta σ Pliyosenevresindehükümsürmüfltür.ÜçüncüdeformasyonevresiiseKKD–GGByönlübirs›k›flmaalt›nda 2 ile σ 3’ündüfleyeksendezamanzamanyerde¤ifltirdi¤ibirdeformasyonlatemsiledilir.Budurumikistres büyüklü¤ününeflitoldu¤udurumlardagörülenstresde¤ifl-tokuflu(permütasyon)olarakyorumlanm›flveortaç stresleenküçükstresinzamanzamandüfleyeksendeyerde¤ifltirmesininnedenioldu¤ufleklindeyorumlanm›flt›r.

123 MALATYAANDOVACIKFAULTZONES

Üçüncüdeformasyonevresi,GeçPliyosendebafllay›pgünümüzede¤inetkisinisürdürmektedir. MalatyaHavzas›’n›ndolgusuD–BveK–Gyönündekamafleklindebirgeometriyesahipolupgeneldedo¤u kenar›ndanbeslenmifltir.Araziçal›flmalar›s›ras›nda,havzadabirçokterselmiflfaylararastlanm›flt›r.Bufaylar›n Erken–OrtaMiyosendönemindebüyümefaylar›olarakgeliflipOrtaMiyosensonras›s›k›flmadönemlerindeyeniden hareketkazand›klar›veyaterseldiklerioldukçabelirgindir.

AnahtarSözcükler: MalatyaHavzas›,Malatyafaykufla¤›,Ovac›kfaykufla¤›,paleostres,tekrarhareketlenme, terselme

Introduction thatmightcontaincompleterecordsofthesubduction, TheLateCretaceoustoearlyTertiaryevolutionofTurkey collisionandpost-collisionalprocesses. wasdominatedmainlybynorthwardsubductionalong TheMalatyaBasinisoneofthelargestbasinsin thenorthernandsouthernbranchesoftheNeotethys easternTurkey(Figure2).Itislocatedinthehinterland Oceanandcollisionprocessesaftertheirterminalclosure. oftheBitlis-ZagrosSutureZone(Figure1b)which ThenorthernbranchislocatedbetweentheRhodope- demarcatestheformerpositionofthesouthernbranchof PontidefragmentsinthenorthandtheTauridesinthe theNeotethys,andalongwhichtheArabianandEurasian south(Figure1a).Thesouthernbranchwaslocated platescollided(Figure1c).Ithasinfillmorethan2km betweentheEurasianandArabianplatesinSETurkey thickspanningtheEarlyMiocenetoRecent,andwhich (fiengör&Y›lmaz1981;Görüretal. 1984;Y›lmazetal. restsonLowerTertiaryvolcano-sedimentaryunits. 1993;Koçyi¤it&Alt›ner2002).Completesubduction Therefore,itoffersauniqueopportunityfor andobliterationoftheformertookplaceintheLate understandingtheNeogenedevelopmentoftheregionas CretaceoustoearlyTertiary(Yal›n›z&Göncüo¤lu1999; wellastheeffectsofcollisionandpost-collisional Gençalio¤lu-Kuflçuetal. 2001;Rojayetal. 2001)which convergencetowhichthispaperisaddressed.Therefore, resultedincollisionoftheTauridesandPontidesalong theprimaryaimofthispaperistodescribeandmodelthe the‹zmirAnkara-SutureZone(fiengör&Y›lmaz 3D-architectureoftheMalatyaBasinandtounravelits 1981;Koçyi¤it1991;Kaymakc›2000;Kaymakc› etal. Neogeneevolutionaryhistoryusingremotesensing, 2000,2003a,b)duringtheearlyTertiary.Terminal seismicinterpretationandpalaeostressinversionbasedon subductionandobliterationofthesouthernbranchtook fault-slipdata.Theinformationobtainedfromthe placealongtheBitlis-ZagrosSutureZoneintheLate MalatyaBasinwillbeusedtounderstandthedevelopment Miocene(fiengör&Y›lmaz1981;fiengör etal. 1985; andevolutionoftheregion,especiallythekinematicsand Deweyetal. 1986;Y›lmaz etal. 1993)andresultedin activityofthetwomajorfaultzonesoftheregion, thecollisionoftheArabianplatewiththeEurasianplate. namelytheMalatyaandOvac›kfaultzones(MFZand Thecollisionandfurthernorthwardconvergenceofthe OFZ,respectively).Fieldstudiesincluded‘ground- Arabianplategavewaytothewestwardescapeofthe truthing’ofremotelysensedinformationandseismic AnatolianBlockalongthedextralNorthAnatolianand interpretation,andevaluationoflarge-scalestructures sinistralEastAnatolianfaultzones(NAFZandEAFZ, andfaultkinematicsbasedonpalaeostressanalysisfrom respectively)fromthezoneofhighconvergentstrain fault-slipdatasetscollectedduringfieldstudies.In towardstheAegeantrench.Althoughthereisdebate addition,theinformationobtainedfromtheMalatya aboutthetimingofcollisionandtheinceptionofthe Basinwillbeextrapolatedtoconstrainanddiscussthe NAFZandtheEAFZ,theneotectonicschemeofTurkeyis possibleactivetectonicsanddeformationmechanismsof relativelybetterknownthanthegeologicalconstraints theregion. thatexistedbeforetheArabiancollisiontookplace.This Abriefstratigraphicsummaryoftheregionwith ispartlyduetodifficultiesinthedatingofcontinental specialemphasisontheNeogeneinfillisgivenfirst,and depositswhichprevailedinmostoftheearlyTertiaryand followedbyremotesensing,seismicinterpretationand theNeogene,andpartlyduetothelackofregional palaeostressanalysis,andfinallybyadiscussionofthe studiesaddressingthisproblem,inadditiontoincomplete dataandourconclusions. kinematicandtectono-stratigraphicstudiesinthebasins

124 N.KAYMAKCIET AL.

BLACK SEA NORTH ANATOLIAN F.Z. EURASIAN PLATE a b Rhodo pe Ponti deFra Z gments IAES IAESZ ES IA Z KIRÞEHÝR TA U BLOCK R I DE IT S BZSZ S OFZ ARABIAN PLATE MEDITERRANEAN SEA n ý .Z. s F Bitlis-Pötürge-Malatya-Alanya metamorphics N a A ophiolites and accretionary wedge materials LI MFZ B O BSZ: Bitlis Zagros Suture Zone AT a N y E Z IAESZ: Izmir-Ankara-Erzincan Suture Zone t A R O a T U N ITS: Intra-Tauride Suture Zone l S UT E SFZ a EA S S M RO AG IS Z ITL B strike-slip faults Kýrþehir Block ophiolites from Northern Tethys Tauride platform units arc- and arc-related rocks Malatya-Keban metamorphic rocks N ophiolites from Southern Tethys Arabian Platform 0 50 100 OFZ: Ovacýk Fault Zone km MFZ: Malatya Fault Zone SFZ: Sürgü Fault Zone c 30°Black Sea 40° 42° NAFZ Eurasian Plate

Aegean Sea Anatolian Block

EAFZ TL B I IS-ZA Ionian Trench GR O S Mediterranean Sea S U T DFZ Arabian Plate U R 34° African Plate E

active convergence zones major strike-slip faults subordinate faults DFZ: Dead Sea Fault Zone, EAFZ: East Anatolian Fautl Zone, NAFZ: North Anatolian Fault Zone

Figure1. (a) PalaeotectonicoutlineofTurkey(modifiedfromfiengöretal. 1984andGörüretal. 1984);(b) isopiczonesoftheeastern Taurides(modifiedfromPerinçek&Kozlu1984);(c) neotectonicoutlineofTurkeyandsurroundingregions(reproducedfrom Kaymakc›2000).

125 MALATYAANDOVACIKFAULTZONES

38° 39° BASIN ERZÝNCAN NA FZ ÝLÝÇ 37

36 NE ZO OVACIK LT DÝVRÝÐÝ AU 38 F BASIN KEMALÝYE IK AC OV

1 2 3

4 5 MFZ ARAPKÝR

39° 6 7 1817 20 19 39° strike-slip faults 8 16 thrust faults strike-slip faults 15 with reverse 45 46 component HEKÝMHAN 47 plung. anticline 44 9 13 plung. syncline 10 12 43 14 11 probable faults 40 42 35 AYDINLAR Keban 44 sample sites A 41 33 34 TF 32 water bodies Plio-Quaternary NE Sultansuyu Fm. Karakaya Dam ZO (Pliocene) LT MALATYABASINMALATYA AU U. Miocene MFZ 31 F 25 N e clastics 29 IA on 24 26 48 L re Z M. Miocene 30 TO Sutu volcanics YEÞÝLYURT 28 A agros YEÞÝLYURT-BASKILN FAULT ZONEf Bitlis-Z L. Miocene 39 A t o 27 T s clastics 23 S ru 21 A Th L. Miocene 22 E ng marine units adi DOÐANÞEHÝR Le ARABIAN basement in Ma PLATE 20 km 38° 39° N 38° 38°

Figure2. GeologicalmapoftheMalatyaBasinareafortheNeogene.

Stratigraphy Miocene.Infact,theactualdevelopmentoftheMalatya ThelithologiesexposedinandaroundtheMalatyaBasin BasinsucceededEarlyMioceneregionalextensionwhich aregroupedasbasementrocks–uponwhichthebasin gavewaytowidespreaddepositioninEandSE hasdeveloped–andasbasininfill.Allofthepre-Neogene farbeyondthepresentboundariesoftheMalatyaBasin unitsaredesignatedbasementsincetheirdeposition andwasaccompaniedbymarineincursions.Therefore, predatesthedevelopmentoftheMalatyaBasinandare theEarlyMioceneunitsarealsoincludedinthebasininfill notconfinedtotheareawithintheboundariesofthe (Figure3).Althoughtheyarenotconfinedtothepresent basin(Figure2).Fieldstudiesandseismicinterpretations limitsoftheMalatyaBasin,theyarerelatedtothe indicatethatbasindevelopmenthasbeenaccompaniedby extensionaldeformationwhichstimulatedbasin extensionaldeformationwhichcommencedintheEarly development.

