Satcom Shakeout Three Mainstream Technologies Are Emerging, Each with Its Own Advantages and Shortcomings

Total Page:16

File Type:pdf, Size:1020Kb

Satcom Shakeout Three Mainstream Technologies Are Emerging, Each with Its Own Advantages and Shortcomings Special Report Satcom Shakeout Three mainstream technologies are emerging, each with its own advantages and shortcomings. By Fred George thereby enabling avionics manufacturers to develop smaller, lighter and less expensive satcom systems. Online charges for emember all that hype about these other services also were re- the “Office in the Sky” duced, but their coverage areas Rconcept over the last two were considerably smaller. decades? It’s been waiting for Such evolutionary changes cost-effective voice and continued until about four broadband connections be- years ago. Then alternative tween airplanes and the satcom systems started to ground. Now, it’s finally provide fierce competition becoming a reality be- for Inmarsat, igniting a cause of a revolution in revolution in satcom serv- three satcom technolo- ices for business aircraft gies. These three tech- operators. Since 2000, for nologies, supplemented example, Iridium has pro- by a couple of others, are vided cost-effective basic quickly making most con- satcom telephone service, ventional air-to-ground putting a large dent in telecommunications links Inmarsat’s aeronautical sat- as obsolete in the cabin as com phone business used by LORAN and VLF/Omega passengers. receivers are in the cockpit. In 2002, broadband commu- Some business aircraft makers, as nications satellites began to pro- a result, are on the verge of drop- vide satcom data link services that ping conventional air-to-ground ra- offer as big a data transfer pipe as any diotelephones from their options landline in your office on the ground. In catalogs. the next several months, these systems will Need to call a client while en route? Basic start to appear on business aircraft. This, satcom telephone service now is available too, is putting pressure on Inmarsat to of- all the time, anywhere on the planet for as port safety and administrative communica- fer higher value services and more compet- little as $1 or $1.25 per minute depending tions between ships at sea and their home itive prices. upon service plan, inclusive of long-distance bases. A decade later, avionics were devel- This three-way competition is heating charges. Shop carefully and you’ll get those oped for airliners that provided voice and up, and business aircraft operators are the rates when calling from overhead Paris, low-rate data link communications for beneficiaries. Here are the details of what Texas, to Paris, France; above Cape Horn transoceanic missions. Early satcom avion- these three satcom technologies can offer to Cape Town; or while en route from ics cost $500,000 or more and weighed 250 you today and in the near future. Abidjan to Auckland. to 300 pounds, and all the boxes couldn’t fit Contrast that coverage area and those rates into a outsized steamer trunk. So, only a se- Iridium: The Platinum to conventional air-to-ground, inflight radio- lect few large-cabin, long-range business Standard in LEO telephone service. It’s no contest. Satcom aircraft operators could stomach their price, Back before the proliferation of cell phones wins hands down. In the next decade, satcom weight and size. around the world, a consortium led by voice and data services will make air-to- Inmarsat online charges still run $8 to $10 Motorola launched a bold plan to develop ground radiotelephones and data links all but per minute for its best quality services, plac- the ultimate satcom phone service. The vanish from business aircraft. ing the satcom off-limits to all but the top plan called for launching 77 low Earth orbit Much has changed since 15 years ago, brass aboard the aircraft. No wonder the (LEO) satellites, hence the name Iridium, when the International Maritime Satellite service never caught on with business air- reflecting the atomic number of that ele- (Inmarsat) consortium had a monopoly on craft travelers, let alone mainstream airliner ment. The satellites were positioned in six satcom services. Inmarsat launched its first passengers. polar orbits at an altitude of about 420 nm. generation of four geostationary communi- Eventually, Inmarsat broadened the range The constellation was later reduced to 66 cations satellites in the early 1980s to sup- of its aeronautical communication services, LEO space vehicles, plus in-orbit spares, to 84 Business & Commercial Aviation I September 2004 www.AviationNow.com/BCA BCA • ISSUE: September 2004 PAGE: 84 / Version: #1 Special Report save cost, but that still was plenty sufficient to relay the signal. As a result, GlobalStar is tomers each month. to provide continuous, worldwide satcom limited in coverage area because each of the By then, Iridium had spent about $5 bil- phone service. This would provide telecom- ground stations is located on land. In addi- lion on nonrecurring expenses