126 N.KAYMAKCIET AL. UNCONFORMITY LOCAL

alluvium alluvial fan braided river clastics (Sultansuyu fm.) coal seams lacustrine facies Red clastics very thick basaltic and andesites lava flows and pyroclastics (Yamadað interlayered with Volcanics) fluvio lacustrine units

LATE MIOCENE LATE MIOCENE LATE TO MIDDLE PLIO- QUATERNARY

EARLY TO EARLY MIDDLE PLIOCENE 50 m 50 turbiditic, siltstone, shale, and Nummulite, echinidea, Miliolidea and pelecypoda bearing sandy-, silty-, clayey- limestone alternation tuff/tuffite coal seams fluvio-lacutrine sandstone, siltstone, mudstone and conglomerate alternation, intercalation of plant remains-bearing lacustrine shales and marls reefal, algal limestone marine shale/marl, siltstone, sandstone ANGULAR UNCONFORMITY neritic carbonates rich in pelecypoda and gastropoda UNCONFORMITY LOCAL

continued

EARLY TO MIDDLE MIOCENE MIDDLE TO EARLY LATE EOCENE LATE

BASEMENT INFILL OLIGOCENE GeneralizedcolumnarsectionsforthebasementandtheinfilloftheMalatyaBasin(modifiedfromSümengen&Uysal1990). turbiditic shale, siltstone, sandstone with levels of conglomerate limestone rich in Nummulites marine turbidic sequence including proximal, medial and distal facies. hard Nummulitic limestone yellow, Alveolina Nummulites and yellow to buff bearing sandstone, siltstone,shale and conglomerate lenses pleagic limestones, shale, siltstone and sandstone alternation and conglomerate intercalations sandstone, conglomerate and clayey limetone. Pebbles are derived mainly from Jurassic-Cretaceous carbonates PROGRESSIVE UNCONFORMITY recrystallized limestone/marble various metamorphics belonging to Malatya and Pötürge massifs ANGULAR UNCONFORMITY

Figure3.

CRETAC.

MIDDLE EOCENE MIDDLE

MESOZOIC PALAEOCENE

LATE PALAEOZOIC-

127 MALATYAANDOVACIKFAULTZONES

BasementUnits WereferthereadertoBingöl(1984),Perinçek& ThepresentstudyfocusesontheNeogenedevelopment Kozlu(1984),Özgül&Turflucu(1984),Yazgan(1984), oftheMalatyaBasin;detaileddescriptionofthebasement Aktafl&Robertson(1984),Kozlu(1987),Y›lmaz etal. unitsisbeyondthescopeofthiswork.However,abrief (1993),Robertson(2002),Jaffey&Robertson(2004), summaryofthebasementunitswillbegivenbelow. andRobertsonetal. (2004,2005)forafulldescription ofthebasementunitsand,mainly,interpretationsofthe Thegeologyofthebasementunitsisnotyetfully earlyTertiaryevolutionoftheregion. understood.Intheliterature(referencesherein),there aredifferentmodelsandscenariosthathavebeenset forthtoexplaintheevolutionoftheregion.Amongthese, Infill themostcomprehensiveistheoneofPerinçek&Kozlu TheinfilloftheMalatyaBasinrestsunconformablyonthe (1984)uponwhichoursummaryisbased.Thebasement Oligoceneandolderunitsandbegins,atitsbase,with intheregioncomprisesvariousmetamorphicrocks, bufftoyellowandwhiteclayeymarinesandstones, Mesozoicplatformcarbonates,LateCretaceousophiolitic siltstonesandmarl,andcontinuesupwardwithanalgal sliversandmélanges,variousLateCretaceoustoEarly fossilifereouslimestone,turbiditic,fining-upward Palaeocenevolcanicrocksandvolcano-sedimentary sequencesofsandstone,siltstoneandshale,and assemblages,LatePalaeocenetoOligocenevolcaniclastic, intercalationsofthicklybeddedmarls(Olukkaya marineclastic,andcarbonaterocks,andwidespread FormationofSümengen&Uysal1990).Thisunitmarks evaporiteoccurrences(Figure3).Theseunitswere theonsetofmarineinundationintheregionafterearly intrudedbyvariousintrusiveigneousbodiesintheearly Tertiarycompressiongeneratedthickeningandupliftof Tertiary.Regionally,thebasementunitsareincludedin theregion(Perinçek&Kozlu1984;Y›lmaz etal. 1993). theeasternTauridebelt.Perinçek&Kozlu(1984) Thisunithasbeendatedbyvariousresearchers(e.g., subdividedthebasementunitsaccordingtotheisopic Perinçek&Kozlu1984;Yalç›n&Görür1984)whohave zonesofÖzgül(1976)andÖzgül&Turflucu(1984)in reportedthatitisofEarlyMiocenetoMiddleMiocene thecentralTaurides(Figure1b). age.Thesemarineunitsareconformablyoverlainby Thetectonicdevelopmentoftheregionwas continentalfluvio-lacustrineassemblagesatthecentreof dominatedmainlybythesouthwardthrustingofophiolite thebasin,whileatthebasinmarginstheyarelocally massesoriginatingfromthenorthernNeotethysalong overlainunconformablybyMiddleMiocenecontinental the‹zmir-Ankara-ErzincanSuturezone(Figure1a)inthe units.TheMiddleMiocenefluvio-lacustrineassemblage LateCretaceous,andnorthwardthrustingandophiolite (Zeynepo¤luFormationofSümengen&Uysal1990)is obductionoriginatingfromtheIntra-TaurideOceanfrom exposedmainlyinthecentralandnorthernpartsofthe whicharcandarc-relatedintrusiveandvolcanicrocks MalatyaBasin.Thethickestandrelativelymostcomplete originatedintheearlyTertiary.Inaddition,someofthe sectionsoftheseunitsareexposedinthecentralpartof ophioliticunitsobductedalongthesouth-vergingthrust theMalatyaBasin–southoftheAyd›nlarthrustfault–in sheetsovertheArabianplateoriginatedfromsouthern thecoreofananticline(location35inFigure2)andare TethysinthelateTertiarytoLateMiocene(Perinçek& composedof(indecreasingabundance)lacustrine,marl, Kozlu1984;Aktafl&Robertson1984;Yazgan1984; shale,siltstoneandsandstone,andincludesvarious Y›lmazetal. 1993). currentlyeconomiccoalhorizonsintenselyshearedby TheearlyTertiaryunitsinandaroundthebasinare thrustingwithatop-to-northvergence.Inthenorthern characterizedbyvariousmicrofossil-,pelecypod-and partoftheMalatyaBasin,theselacustrineunitsare gastropod-bearinglimestonesintercalatedwith interlayeredwithvariouslavaflowsandpyroclastic alternationsofturbiditicsandstone,siltstone,shaleand materialsoftheYamada¤volcanics.Theradiometricages marl(Figure3).Theseunitsarecappedalongalocal ofinterlayeredvolcanicrocks(Leo etal. 1974;Arger et unconformitybyOligoceneneriticcarbonatesrichin al. 2000)arelate-EarlytoMiddleMiocene(ca.18to14 pelecypodsandgastropods.AlloftheearlyTertiaryunits Ma).IntheNWpartoftheMalatyaBasin,NofArguvan areunconformablyoverlainbytheLowerMioceneinfillof (Figure2),theYamada¤volcanicrocksseparatethe theMalatyaBasin. MalatyaBasinfromtheKangalBasinandareintercalated withandoverlainbyafewtensofmetersofthickred

128 N.KAYMAKCIET AL.

clasticswhicharealsoexposedintheKangalBasinand TheSultansuyuformationisunconformablyoverlain areoverlainbyanapproximately100-m-thicklacustrine byvariousalluvial-fandepositsexposedmainlyalongthe sequencewitheconomiccoalhorizons.Continental MalatyafaultzoneandtheeasternmarginoftheMalatya mammalianfossilscollectedfromtheseunitshavebeen Basin.Althoughnoagedatahavebeenreportedfrom datedbyHansdeBruijn(FacultyofGeosciences,Utrecht theseunits,basedontheirstratigraphicpositionoverthe University,TheNetherlands).Thefollowingfaunal Sultansuyuformation,apost-MiddlePlioceneageis elementswereidentifiedfromKangalBasin: Talpidae assignedtothesealluvial-fandeposits. Desmaninae,Archaeodesmana,InsectivoraSoricidae, TheyoungestdepositsoftheMalatyaBasinare SsciuridaeTamias,GerbillinaePseudomeriones, activelyaccumulatingalluviumandalluvial-fandeposits Cricetinaes.l.Blancomys,MurinaeMicromys,Murinae alongactivefaults,mainlyinthesouthernpartofthe Occitanomys,SpalacinaePliospalax,CastoridaeDipoides, MalatyaBasinaroundDo¤anflehir. EomyidaeKeramidomys,CricetinaeAllocricetus,Murinae Apodemus,OchotonidaeProlagus,Hyaenidae, PerissodactylaEquidaeHipparion, and Proboscidea RemoteSensing GompotheriidaeAnancus .Thesefossilscharacterizethe Remote-sensingstudieshaveincludedprocessingand EuropeanMN-13MammalZone.Inaddition, interpretationofLandsatTM,SpaceShuttle Progonomys sp.wasidentifiedinsamplescollectedfrom TopographicalMission(SRTM)dataandAdvanced thecentralpartoftheMalatyaBasin(site35).Itwasthe SpaceborneThermalEmissionRadiometer(ASTER) firstrealmouse(Murinea)toarriveinEuropeandthe images.SRTMwasusedtoproduceadigital MiddleEastandcharacterizesMN9andyoungerzones. terrain/elevationmodel(DTM/DEM)ofthetopography. Similarfaunahavealsobeenobservedindifferentparts oftheKangalandSivasbasins(Saraç etal. 2000); Theseimageshavedifferentlevelsofspatial(ground) therefore,aLateMioceneagecanbeassignedtothe resolutionandspectralresolution(i.e.,bands).For upperlevelsoftheinfilloftheMalatyaBasin. example,Landsatimageshavea30-mgroundresolution whiletheSRTMdataisat3arcseconds(approximately InthesouthernpartoftheMalatyaBasin,theLate 69.18mintheE–Wdirectionand92.46mintheN–S Mioceneunitsareoverlainbyverythickfluvial(mainly direction)resolution;thesewereusedtoproduceadigital braidedriver)conglomeratesandsandstones(the terrain(elevation)modeloftheregion.Theseimagesare Sultansuyuformation,firstnamedinthepresentstudy). quiteusefulfordetectinglarge-scalestructures,butthey However,nofossilscouldbeidentifiedintheseunits.A failtodetectstructureslessthentheirspatialresolution. faunalassemblagecomprising Arvicolinae Outof14bands,thefirstthreeVNIR(visibleand Promimomys/Mimomys,RodentiaEomyidae,Castoridae infrared)bandsoftheASTERimageryhavea15-m Castorpraefiber and Gerbillinae wasidentifiedby groundresolution;thesewereusedinareaswherehigher Sickenberg(1975)inasimilarfaciesoftheElbistanBasin groundresolutionisneeded.TheSRTMisusedto (locatedapproximately50kmWoftheMalatyaBasin).In visualizethetopographyoftheregion(Figure4a).This addition,Ünay&Bruijn(1998)reported Rodentia methodenhancesthedetectionoflineamentsand Castoridae,MurinaeApodemuscf.Dominans,Arvicolinae structures,includingactivefaultsoftheregion.Afterthe MimomysMoldavicus and InsectivoraSoricidae , imageswereenhancedandlineamentsweredelineated CricetinaeMesocricetusaff.Primitivus,Spalacinae, visuallyontheimages,delineatedlineamentswere MurinaeOccitanomyscf.Brailloni,MurinaeApodemus checkedduringfieldstudies.Thelineamentslackingthe Dominans,ArvicolinaeMimomysoccitanus ,and fieldexpressionwereremoved,andexistinglineaments LagomorphaOchotonidaeOchotonoides fromtwo werelabelledasfaults;also,fault-slipdatawerecollected differentlocalitiesatthewesternmarginsoftheElaz›¤ frommostofthesefaults.Theenhancedimageand Basinwhichhasfaciescharacteristicssimilartothoseof resultantmaparegiveninFigure4. theSultansuyuformation.Thesefossilscharacterizethe MN14-15EuropeanMammalzones.Basedonthis Ontheimagesandinthefield,itwasobservedthat information,anEarlytoMiddlePlioceneageisassigned theMalatyafaultzoneiscomposedofanumberofsub- totheSultansuyuformation. parallelstrands(Figure4b,c).Ingeneral,theMFZ displaysananastomosingpatterncharacterizedbysmall

129 MALATYAANDOVACIKFAULTZONES

38° 38°30’ 39° NORTH ANATOLIAN40°

ERZINCAN BASINFAULT ZONE 39°30 39°30

OVACIK FAULTOVACIK ZONE BASIN (OFZ) 39° 39°

AYDINLAR T.F.

ELAZIÐ BASIN 38°30’ 38°30’ MALATYA

MALATYA FAULT ZONE (MFZ) BASIN

NE ZO LT AU Sultansuyu River F N IA OL AT AN EAST 38° 38° 38° 38°30’ 38° 38°30’

Figure4. (a) Colour-codedshadedreliefimageofMalatyaBasinareapreparedfromSRTMdataandmajorlineamentsintheregion.Note thattheOvac›kfaultzoneisdelimitedbytheMalatyafaultzone.NotealsotheverystraightcourseoftheSultansuyuRiver; (b) structuralmapoftheMalatyabasin,producedfromfieldandremote-sensingstudies.Notedisplacedsteamchannels (indicatedbybluearrows).(c) structuralelementsandoffsetstreamsareoverlaidonASTERimagery. localhighsanddepressions,linearvalleysanddeflected reachesanelevationof600mabovethePlio–Quaternary streams;thesefeaturesarecharacteristicofstrike-slip flooroftheMalatyaBasin(Figure4a).Inthenorthern faultzones.TheMFZdelimitsthewesternmarginofthe partoftheMalatyaBasin,thewesterncontinuationofthe MalatyaBasinwithapronouncedescarpmentthat Ovac›kfaultzoneishasbeentraced.

130 N.KAYMAKCIET AL.

ERZÝNCAN BASIN major faults strike-slip faults displaced stream channel inverted or reactivated faults (ticks are on hanging wall) strike-slip faults with reverse component 04 Seismic line probable or concealed faults folds thrust faults subordinate faults

ÝLÝÇ OVACIK

M Figure 15a A LA T Y A F KEMALÝYE A

U

L

T

Z

O

N OFZ

E E E ZONE T

DUTLUCA AUL

ACIK F OV ARAPKÝR

KEBAN

ARGUVAN Figure 14b

04 Figure 13

A YDIN BASKÝL LAR T YAZIHAN .F. ZONE 02

T 06 05 AUL F E A 03 N O TY 10 Z 01 T L 11 U MALA A 07 MALATYA F N IA AKÇADAÐ L EAFZ TO A N A T S A E

ÇELÝKHAN DOÐANÞEHÝR

F.Z SSÜRGÜÜRGÜ F.Z ULT FA N A M A IY N AD ADIYAMAN 50 km Figure 4b

Figure4b.

131 MALATYAANDOVACIKFAULTZONES

major faults strike-slip faults displaced stream channel inverted or reactivated faults (ticks are on hanging wall) strike-slip faults with reverse component probable or concealed faults folds thrust faults subordinate faults

N

50 km

Figure4c.

132 N.KAYMAKCIET AL.

SeismicInterpretation normalfaultplane.Similarinversionpatternsarealso Outof11sections,nineseismiclinesthatwereshotby observedallalongtheMFZ(Figures5–12). MobilExplorationMediterraneanInc.in1990were obtainedfromtheTurkishGeneralDirectorateof PalaeostressAnalysis PetroleumAffairs.Theavailableseismiclinesareintime From49sites,696fault-slipdatawerecollected.The domainandwerestackedbythecompany.The sampledhorizonsrangefromLateCretaceousto interpretationofthesectionswasperformedmanually, Plio–Quaternaryinage.Therefore,wehaveacomplete directlyontothehardcopies.Duringtheinterpretation, recordofdeformationsincetheLateCretaceous. theboundariesofstratigraphichorizonsandexposed faultswereextrapolatedfromoutcrops. Palaeostressconfigurationswereconstructedusing Angelier’ssoftware.Duringtheanalysisofthefault-slip Intheseismicsections,EocenetoOligocene data,amethodologydevelopedbyKaymakc›(2000)and sequences,pre-Eoceneunits,EarlyMiocenemarine Kaymakc›etal. (2000,2003a)wasfollowed.Themain limestones,EarlytoLateMioceneunitsand stepsinthepalaeostressanalysiswere:(1)separationof Plio–Quaternarysequenceswereidentified.Thelines01, deformationphasesinthefield;(2)anautomated 02,06,07,10and11(seeFigure4bfortheirlocations) separationprocesswasappliedusingthegridsearch traversethewesternmarginoftheMalatyaBasin,and method(Hardcastle&Hills1991)becauseofthe theMalatyafaultzonehasbeeninterpretedalongthese possibilityofmixeddatasets;(3)misfitfaultswere lines(Figures5–10).Theotherlines,including03,04 separatedfromthebulkdataandwereanalyzed and05(Figure11),wereshotdirectlyintheMalatya separately[Thisprocesswasapplieduntilreliableresults BasinanddonotcrosstheMalatyafaultzone.Ithasbeen wereobtained.‘Reliableresults’meansthatallthefaults observedthattheMFZdisplaysapositiveflower inonesetcanhave15ºofmaximumdeviation(ANGof structure(cf.Sylvester1988),afeaturetypicalofstrike- Angelier1988,andthatthemaximumvalueofthequality slipfaultzones(Figure12).Differentbranchesofthe estimator(RUP)is45º(seeAngelier1994)];(4)the flowerstructurehavebothreverseandnormal faultswhichdidnotfulfiltheseconditionswereregarded componentsofslip,whilethestrikeslipisthedominant asspurious,possiblyduetomeasurementerrors[After slipsense.Inalloftheseismicsections,somesubordinate theanalysisofthedata,itwasfoundthatlessthan1% faultswerealsointerpreted.Inthecombinedsectionsof ofthedatawerespurious,orabout12faults;the lines04and05(Figure11),theAyd›nlarthrustfault remaining684faultsyieldedreliablestress (ATF)hasbeenrecognized,whichwasalsoobserved configurations.Atsomeofthesites,morethanone duringfieldstudies(Figure13a).Itisnotedthatmostof deformationphasewasrecognizedinadditionto thesecondaryfaultsintheMalatyaBasin,includingthe separationinthefield;theywerethenseparatedandre- ATF,arereactivatednormalfaults.Amongthese,the reprocessed];(5)56differentstressconfigurationswere mostspectacularinvertedfaultisobservedinrelationto thenconstructed;amongthe56stressconfigurations,41 theAyd›nlarthrustfault.InthesouthernpartoftheATF ofthembelongtoMiocenetoRecentdeformationphases (onthehanging-wallblock),theEarlytoLateMiocene sincetheirdatawerecollectedfromNeogeneunits.The infilloftheMalatyaBasinisquitethick,whileitis resultantstressconfigurationsaredepictedinFigure14 extremelythinonthenorthernblock;thisindicatesa andinTable1.[Theremaining15stressconfigurations typicalnormalgrowth-faultpattern.Alongtheinverted werecollectedfromLatePalaeocenetoOligocenesyn- faultneartheATF,thebasallimestonefacies(Early sedimentaryfaults,thoughttobelongtopre-Miocene Miocenereefallimestones)andoverlyingunitsareup- deformationphases.Therefore,thosedataarepresented thrown.Collectively,thisinformationindicatesthatthe elsewhereandarenotincludedinthispaper];and(6)the firstnormalfaultingoccurred,thenthenormalfaultwas constructedstressconfigurationsweregrouped inverted.DuringinversionoftheATF,aroofthrust accordingtotheirages.Datingofeventsisbasedonthe developedwhichresultedinformationofatriangular agesofthehostingformationsandtherelativeorderof zone(Figure13b).Moreover,ananticlinedevelopeddue occurrencesasdiscussedinthenextsection. tobendingoftheinvertedfaultalongthepre-existing