and was in- munications to millions of folks without ac- tion, bent pipe system satcom providers typ- curring well over $40 million per month in cess to landline phones. ically add roaming charges for long distance operating expenses. With a trickle of rev- LEO satcom phones must continuously because it must be provided by landline tele- enue and a flood of debt, Iridium LLC de- scan for other satellites because of the rela- phone service providers. clared bankruptcy in 1999. GlobalStar sank tively rapid movement of each satellite. Iridium, in theory, needs only one ground into Chapter 11 bankruptcy a year later. Before the satellite being used travels out of station to handle the signals relayed from Daniel A. Colussy, former operations di- signal coverage, the satcom phone must “internetworked” satellites from end users, rector for Iridium, organized a group of in- complete a handoff to the next most suit- anywhere in the world. Based solely upon vestors known as Iridium Satellite LLC and able satellite. These phones automatically ground station call handling capacity, offered five cents on the dollar for the sys- compile a list of the satellites with the though, Iridium’s original business model tem. Motorola balked at the $25 million bid, strongest available signals so that the hand- planned for up to 12 ground stations to but in late 2000, the bankruptcy judge OK’d off can be made without interrupting a call. serve the millions of customers expected to the deal and Iridium Satellite LLC became Iridium’s “internetwork” architecture as- use the system. the new owner. Iridium satcom services sures seamless coverage around the globe. The revenue projections, though, esti- were relaunched in March 2001. Each satellite can relay phone calls to mated that each consumer would be willing Colussy immediately terminated a $42 the four nearest adjacent satellites. Calls are to pay steep rates just for basic telephone million per month contract with Motorola relayed from satellite to satellite until they service. Moreover, first-generation Iridium to operate the system and hired Boeing for can be beamed down to one of the net- telephones were expensive and bulky, cost- $3.5 million per month for essentially the work’s ground Earth stations. Iridium’s in- ing upward of $3,000 and barely fitting into same range of services. He also slashed ternetwork relay capability puts it in a class a shoebox. Iridium’s bloated staff by several hundred by itself. But then the cell phone industry spread people, further stemming negative cash Its main LEO competitor, GlobalStar, its coverage throughout most populated ar- flow. uses “bent pipe” relay technology, so named eas, offering customers considerably lower Iridium Satellite LLC then was on a solid because it requires the specific satellite be- prices for compact mobile phones and footing to break even with 50,000 to 60,000 ing used by the satcom phone to be in direct much lower online charges. This siphoned subscribers. And the firm already had 25,000 line-of-sight range of a ground Earth station off thousands of potential Iridium cus- long-term U.S. government subscribers as www.AviationNow.com/BCA 86 Business & Commercial Aviation I September 2004 BCA • ISSUE: September 2004 PAGE: 86 / Version: #1 anchor customers. It’s the only truly global potentially may interfere with GPS and coverage areas, high reliability and rock- telephone system available for U.S. military, other L-band avionics systems. It’s advis- solid integrity. Commercial satcom services diplomatic and intelligence agency person- able to mount the external Iridium phone were almost an afterthought. Following the nel. Even the best Inmarsat systems lose antenna at least three feet away from any advent of maritime safety services, ICAO coverage above 75 to 85 degrees north or other L-band avionics antenna. Potential certified Inmarsat as the sole provider of south latitude. interference from portable Iridium phones aeronautical safety services in the early Subsequently, Colussy turned over the should be checked thoroughly on the 1990s because of system coverage area, re- reigns to new chairman and CEO Carmen ground before using them in flight. liability and integrity. Lloyd in October 2003. Iridium Satellite A wide variety of satcom service providers Most of the government-sponsored or- LLC now has more than 100,000 sub- compete for Iridium customers, but many ganizations that composed the original con- scribers and it’s generating positive cash equipment manufacturers lock customers sortium eventually sold out to private flow. Lloyd claims the firm is adding 2,000 into long-term service contracts, so it’s ad- companies. U.S.-based COMSAT, for ex- to 3,000 new subscribers each month. visable to read all the fine print in sales con- ample, sold out to Lockheed Martin Global “We had a 44-percent increase in revenue tracts. Most added value service providers Telecommunications in 2000. London- from 2002 to 2003. And we’ve experienced don’t charge extra for long-distance calls.