133 MALATYAANDOVACIKFAULTZONES

PLIO-QUATERNARY NW EARLY TO MIDDLE PLIOCENE SE

EARLY TO LATE MIOCENE

MALATYA FAULT ZONE

EOCENE-OLIGOCENE UNDIFFERENTIATED

LINE 01

Figure5. Uninterpretedandinterpretedseismicsectionalongline01.Arrowsmarkfore-setsand/orshinglesthat indicatesedimenttransportdirection.MFZ–Malatyafaultzone.SeeFigure4bforlocation.

134 N.KAYMAKCIET AL.

LINE 02

NW SE

PLIOCENE

EARLY TO LATE MIOCENE

OLIGOCENE - EOCENE

MALATYA FAULT ZONE EARLY MIOCENE (MARINE)

UNDIFFERENTIATED

Figure6. Uninterpretedandinterpretedseismicsectionalongline02.Arrowsmarkfore-setsand/orshingles thatindicatesedimenttransportdirection.MFZ–Malatyafaultzone.SeeFigure4bforlocation.

135 MALATYAANDOVACIKFAULTZONES

LINE 06

MALATYA FAULT PLIOCENE TO PLIO-QUATERNARY (undifferentiated)

WNW ZONE ESE

E

N O

Z EARLY TO LATE MIOCENE

T L

U EARLY MIOCENE (MARINE) A F OLIGOCENE-

A EOCENE Y T

A

L

A

M

UNDIFFERENTIATED

Figure7. Uninterpretedandinterpretedseismicsectionalongline06.Arrowsmarkfore-setsand/orshinglesthatindicatesediment transportdirection.MFZ–Malatyafaultzone.SeeFigure4bforlocation.

FieldObservationsandDeformationPhases overprintingslickensidesandblocktilting,wereusedto Duringfieldstudies,variouscompressionaland differentiatethedeformationphases.Themostreliable extensionalstructureswereobservedatdifferent resultsfororderingthedeformationphaseswerebased stratigraphichorizons.Thisinformation,togetherwith onmesoscopicfaultssealedbystratathatareunaffected bythem.

136 N.KAYMAKCIET AL.

LINE 07 LINE 07

PLIO- QUATERNARY EARLY TO MIDDLE MALATYA FAULT ZONE PLIOCENE

EARLY TO LATE MIOCENE

EOCENE - O L EARLY MIOCENE IG O (MARINE) C E NE

UNDIFFERENTIATED UNDIFFERENTIATED

Figure8. Uninterpretedandinterpretedseismicsectionalongline07.MFZ–Malatyafaultzone.SeeFigure4bforlocation.

137 MALATYAANDOVACIKFAULTZONES

LINE 10

EARLY TO MIDDLE WNW PLIOCENE PLIO-QUATERNARY ESE

E EARLY TO LATE MIOCENE

N O

Z EARLY MIOCENE T (MARINE) - OLIGOC L E EN EN E U C

A O E F

A

Y

T

A

L

A

M

UNDIFFERENTIATED

Figure9. Uninterpretedandinterpretedseismicsectionalongline10.MFZ–Malatyafaultzone.SeeFigure4b forlocation.

138 N.KAYMAKCIET AL.

LINE 11

MALATYA FAULT ZONE WNW EARLY TO MIDDLE ESE PLIO-QUATERNARY PLIOCENE

EARLY TO LATE MIOCENE

EARLY MIOCENE MARINE

EOCENE - OLIGOCENE

UNDIFFERENTIATED

Figure10. Uninterpretedandinterpretedseismicsectionalongline11.MFZ–Malatyafaultzone.SeeFigure4bfor location.

139 MALATYAANDOVACIKFAULTZONES

LINE 04 LINE 05

AYDINLAR THRUST FAULT (ATF) PLIOCENE TO PLIO-QUATERNARY NNW Figure13 (undifferentiated) SSE

EARLY TO LATE MIOCENE IN V E R T E D EARLY MIOCENE EOCENE - OLIGOCENE N O (MARINE) R M A L FA U LT (IN F)

UNDIFFERENTIATED

Figure11. Uninterpretedandinterpretedcombinedseismicsectionoflines04and05.SeeFigure4bforlocation.

140 N.KAYMAKCIET AL.

MFZ

MFZ

ATF

02

I

N F

01 MFZ 04,05

MFZ 06

MFZ 10

MFZ 11

ATF: Aydýnlar thrust fault INF: inverted normal fault MFZ: Malatya Fault Zone

07

Figure12. Simplifiedinterpretedsectionsdepicting3DgeometryofstructuresintheMalatyabasin.INF:invertednormalfault.Note flowerstructure(terminologyafterSylvester1988)oftheMalatyafaultzone(MFZ).

141 MALATYAANDOVACIKFAULTZONES c a (b) F AT corresponding

(c)

)

F

T

A

(

M35

T

L

E

U N

titudesofthefaults.Locationissite35;

°

A

7 rmalfault(INF)andtheATF;

F

2

T

,

S

W

° U

0

R

2

H

N

T

R

A

L

N

I

D A b

INF ATF 1 2 ViewofexposedupperpartoftheAyd›nlarthrustfault(ATF)developedwithintheMiddletoLateMioceneunits,showingtheat asimplifiedmodelexplainingthedevelopmentoffault-bendfold,roofthrust(ATF)andtriangularzonebetweentheinvertedno palaeostressconfigurationconstructedusingslickensidescollectedfromthemesoscopicfaultsatthesite.

BASEMENT N60°W,47°NE N60°W,47°NE N60°W,47°NE Figure13. (a)