Recommended publications
  • An Elementary Approach Towards Satellite Communication
    AN ELEMENTARY APPROACH TOWARDS SATELLITE COMMUNICATION Prof. Dr. Hari Krishnan GOPAKUMAR Prof. Dr. Ashok JAMMI AN ELEMENTARY APPROACH TOWARDS SATELLITE COMMUNICATION Prof. Dr. Hari Krishnan GOPAKUMAR Prof. Dr. Ashok JAMMI AN ELEMENTARY APPROACH TOWARDS SATELLITE COMMUNICATION WRITERS Prof. Dr. Hari Krishnan GOPAKUMAR Prof. Dr. Ashok JAMMI Güven Plus Group Consultancy Inc. Co. Publications: 06/2021 APRIL-2021 Publisher Certificate No: 36934 E-ISBN: 978-605-7594-89-1 Güven Plus Group Consultancy Inc. Co. Publications All kinds of publication rights of this scientific book belong to GÜVEN PLUS GROUP CONSULTANCY INC. CO. PUBLICATIONS. Without the written permission of the publisher, the whole or part of the book cannot be printed, broadcast, reproduced or distributed electronically, mechanically or by photocopying. The responsibility for all information and content in this Book, visuals, graphics, direct quotations and responsibility for ethics / institutional permission belongs to the respective authors. In case of any legal negativity, the institutions that support the preparation of the book, especially GÜVEN PLUS GROUP CONSULTANCY INC. CO. PUBLISHING, the institution (s) responsible for the editing and design of the book, and the book editors and other person (s) do not accept any “material and moral” liability and legal responsibility and cannot be taken under legal obligation. We reserve our rights in this respect as GÜVEN GROUP CONSULTANCY “PUBLISHING” INC. CO. in material and moral aspects. In any legal problem/situation TURKEY/ISTANBUL courts are authorized. This work, prepared and published by Güven Plus Group Consultancy Inc. Co., has ISO: 10002: 2014- 14001: 2004-9001: 2008-18001: 2007 certificates. This work is a branded work by the TPI “Turkish Patent Institute” with the registration number “Güven Plus Group Consultancy Inc.
    [Show full text]
  • The 2019 Joint Agency Commercial Imagery Evaluation—Land Remote
    2019 Joint Agency Commercial Imagery Evaluation— Land Remote Sensing Satellite Compendium Joint Agency Commercial Imagery Evaluation NASA • NGA • NOAA • USDA • USGS Circular 1455 U.S. Department of the Interior U.S. Geological Survey Cover. Image of Landsat 8 satellite over North America. Source: AGI’s System Tool Kit. Facing page. In shallow waters surrounding the Tyuleniy Archipelago in the Caspian Sea, chunks of ice were the artists. The 3-meter-deep water makes the dark green vegetation on the sea bottom visible. The lines scratched in that vegetation were caused by ice chunks, pushed upward and downward by wind and currents, scouring the sea floor. 2019 Joint Agency Commercial Imagery Evaluation—Land Remote Sensing Satellite Compendium By Jon B. Christopherson, Shankar N. Ramaseri Chandra, and Joel Q. Quanbeck Circular 1455 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior DAVID BERNHARDT, Secretary U.S. Geological Survey James F. Reilly II, Director U.S. Geological Survey, Reston, Virginia: 2019 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment—visit https://www.usgs.gov or call 1–888–ASK–USGS. For an overview of USGS information products, including maps, imagery, and publications, visit https://store.usgs.gov. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this information product, for the most part, is in the public domain, it also may contain copyrighted materials JACIE as noted in the text.