142 N.KAYMAKCIET AL.

InmostareasoftheMalatyaBasinandallalongthe andtheverylowΦ values,itisconcludedthatthesesets Malatyafaultzone–fromDo¤anflehirinthesouthto‹liç indicateanewphaseofdeformation(phase3).Verylow inthenorth(Figure4b)–overprintingslickensideswere Φ valuesareinterpretedtobetheresultofequalornear σ σ observed.Theprimaryslickensides,whereverobserved, equalmagnitudesof 2 and 3;thisresultsinstress indicatenormalfaultingwithaslightstrike-slip permutations(Homberg etal. 1997)andcoeval component(pitchesarenotlessthan60º),whileatother developmentofstrike-slipandreversefaults,whichisthe localities,thedip-slipandstrike-slipcomponentsvary caseforphase3.Theplaneofstresspermutationhasan amongthesites.Basedonthisinformation,itis attitudeofN72ºW,82ºSWandisindicatedinFigure14c. concludedthatnormalfaultingpre-datedstrike-slip Forthetimingofdeformationphases2and3,referto deformationandthattheoldestNeogenedeformationin thenextsection. theregionisextensional(phase1).Themeanorientation oftheprincipalstresses,fordeformationphase1,isas σ σ σ Discussion follows: 1=065ºN/88º, 2=220ºN/02º, 3=316ºN/02º. σ Having 1 verticalandotherstresseshorizontalindicates EvolutionoftheMalatyaBasin thatdeformationphase1wascharacterizedbyNW–SE- TheevolutionoftheMalatyaBasinwascontrolledmainly directedextension(Figure14a). bythreedifferentphasesofdeformationduringwhich Theslickensidesthatmarkeddeformationphase1 theregionalstresstensorchanged;thatinturnaltered wereoverprintedbyanothersetofslickensides.Along thestyleofdeformationintheregion.Thefirst theMalatyafaultzone,someofthemesoscopicnormal deformationphaseoccurredintheEarlytoMiddle faultswerereactivatedasreversefaults.Inaddition, MioceneandcausedtheopeningoftheMalatyaBasin. alongtheplanesofthesefaults,overprintingslickensides Thisdeformationphasewasaccompaniedbymarine arewidespread.Basedontheseinformation,the inundationintheregion(Perinçek&Kozlu1984; overprintingslickensidesareinterpretedasa Sümengen&Uysal1990).Althoughmarineinundation manifestationofanewphaseofdeformation(phase2). mayhavebeenduetoglobalsea-levelrise,thepresence Themeanorientationsoftheprincipalstressfor ofgrowthfaultsthatcontrolledthedepositionofthe σ σ deformationphase2areasfollows: 1=354ºN/03º, 2= EarlytoMiddleMioceneunitsisevidencefortheopening σ σ 244ºN/86º, 3=080ºN/03º(Figure14b).Having 1 and oftheMalatyaBasinintheEarlyMiocene.Themarine σ σ 3 horizontaland 2 verticalindicatesthatstrike-slip inundationsuggeststhattheelevationoftheMalatya deformationprevailedduringdeformationphase2. Basinwasataboutsealevel.Thepresenceofshallow- Inadditiontooverprintingslickensidesalongthe marinealgallimestonesandtheabsenceofdeepmarine normalfaultsmentionedabove,overprintingslickensides depositsandfaunaindicatethattheMalatyaBasinwas werealsoobservedwithintheLateMiocenetoPliocene notverydeepduringthistimeinterval.Thestratigraphic units;atsomeofthesesites,overprintingslickensides relationshipoftheLowerMioceneunitswiththeMiddle withrelativelyverylowpitches(<15º),indicativeoftwo andUpperMioceneunitsisregressive.Marineconditions differentsetsofstrike-slipdeformations,wereobserved. werereplacedbycontinentalonesinwhichlacustrine Thenewerslickensidesgenerallyindicatereverse conditionsdominated.Ithasbeenreportedthatthere components.Inaddition,similarslickensideswerealso wasaglobalsea-leveldropintheMiddleMiocenewhich observedintheLatePliocenetoQuaternaryunits(phase resultedfromaglacialevent(cf.Hilgenetal. 1999);this 3).Themeanorientationsoftheprincipalstressareas impliesthatintheMiddleMiocene,theregionwasnot σ σ σ necessarilyuplifted,althoughcontinentaldeposits follows; 1=015ºN/15º, 2=131ºN/53º, 3=285ºN/34º (Figure14c).Theorientationsoftheconstructed dominatedinthisperiod.TheYamada¤volcanicrocks σ wereextrudedintheEarlytoMiddleMiocene,whichmay palaeostressconfigurationsindicatethatinthesesets 1 σ σ alsoindirectlyindicatethatextensionalconditions ishorizontalwhiletheorientationsof 2 and 3 are variable(Fig14c).Atsomeofthesites,noneofthe prevailedintheEarlytoMiddleMiocene.Basedonthese principalstressesarevertical.Inaddition,thestressratio informationandassumptions,weconcludethat (Φ)atthesesitesisquitelow(Table1).Inconsideration extensionalconditionscommencedintheEarlyMiocene oftheoverprintingslickensides,theageofhostlithology andlasteduntiltheLateMiocene.

143 MALATYAANDOVACIKFAULTZONES

PHASE 1: EARLY TO MIDDLE MIOCENE EXTENSION

M1B M11C M18 M19

M21 M22B M24B M25A

M26B M29 M30A M41

M45B

s1: 065°N/88° s2: 220°N/02° s3: 316°N/02°

direction of extension slickensides direction of compression dextral sinistral s1 thrusting (if point inwards) s2 normal (if point outwards) s3 a

Figure14. Palaeostressconfigurationsandmeanstressorientationsdeterminedfromcontourdiagramsforeachofthe principalstresssets:(a) forphase1;(b) forphase2;(c) forphase3.Notetheinterchanging(swapping)plane σ σ of 2–and 3–inphase3.

144 N.KAYMAKCIET AL.

PHASE 2: LATE MIOCENE - MIDDLE PLIOCENE COMPRESSION

M1A M7A M8A M9

M11B M12 M17 M24A

M27B M32A M38 M45

M46 M47

s1: 354°N/03° s2: 244°N/86°

direction of extension slickensides direction of compression dextral sinistral s1 thrusting (if point inwards) s2 normal (if point outwards) s3

s3: 080°N/03° b

Figure14b.

145 MALATYAANDOVACIKFAULTZONES

PHASE 3: PLIO-QUATERNARY COMPRESSION

M2 M4 M5 M10

M13 M15 M22A M23

M27A M35 M36A M38

a

M44 48

s1: 015°N/15° s2: 131°N/53°

direction of extension Slickensides N direction of compression dextral 72 °W, sinistral 82°S s1 W thrusting (if point inwards) s2 normal (if point outwards) s3

s3: 285°N/34° orientations of both s2 and s3 and plane of stress permutation c

Figure14c.

146 N.KAYMAKCIET AL.

Table1. Coordinatesofthesamplesitesandcorrespondingpalaeostressorientations.

σ σ σ Φ SiteCode N X Y 1 (D°/P°) 2 (D°/P°) 3 (D°/P°)

M1A 13 355021 4338743 169/16 359/74 259/3 0.56 M1B 8 355021 4338743 220/66 47/23 316/02 0.47 M2 11 368106 4336460 11/8 117/62 277/27 0.31 M4 10 384789 4326857 25/6 121/49 290/41 0.004 M5 6 387803 4324114 41/25 184/62 305/15 0.155 M7A 25 397206 4316636 164/9 294/76 73/11 0.629 M7B 9 397206 4316636 120/17 301/73 210/00 0.367 M8A 10 400894 4314465 191/19 312/57 91/26 0.643 M8B 8 400894 4314465 291/16 152/70 25/12 0.923 M9 11 411432 4288833 210/4 309/66 119/23 0.637 M10 7 417158 4286515 17/26 168/60 280/12 0.341 M11A 14 513988 4280832 309/69 130/21 40/00 0.511 M11B 10 513988 4280832 338/34 147/55 245/05 0.614 M11C 11 513988 4280832 206/66 68/18 333/15 0.761 M12 11 496422 4285258 352/14 207/73 84/09 0.473 M13 8 484149 4287686 34/5 301/26 134/64 0.163 M14 11 483017 4288173 231/77 330/02 61/13 0.836 M15 7 473295 4297850 199/14 58/72 292/11 0.375 M16 14 457498 4314619 107/71 02/05 270/19 0.158 M17 15 455629 4318427 008/43 197/46 102/05 0.615 M18 7 449344 4320217 265/67 37/16 132/16 0.775 M19 8 442246 4318017 028/69 223/20 131/05 0.618 M21 8 411749 4230108 321/66 060/04 152/23 0.008 M22A 8 399178 4222007 330/14 062/07 178/74 0.124 M22B 7 399178 4222007 094/47 220/29 328/29 0.564 M23 6 400610 4227599 164/13 269/50 064/37 0.318 M24A 13 408921 4246093 349/30 167/60 259/01 0.534 M24B 6 408921 4246093 261/69 052/18 145/09 0.55 M25A 13 405623 4249031 096/79 212/05 303/10 0.868 M25B 7 405623 4249031 153/83 313/07 044/02 0.647 M26A 11 426133 4241528 121/05 029/21 223/68 0.122 M26B 8 426133 4241528 090/73 213/09 305/14 0.427 M27A 30 435776 4236304 004/59 178/31 269/03 0.501 M27B 10 435776 4236304 337/01 238/82 067/07 0.741 M27C 11 435776 4236304 052/31 203/55 314/14 0.724 M28A 10 435925 4237093 138/67 263/14 357/19 0.344 M28B 7 435925 4237093 004/69 271/01 181/21 0.426 M29 7 443850 4244746 029/71 216/19 125/02 0.662 M30A 10 445973 4244680 052/67 236/23 145/02 0.595 M30B 8 445973 4244680 320/61 141/29 051/00 0.556 M31 8 483165 4253362 146/66 312/24 44/04 0.536 M32A 32 474115 4272863 343/05 102/80 252/09 0.629 M32B 10 474115 4272863 103/28 305/60 198/10 0.883 M35 7 441583 4277639 008/02 098/15 272/75 0.402 M36A 18 422317 4364543 018/02 110/43 286/47 0.307 M36B 10 422317 4364543 096/22 243/65 001/13 0.919 M38 11 455930 4348504 188/12 359/78 097/02 0.517 M41 14 421725 4277512 127/86 014/02 284/04 0.578 M42 9 420049 4278058 029/65 162/18 258/17 0.679 M44 9 410990 4289155 226/00 136/01 338/89 0.157 M45 23 413901 4298441 157/82 038/04 248/07 0.625 M45B 6 413901 4298441 255/86 45/4 135/2 0.685 M46 10 466840 4299107 161/17 341/73 251/00 0.347 M47 16 452331 4291609 356/01 091/81 266/09 0.402 M48 5 430992 4242799 205/10 352/781 114/06 0.795 Φ σ σ σ σ N:Numberoffaults,X-Y:UTMZone37coordinatesofsites,D/P:Direction/Plunge,– =( 2- 3)/( 1- 3)

147 MALATYAANDOVACIKFAULTZONES

Itisgenerallyacceptedthatthecollisionofthe anumberofnormalfaultsalongwhichthesouthern ArabianplatewiththeEurasianplatetookplacebythe blocks(hanging-wallblocks)displaceddownward, endoftheMiddleMiocene(fiengör&Y›lmaz1981; indicatingthatthebasindeepenedfromnorthtosouth Y›lmazetal. 1993;Westaway&Arger2001;Westaway andfromwesttoeastintheEarlytoMiddleMiocene 2003andreferencestherein)anditispresumedthatthe (deformationphase2).Someofthesenormalfaultswere LateMiocenewasdominatedbycompressional invertedduringLateMioceneandPliocenecompressional deformationintheregion.Intheseismicsectionsand events(deformationphases2and3). duringfieldstudies,noimportant(regional) unconformitywasdetectedbetweentheMiddleMiocene andUpperMioceneunits;however,theLateMiocene MalatyaFaultZone(MFZ) unitsintheMalatyaBasinaredominatedbyfluvialred Asdiscussedpreviously,theMalatyaandOvac›kfault clasticmaterials.Thishastwoimplications:(1)the zonesaredifferentsegmentsofasingle‘socalled’ evolutionoftheMalatyaBasincontinuedwithoutbreakin Malatya-Ovac›kfaultzone(MOFZ,Koçyi¤it&Beyhan itssedimentationintheLateMiocene,althoughare- 1998;Westaway&Arger2001).Inaddition,Westaway organizationoccurredintheregionalstressfieldand, &Arger(2001)postulatedthattheMOFZwasactive5–3 hence,inthedeformationpattern;(2)extensional MaandwasaplateboundarybetweentheArabianand deformationlasteduntiltheendoftheMioceneandre- Anatolianplateswhichhadtakenupapproximately29km organizationofthestresspatternandcompressional ofrelativemotionbetweenthem.Theyfurtherspeculated deformationdidnottakeplaceuntilthePliocene,during thatafterthedevelopmentoftheEastAnatolianFault whichtheSultansuyuformationwasdeposited;this Zone(EAFZ)asasingle,through-goingfaultzone,the furtherimpliesthattheeffectofcollisionalongtheBitlis- MOFZbecameinactive.Inadditiontotheseismicdata, Zagrossuturezonewasnottransferreduntilthe ourobservationsabouttheMalatyafaultzoneareas Pliocene,orthatthemaincollisionoccurredinthe follows.Allalongtheescarpmentatthewesternmargin Pliocene.Thesequestionsarestilldebatedandrequire oftheMalatyaBasin(Figures4a&12),widespread furtherstudy.However,wefavourthefirstassumption mesoscopicfaultswithsinistralstrike-slipandnormal sincetheargumentforLateMiocenecollisionisfirmly offsetwereobserved(Figure15).Suchfaultsare establishedintheliterature.Therefore,itisthoughtthat observedallalongtheMalatyafaultzone,especiallyinthe deformationphase2commencedintheLateMioceneand areabetweenYaz›hanandDo¤anflehir(seeFigure4for resultedfromcollisionoftheArabianplatewiththe theirlocations).Thesefaultsindicatestepping-downof Eurasianplate.TheLateMioceneunitsareunconformably theescarpmenttowardstheMalatyaBasinandthefault’s overlainbytheSultansuyuformation.Basedonthis reactivation.TheMalatyafaultzoneisatleasta30-km- information,itisproposedthatdeformationphase3 widefaultzonecharacterizedbyparalleltosub-parallel commencedintheLatePlioceneandrecentlyhasstillbeen branchesdisplayingananastomosingpatterndueto inoperation. bifurcationandrejoiningofdifferentbranches(Figures ThegeometryoftheinfilloftheMalatyaBasinis 4);italsohasapositiveflower-structuregeometryin wedge-likeintheE–Wdirectioninwhichthewestern seismicsections,typicalofstrike-slipfaultzones(cf. marginisthickerandtheinfillisthinningeastward, Sylvester1988)(Figure12).Asdiscussedintheprevious althoughsedimenttransporttookplacemainlyfromthe section,mostoftheobservedmesoscopicfaultshave easternmargin,asindicatedbyfore-setandshingle overprintingslickensidesindicatingatleastthreedifferent patternsintheseismicsection(Figures5–7).IntheN–S phasesofdeformation.Thefirstmovementwas direction,similarwedge-likegeometryisalsomanifested characterizedbyanormaldip-slipcomponent;other intheseismicsections(Figure11).Thereisamajorstep movementwasdominantlystrike-slipwithreverseand inthegeometryoftheMalatyaBasinproximaltothe normalcomponents.Normalcomponentsinthelater Ayd›nlarthrustfault(ATF).Thesteppingistowardsthe movementsareobservedmainlyinthereleasingbends, southandcorrespondstoaninvertednormalfaultwhich andreversecomponentswereobservedalongthe facilitatedanaccommodationspacefordepositionofthe restrainingbendsofthemajorbranches.Basedonthis LowertoUpperMiocenesequences.Inaddition,thereare information,weproposethattheMalatyafaultzoneisa

148 N.KAYMAKCIET AL. NormalandsinistralmesoscopicfaultsdevelopedalongtheMalatyafaultzonenearsites24&25(seeFigure2forlocations). Figure15.

149 MALATYAANDOVACIKFAULTZONES

reactivatedfaultzone.ItdevelopedintheEarlyMiocene Malatya-Ovac›kfaultzone(MOFZ),butwithout asanormalfaultwithaslightsinistralcomponentand presentinganydetailedsupportingdata.Westaway& controlledthedevelopmentoftheMalatyaBasininthe Arger(2001)furtherspeculatedabouttheroleofMOFZ EarlytoMiddleMiocene.Thatactivitycorrespondsto intheevolutionoftheregionbasedonlyontwo deformationphase1.Then,possiblyintheLateMiocene observationpointsforthewholeregion,andon and/orinthePliocene,itthatfaultwasreactivatedand topographicalandmorphologicalinformationobtained someofitsnormalbrancheswereinverted;thatactivity fromtopographicalmaps.Theyalsospeculatedthat correspondstodeformationphase2.Duringthis activityontheMOFZceasedabout3Ma,asmentioned deformationphase,theAyd›nlarthrustfaultalso previously developedandtheSultansuyuformationwasdeposited. OurobservationsabouttheOFZareasfollows:(1) Inthepost-MiddlePliocene,aregionalreorganizationin theOFZischaracterizedbyanumberoffaultsegments thestressfieldtookplace,correspondingtodeformation lessthan100kmlength,andthezonebifurcatesfrom phase3.Duringthisperiod,theUpperPlio–Quaternary theNorthAnatolianFaultZoneneartheSEcornerofthe unitsweredepositedtogetherwithalluvial-fandeposits ErzincanBasin(Figure4a),asdiscussedbyWestaway& alongtheMalatyafaultzoneatthewesternmarginofthe Arger(2001);(2)theescarpmentthatdelimitsthe MalatyaBasin. northernmarginoftheOvac›kBasinisthemost Thereisnodirectevidence,suchasmedium-tolarge- prominentfeaturealongtheOFZ.Arpat&fiaro¤lu magnitudeearthquakes,alongtheMalatyafaultzone. (1975)arguedthatthesegmentoftheOFZatthe However,displacedstreamcourses(Figure4)alongthe northernmarginofOvac›kBasindipssouthwardandhas MFZbetweenYaz›hanandDo¤anflehir,thepresenceofa anormalcomponentofslipwhichresultedinthe numberofsmall-scaleearthquakesashighasMs3.5,and formationoftheOvac›kBasin;(3)differentsegmentsof averyprominentescarpmentindicatethatMalatyafault theOFZtrendN70ºEandaredelimitedinmanyplacesby zoneispresentlyactive.Thesedataimplythatthe quiteprominentlineamentstrendingN20ºE,parallelto Malatyafaultzoneisinaperiodofseismicquiescence. thetrendoftheMFZ;(4)theOvac›kfaultzonefurther Thereisthepossibility,therefore,thatthisfaultzone bifurcatesintheweststartingatthewesternmarginof mightproducealargemagnitudeearthquakeinthenear theOvac›kBasin.Thenorthernmostbranchfollowsan future. approximatelyN80°Wtrendandisdelimitedinthewest Theotherstrikingconclusionyieldedbytheseismic nearSand›kbytheMalatyafaultzone.IntheMalatya sectionisthelackofevidencefortheSultansuyufault Basin,theOFZisnotconstrainedintoasinglefaultzone; (Figure4a),thepresenceofwhichwasfirstproposed rather,itisdistributedoveraverylargearea,allofwhich alongtheSultansuyuRiverbyPerinçek&Kozlu(1984), isdelimitedinthewestbytheMalatyafaultzone(Figure basedonverypersistentlinearityoftheriverchannel. 16).Inthisarea,almostallofthestreamsandthe LaterWestaway&Arger(2001)discussedthesame Riveraredeflectedsinistrally.Themaximum lineament.Inlinewithourfieldobservations,neither deflectionisabout9.3kmnearDutluca(Figure16a). Perinçek&Kozlu(1984)norWestaway&Arger(2001) Basedonthisdeflectionandsomeothermorphotectonic haveencounteredanytraceoffaultingalongthe data,Westaway&Arger(2001)arguedthatthe SultansuyuRiver,despiteitsrectilinearcourse. maximumdisplacementoftheOFZisabout27km. However,thesumofthedeflectionsallalongthe differentbranchesoftheOFZ(Figure4b)indicatesa Ovac›kFaultZone(OFZ) maximumdisplacementofnotmorethan20km;(5)in TheOvac›kfaultzonewasfirstrecognizedbyArpat& addition,alongoneofthesouthernmostbranchesofthe fiaro¤lu(1975),andwaslaterstudiedbyAktimur OFZabout10kmeastofArguvan,averypronounced (1979),Perinçek etal. (1987)andChorowicz etal. anticlinedevelopedonthesouthernblockofthefault(Fig (1994)usingsatelliteimagesandaerialphotos.Later, 15b).Inthisarea,itisobservedthat,thisfaultisa Koçyi¤it&Beyhan(1998)proposedthattheOvac›kand reactivatedfault;itdevelopedasanormalfaultdipping Malatyafaultzonesaretwodifferentsegmentsofasingle southandlaterwasreactivatedasasinistralstrike-slip

150 N.KAYMAKCIET AL.

a NE ZO LT AP AU PROX IK F IMAT OVAC Sandýk E BOUNDARY OF 38 f’ f e e’ a’ NE c’ ZO a LT DUTLUCA AU ZONE b F T IK C b’ A c V O AUL d’ F O F d Y M38 A R A D N TY U BO TE IMA ROX MALA PP A a-a’:8.1 km d-d’: 7.8 km b-b’: 3.6 km e-e’: 2.5 km

c-c’: 9.3 km f-f’: 2.3 km a

b M47 B (N)

47 B

LATE MIOCENE

LACUSTRINE FACIES MIDDLE MIOCENE

S S S

C C C I I I

T T T

S S S

A A A

L L L

C C C

D D D

E

R

E

N

E

C O I

M

E T

ALLUVIUM A L A A(S)

Figure16. (a) ShadedreliefimageofthejunctionoftheMalatyaandOvac›kfaultzones[markingmajor deflectionsinthestreams(a-a’tof-f’)]andthepalaeostressconfigurationofsite38.Notethat theOvac›kfaultzoneisdelimitedbytheMalatyafaultzone.Notealsothatthemaximum deflectionis9.3km; (b) simplifiedmapandcross-sectionoftheanticlineonthehanging-wall blockofaninvertednormalfaultoverlaidontoASTERimage.SeeFigure4bforlocation.This faultisoneofthesouthernmostbranchesoftheOvac›kfaultzone.