    [Show full text]
  • "Geocaching" in the Ionosphere
    9/5/21, 2:32 PM uscranton (iPosterSessions - an aMuze! Interactive system) "Geocaching" in the Ionosphere Dr.-Ing. Robert Westphal DJ4FF Member of Deutscher Amateur Radio Club (DARC) PRESENTED AT: https://hamsci2021-uscranton.ipostersessions.com/Default.aspx?s=EA-94-A8-65-0F-B4-9E-48-AF-86-00-56-1C-28-35-64&pdfprint=true&guestview=t… 1/39 9/5/21, 2:32 PM uscranton (iPosterSessions - an aMuze! Interactive system) INTRODUCTION Malaysian Flight MH370, a modern airliner B777, disappeared seven years ago on 2014.03.08 seemingly without a trace. Authorities and experts from various fields (i.e. Inmarsat) did not prevail until today in finding the wreckage of the modern airliner and wide body aircraft Boeing B777-200ER. The ham radio community can contribute by using stored WSPR data since 2008 from the database www.wsprnet.org. The data for that night's tragedy as well as the SAR operations exist in addition to many air accidents (AF447, MH17,...). The doomed flight happened close to the peak of solar cycle 24 in April 2014. In 2021 we have detected several aircraft in Antarctica such as a B787-9, two Dassault Falcon 900EX, an Iljuschin IL- 76TD and a DC3C commuter airplane by conducting WSPR tests between DP0GVN as TX and ZL2005SWL as RX. Reference location data were used from Flightradar24. Some radio paths also succeeded from Australia (VK), EA8 and South America. This kind of research was not possible before the 2nd half of 2020 as there were not enough ADS-B receivers on parts of the shore line of Antarctica in the vicinity for airfields from Neumayer III station QAN, SANAEIV, QAT, QAO, QAP to Australian Davis Station QAD.
    [Show full text]
  • Air Traffic Management Abbreviation Compendium
    Air Traffic Management Abbreviation Compendium List of Aviation, Aerospace and Aeronautical Acronyms DLR-IB-FL-BS-2021-1 Institute of Air Traffic Management Abbreviation Compendium Flight Guidance Document properties Title Air Traffic Management Abbreviation Compendium Subject List of Aviation, Aerospace and Aeronautical Acronyms Institute Institute of Flight Guidance, Braunschweig, German Aerospace Center, Germany Authors Nikolai Rieck, Marco-Michael Temme IB-Number DLR-IB-FL-BS-2021-1 Date 2021-01-28 Version 1.0 Title: Air Traffic Management Abbreviation Compendium Date: 2021-01-28 Page: 2 Version: 1.0 Authors: N. Rieck & M.-M. Temme Institute of Air Traffic Management Abbreviation Compendium Flight Guidance Index of contents 2.1. Numbers and Punctuation Marks _______________________________________________________ 6 2.2. Letter - A ___________________________________________________________________________ 7 2.3. Letter - B ___________________________________________________________________________ 55 2.4. Letter - C __________________________________________________________________________ 64 2.5. Letter - D _________________________________________________________________________ 102 2.6. Letter - E __________________________________________________________________________ 128 2.7. Letter - F __________________________________________________________________________ 152 2.8. Letter - G _________________________________________________________________________ 170 2.9. Letter - H _________________________________________________________________________
    [Show full text]
  • SATCOM Voice Guidance Material
    Working Draft Satellite Voice Guidance Material (SVGM) Version 0.8.4 Working Draft – 14 February 2012 International Civil Aviation Organization Inter-Regional SATCOM Voice Task Force (IR-SVTF) Revision History Date Description of changes Version 13-Jul-10 Initial working draft 26-Jan-11 Added Joint working relationship with ICAO SATCOM Voice TF, added version 0.1 control. 27-Jan-11 Added material from IRSVTF/1 meeting. First TF baseline. no track changes. 0.2 31-Mar-11 Added inputs since IRSVTF/1 meeting (See comment matrix for specific 0.3 changes). 1-Jun-11 Added inputs from review on v0.3 (See comment matrix for specific changes). 0.4 22-Jul-11 Added inputs from IRSVTF Web1 review and actions on v0.4 (See comment 0.5 matrix for specific changes). 23-Aug-11 Added inputs from IRSVTF Web2 review and actions on v0.5 (See comment 0.6 matrix for specific changes). 4-Sep-11 Added inputs from IRSVTF Web3 review and actions on v0.6 (See comment 0.7 matrix for specific changes). 23Sep-11 Added inputs from IRSVTF/2 review and actions on v0.7 (See comment matrix 0.8 for specific changes) 2-Nov-11 Added inputs following IRSVTF/2 review and actions on v0.8 (See comment 0.8.1 matrix for specific changes). 16-Dec-11 Added inputs following IRSVTF Web/4 review and actions received on v0.8.1 0.8.2 (See comment matrix for specific changes). 17-Jan-12 Added inputs following IRSVTF Web/4 review and actions received on v0.8.2 0.8.3 (See comment matrix for specific changes).