151 MALATYAANDOVACIKFAULTZONES

faultwithareversecomponent.Thisimpliesthatsomeof 3. Basindevelopmentwasinitiatedindeformation thepre-existingnormalfaultsintheEarlytoLateMiocene phase1(intheEarlyMiocene)andcontinueduntil (deformationphase1)werereactivatedinthesuccessive theLateMicoenewithoutanysignificanthiatuses. deformationphasesandwereincorporatedintodifferent Basindevelopmentwasaccompaniedbynormal segmentsoftheOFZ.Palaeostressdatacollectedfrom faulting,duringwhichtheMalatyafaultzonewas thisarea,wheretheOFZdominates,indicatethatmajor alsoanormalfaultzone. compressionwasroughlyN–S,whichpossiblydrovethe 4. TheMalatyaBasindisplaysawedge-likegeometry sinistralmovementoftheOFZwithareversecomponent. intheE–WandN–Sdirections,andhasamajor Briefly,theOvac›kfaultzoneisanotasinglethrough- stepinthenorthproximaltotheAyd›nlarthrust goingfaultzoneandisnotonlybifurcatedintotwo fault. branchesaroundArapkir,asproposedWestaway&Arger 5. TheMalatyaandOvac›kfaultsaretwo (2001).Rather,itdevelopedinanareawherevery independentfaultzonescontra Koçyi¤it&Bayhan diffusedeformationisoccurring.Moreover,theOFZhas (1998)andWestaway&Arger(2001),who anumberofbranches,someofwhicharereactivated proposedthattheyareasinglefaultzone,the‘so- normalfaultswithsinistralstrike-slipcomponents. called’Malatya-Ovac›kfaultzone. RecentseismicactivityalongbranchesoftheOFZ 6. BoththeMalatyaandOvac›kfaultzonesare indicatesthatitispresentlyactive. presentlyactive,contra Westaway&Arger(2001) Allofthisinformationinvalidatestheassumptionsof whoproposedthattheybecomeinactiveabout3 Koçyi¤it&Beyhan(1998)andWestaway&Arger Ma. (2001),andthekinematicmodelproposedbyWestaway 7. Mostofthefaults,includingtheMalatyaandsome (2003).Therefore,currentkinematicmodelsforthe branchesoftheOvac›kfaultzones,arereactivated Eurasian,ArabianandAnatolianplatesshouldberevised. pre-existingfaultswhichdevelopedasnormal faultsintheEarlytoLateMioceneandreactivated Conclusions assinistralstrike-slipfaults,possiblyduringlater Thisstudyleadsustothefollowingconclusions: compressionaleventsinthepost-MiddleMiocene. 1. Threedifferentdeformationphaseshaveoperated 8.CurrentkinematicmodelsfortheEurasian, inandaroundtheMalatyaBasin:(a)Thefirst ArabianandAnatolianplatesshouldberevisedon phasewascharacterizedbyNW–SE-directed thebasisofthedatapresentedhere. extension;(b)Thesecondphasewascharacterized 9. TheseismicpotentialoftheMalatyaandOvac›k byapproximatelyNNW–SSE-directedcompression faultsshouldbeassessedindetailsincetheyhave σ andasub-vertical 2,indicatingtheoperationof thepotentialofproducinglargeearthquakesin transcurrenttectonicsintheregion;(d)Thethird thenearfuture. phasewascharacterizedbyNNE–SSW-directed compressionandvariablevertical σ and σ 2 3 Acknowledgement orientationsatvarioussites.Itisinterpretedthat variableverticalstressindicatesstress Thisstudywassupportedbythe“MiddleEastBasins σ σ permutationbetween 2 and 3,implyingthatthe Evolution”Programme,projectno.MEBE16-02(CNRS- magnitudesoftheintermediateandminor France).WearethankfultoEricBarrierwhoencouraged principalstresseswerealmostequal.Thelatest ustotakepartintheMEBEProgramandcritically phasedeformation(phase3)involved reviewedthefieldreports.HansdeBruijn,GerçekSaraç, transcurrenttectonics,commencedbytheLate EnginÜnay,andErksinGüleçarethankedforthedating Pliocene,andisstillactive. ofthefossilsandforgenerouslysharingtheirmammal- fossildatabaseofTurkey.CengizDemirciprovided 2. TheMalatyaBasincomprisesinfillrangingfrom seismicsections. EarlyMiocenetoRecentinage.

152 N.KAYMAKCIET AL.

References

AKTAfl¸G.&R OBERTSON A.H.F.1984.TheMadencomplex,SETurkey: HILGEN,F.J.,A BDUL-AZIZ,H.,K RIJGSMAN,W.,L ANGEREIS,C.G.,L OURENS, evolutionofaNeotethyanactivemargin. In:D IXON J.E.& L.J.,M EULENKAMP,J.E.,R AFFI,I.,S TEENBRINK,J.,T URCO,E., VAN ROBERTSON,A.H.F.(eds), TheGeologicalEvolutionoftheEastern VUGT,N.,W IJBRANS,J.R.&Z ACHARIASSE,W.J.1999.Present Mediterranean. GeologicalSociety,London,SpecialPublications statusoftheastronomical(polarity)time-scaleforthe 17,375–402. MediterraneanLateNeogene. PhilosophicalTransactionsRoyal SocietyLondon A357,1931–1947. AKT‹MUR,S.1979.Malatya-SivasDolay›n›nUzaktanAlg›lamaYöntemiile Çizgiselliklerinin‹ncelenmesi[TheLineamentAnalysisofMalatya- HOMBERG,C.,H U,J.C.,A NGELIER,J.,B ERGERAT,F.&L ACOMBE,O.1997. SivasRegionUsingRemoteSensing].MTAReportNo. 6651 Characterizationofstressperturbationnearmajorfaultzones: [unpublished]. insightsfrom2-Ddistinct-elementnumericalmodelingandfield studies(JuraMountains). JournalofStructuralGeology 19, ANGELIER, J.1988.Tector:DeterminationofStressTensorUsingFault 703–718. SlipDataSet. QuantitativeTectonics,UniversityPierreandMarie Curie,Paris. JAFFEY,N.&R OBERTSON,A.H.F.2004.Non-marinesedimentation associatedwithOligocene–RecentexhumationoftheCentral ANGELIER, J.1994.Faultslipanalysisandpalaeostressreconstruction. TaurusMountains,S.Turkey.SedimentaryGeology 173,53–89. In:HANCOCK,P.L.(ed),ContinentalDeformation.PergamonPress, Oxford,53–100. KAYMAKCI, N.2000. Tectono-stratigraphicalEvolutionoftheÇankiri Basin(CentralAnatolia,Turkey). PhDThesis,Geologica ARGER,J.,M ITCHELL J.&W ESTAWAY, R.2000.NeogeneandQuaternary Ultraiectina.No.190,UtrechtUniversityFacultyofEarth volcanismofsouth-easternTurkey. In:BOZKURT,E.,W INCHESTER, J.A.,PIPER,J.D.A.(eds),TectonicsandMagmatism,inTurkeyand Sciences,TheNetherlands,ISBN90-5744-047-4. theSurroundingArea. GeologicalSociety,London,Special KAYMAKCI,N.,WHITE,S.H.&VAN DIJK P.M.2000.Palaeostressinversion Publications173,459–487. inamultiphasedeformedarea:kinematicandstructuralevolution

ARPAT,E.&fi ARO⁄LU, F.1975.Türkiye’dekibaz›önemligençtektonik oftheÇank›r›Basin(centralTurkey),Part1. In:B OZKURT,E., olaylar[SomerecenttectoniceventsinTurkey]. TürkiyeJeoloji WINCHESTER,J.A.&PIPER, J.A.D.(eds),TectonicsandMagmatism KurumuBülteni 18,91–101. inTurkeyandtheSurroundingarea. GeologicalSocietyLondon SpecialPublication173,445–473. B‹NGÖL,A.F.1984.GeologyoftheElaz›¤areaintheeasternTaurus region. In:T EKEL‹,O.&G ÖNCÜO⁄LU,M.(eds), Geologyofthe KAYMAKCI,N.,D UERMEIJER,C.E.,L ANGEREIS,C.,W HITE,S.H.& VAN DIJK, TaurusBelt. MineralResearchandExplorationInstitute(MTA) P.M.2003b.Oroclinalbendingduetoindentation:a Publication,Ankara,Turkey,209–216. paleomagneticstudyfortheearlyTertiaryevolutionoftheÇankiri Basin(centralAnatolia,Turkey). GeologicalMagazine 140, CHOROWICZ,J.,LUXEY,P.,LYBERIS,N.,CARVALHO,J.,PARROT,J.-F.,YÜRÜR, T.&GÜNDO⁄DU,M.N.1994.TheMarasTripleJunction(southern 343–355. Turkey)basedondigitalelevationmodelandsatelliteimagery KAYMAKCI,N.,W HITE,S.H.& VAN DIJK P.M.2003a.Kinematicand interpretation. JournalofGeophysicalResearch 99/B10, structuraldevelopmentoftheÇank›r›Basin(centralAnatolia, 20225–20242. Turkey):apalaeostressinversionstudy. Tectonophysics 364, DEWEY,J.F.,HEMPTON,M.R.,KIDD,W.S.F.,fiARO⁄LU,F.&fiENGÖR,A.M.C. 85–113. 1986.Shorteningofcontinentallithosphere:theneotectonicsof KOÇY‹⁄‹T,A.&A LT›NER,D.2002.Tectonostratigraphicevolutionofthe EasternAnatolia–ayoungcollisionalzone. In:C OWARD,M.P.& NorthAnatolianpalaeorift(NAPR):Hettangian-Aptianpassive RIES, A.C.(eds), CollisionTectonics.GeologicalSociety,London, continentalmarginofthenorthernNeo-Tethys,Turkey. Turkish SpecialPublications19,3–36. JournalofEarthSciences 11,169–191. GENÇAL‹O⁄LU-KUflCU,G.,G ÖNCÜO⁄LU,M.C.&K UflÇU,‹.2001.Post- KOÇY‹⁄‹T, A.1991.Anaxampleofanaccretionaryforearcbasinfrom collisionalmagmatismonthenorthernmarginoftheTauridesand northcentralAnatoliaanditsimplicationsforthehistoryof itsgeologicalimplications:geologyandpetrologyoftheYahyal›- subductionofNeotethysinTurkey. GeologicalSocietyAmerica Karamadaz›granitoid. TurkishJournalofEarthSciences 10, Bulletin 103,22–36. 103–119. KOÇY‹⁄‹T,A.&B EYHAN, A.1998.Anewintracontinentaltranscurrent GÖRÜR,N.,O KTAY,F.Y.,S EYMEN,‹.&fi ENGÖR, A.M.C.1984. PalaeotectonicevolutionoftheTuzgölübasincomplex,central structure:theCentralAnatolianFaultZone,Turkey. Tectonophysics 284,317–336. Turkey:sedimentaryrecordofaNeotethyanclosure. In:D IXON, J.E.&R OBERTSON, A.H.F.(eds), TheGeologicalEvolutionofthe KOZLU,H.1987.Misis-And›r›ndolay›n›nstratigrafisiveyap›salevrimi EasternMediterranean. GeologicalSociety,London,Special [StratigraphyandstructuralevolutionofMisis-And›r›nregion]. Publications17,77–112. Türkiye7.PetrolKongresi,BildirilerKitab› ,104–116.

HARDCASTLE,K.C.&H ILLS, L.S.1991.Brute3andSelect:QuickBasic4 LEO,G.W.,MARVIN,R.F.&MEHNERT H.H.1974.Geologicframeworkof programsfordeterminationofstresstensorconfigurationsand the-Sofulararea,east-centralTurkey,andK-Aragesof separationofheterogeneouspopulationsoffault-slipdata. igneousrocks. GeologicalSocietyAmericaBulletin 85, ComputersandGeosciences 17,23–43. 1785–1788.

153 MALATYAANDOVACIKFAULTZONES

ÖZGÜL,N.1976.Toroslar›nbaz›temeljeolojiközellikleri[Basicgeologic fiENGÖR,A.M.C.,fiARO⁄LU,F.&GÖRÜR,N.1985.Strike-slipdeformation characteristicsofTaurides]. TürkiyeJeolojiKurumuBülteni 19, andrelatedbasinformationinzonesoftectonicescape:Turkeyas 65–78. acasestudy.In:BIDDLE,K.T.&CHRISTIE-BLICK,N.(eds),Strike-Slip DeformationBasinFormationandSedimentation .Societyof ÖZGÜL,N.&T URflUCU A.1984.StratigraphyoftheMesozoiccarbonate EconomicPaleontologistsandMineralogists,SpecialPublication sequenceoftheMunzurMountains(easternTaurides).In:TEKEL‹, 37,227–264. O.&G ÖNCÜO⁄LU,M.(eds), GeologyoftheTaurusBelt .General DirectorateofMineralResearchandExploration(MTA),Special SICKENBERG,O.1975.DieGliederungdeshöherenJungtertiärsund Publication,Ankara,Turkey,173–180. AltquartärsinderTürkeinachVertebratenundihreBedeutung fürdieinternationaleNeogen-Stratigraphie. Geologisches PER‹NÇEK,D.&KOZLU, H.1984.Stratigraphyandstructuralrelationsof Jahrbuch 15,1094–1116. theunitsintheAfflin-Elbistan-Do¤anflehirregion(eastern Taurus). In:T EKEL‹,O.&G ÖNCÜO⁄LU, M.(eds), Geologyofthe SÜMENGEN,M.&U YSAL, fi.1990.A¤z›karaProject.PetroleumPotential TaurusBelt. GeneralDirectorateofMineralResearchand of-Gürün-Kahramanmarafl-MalatyaRegion. Mobil Exploration(MTA),SpecialPublication,Ankara,Turkey, ExplorationMediterraneanInc.Report[unpublished]. 181–198. SYLVESTER,A.G.1988.Strike-slipfaults. GeologicalSocietyAmerica Bulletin 100,1666–1703. PER‹NÇEK,D.,GÜNAY,Y.&KOZLU,H.1987.Do¤uvegüneydo¤uAnadolu bölgesindekiyanalat›ml›faylarileilgiliyenigözlemler[New ÜNAY,E.&B RUJIN,H.1998.Plio-Pleistocenerodentsandlagomorphs observationsonthestrike-slipfaultsofeastandsoutheast fromAnatolia. ProceedingsofSEQS-EuroMamSymposium 60, Anatolia].Türkiye7.PetrolKongresiBildirilerKitab› ,89–103. 432–485.

ROBERTSON, A.H.F.2002.Overviewofthegenesisandemplacementof WESTAWAY,R.2003.KinematicsoftheMiddleEastandeastern MesozoicophiolitesintheeasternMediterraneanTethyanregion. Mediterraneanupdated. TurkishJournalofEarthSciences 12, Lithos 65,1–67. 5–46.

ROBERTSON,A.H.F.,Ü NLÜGENÇ,U.,‹ NAN,N.&T ASLI,K.2004.The WESTAWAY,R.&ARGER, J.2001.KinematicsoftheMalatya–Ovac›kfault Misis–Andirincomplex:mid-Tertiarysubduction/accretionand zone.GeodinamicaActa14,103–131.

melangeformationrelatedtoclosureandcollisionoftheSouth- YALÇ›N,M.N.&GÖRÜR, N.1984.Sedimentologicalevolutionofthe TethysinSTurkey.JournalofAsianEarthSciences22,413–453. Basin. In:T EKEL‹,O.&G ÖNCÜO⁄LU, M.C.(eds), Geologyofthe

ROJAY,B.,Y AL›N›Z,M.K.&A LT›NER,D.2001.Tectonicimplicationsof TaurusBelt. GeneralDirectorateofMineralResearchand someCretaceouspillowbasaltsfromtheNorthAnatolian Exploration(MTA)SpecialPublication,165–172. ophioliticmélange(centralAnatolia-Turkey)totheevolutionof YAL›N›Z,M.K.&G ÖNCÜO⁄LU,M.C.1999.Clinopyroxenecompositionsof Neotethys.TurkishJournalofEarthSciences 10,93–102. theisotropicgabbrosfromtheSar›karamanOphiolite:new evidenceonsupra-subductionzonetypemagmagenesisincentral SARAÇ,G.,DE BRUIJN,H.,GÜLEÇ,E.,ÜNAY, E.WHITE,T.&VAN MEULEN,A. Anatolia.TurkishJournalofEarthSciences 8,103–112. 2000. TürkiyeOmurgal›FosilYataklar›[MammalianFossilsof Turkey].MTAReport[unpublished] YAZGAN,E.1984.GeodynamicevolutionoftheEasternTaurusregi›on. In:T EKEL‹,O.&G ÖNCÜO⁄LU,M.C.(eds), GeologyoftheTaurus fiENGÖR,A.M.C.&YILMAZ,Y.1981.TethyanevolutionofTurkey:aplate Belt.GeneralDirectorateofMineralResearchandExploration tectonicapproach.Tectonophysics 75,181–241. (MTA)SpecialPublication,199–208. fiENGÖR,A.M.C.,Y› LMAZ,Y.&S UNGURLU,O.1984.Tectonicsofthe Y›LMAZ,Y.,Y ‹⁄‹TBAfl¸E.&G ENÇ, C.fi.1993.Ophioliticandmetamorphic MediterraneanCimmerides:natureandevolutionofthewestern assemblagesofsoutheastAnatoliaandtheirsignificanceinthe terminationofpalaeo-Tethys.In:DIXON,J.E.&ROBERTSON,A.H.F. geologicalevolutionoftheorogenicbelt, Tectonics 12, (eds), TheGeologicalEvolutionoftheEasternMediterranean . 1280–1297. GeologicalSociety,London,SpecialPublications 17,77–112.

Received23February2005;revisedtypescriptaccepted03January2006

154