    [Show full text]
  • Simulation/Optimization Modeling for Robust Satellite Data Unit for Airborne Network
    AIAA 2015-3100 AIAA AVIATION Forum 22-26 June 2015, Dallas, TX AIAA Modeling and Simulation Technologies Conference Simulation/Optimization Modeling for Robust Satellite Data Unit for Airborne Network Joe Zambrano*, Omar Yeste† and René Landry, Jr.‡ Laboratory of Space Technologies, Embedded Systems, Navigation and Avionic - LASSENA École de techologie supérieure (ÉTS), Montreal, Quebec, Canada, H3C 1K3 The Next Generation Air Transportation System (NextGen) and Single European Sky ATM Research (SESAR) are both ambitious and technically complex government programs. Among their objectives, they propose constant transmission of the exact aircraft’s 4D (latitude, longitude, altitude and time) position vector via Automatic Dependent Surveillance-Broadcast (ADS-B), not only to air traffic controllers but also to other aircraft equipped with similar technology. This allows reducing both horizontal and vertical distance between aircraft, as well as securely flying from origin to destiny through more efficient routes without needing to be on the coverage volume of ground stations (GS). As a result, an increase in air traffic density is expected both in transoceanic flights, where Air Traffic Management (ATM) communications are via satellite, and in areas covered by GSs. In addition to the growth of air traffic density, there is the growing demand for communications bandwidth by passengers. Some Satellite Communications (SatCom) service providers such as Inmarsat, Iridium, etc., have already planned their new service offer in Ka-Band in order to support high speed applications and enable airlines to provide better In-Flight Connectivity (IFC). Added to this, different studies conduct researches on a concept called Airborne Network (AN); where aircraft are connected in an ad hoc fashion via wireless links in order to provide broadband access to passengers and crew.
    [Show full text]
  • Densification De L'ads-B Dans La Fir D'antananarivo
    N° d’ordre : 030-16/M2/TCO Année Universitaire : 2015 / 2016 UNIVERSITE D’ANTANANARIVO ---------------------- ECOLE SUPERIEURE POLYTECHNIQUE ----------------------- DEPARTEMENT TELECOMMUNICATION MEMOIRE en vue de l’obtention du DIPLOME de Master Titre : Ingénieur Domaine : Sciences de l’Ingénieur Mention : Télécommunication Parcours : Ingénierie des Réseaux et Systèmes par : ABDOURAMANE ATTOU BOUNOU Nafissa DENSIFICATION DE L’ADS-B DANS LA FIR D’ANTANANARIVO Soutenu le 13 Janvier 2017, devant la Commission d’Examen composée de : Président : M. RAKOTOMALALA Mamy Alain Examinateurs : M. Boto J.E ANDRIANANDRASANA M. RANDRIAMITANTSOA Andry Auguste M. ANDRIAMANALINA Ando Directeur de mémoire : M. RAKOTONDRAINA Tahina Ezéchiel Encadreur professionnel : M. RAFANAMBINANTSOA Valohery REMERCIEMENTS Avant tout, je loue DIEU TOUT PUISSANT, pour toute la grâce, la force, la santé, le temps et tous les bienfaits qu’il m’accorde. C’est par ta grâce Seigneur que j’ai mené à bien mes années d’études à l’Ecole Supérieure Polytechnique d’Antananarivo, et à terme ce mémoire. Gloire à toi mon Dieu. J’exprime également ma profonde gratitude à : Monsieur ANDRIANAHARISON Yvon, Professeur Titulaire, Directeur de l’Ecole Supérieure Polytechnique d’Antananarivo, qui m’a donné l’opportunité de suivre la formation d’ingéniorat au sein de cette école. Monsieur RAKOTOMALALA Mamy Alain, Maître de conférences, Chef de Département Télécommunication, qui a daigné présider la soutenance de ce mémoire. Par ailleurs, je tiens à exprimer mes vifs remerciements et toute ma reconnaissance à mes deux directeur et encadreur de mémoire : Monsieur RAKOTONDRAINA Tahina Ezéchiel, Maître de conférences, et Monsieur RAFANAMBINANTSOA Valohery, Master en informatique spécialité Réseau, Ingénieur Réseaux Systèmes Informatiqies (RSI) à l’ASECNA, pour leur soutien et leur aide précieuse tout au long de la réalisation du présent travail.
    [Show full text]
  • Aviation Abbreviations
    AVIATION ABBREVIATIONS Mahan Air Documentation Center Edition 1 2014/04/23 Alpha (ICAO) A A/A Air-to-air (ICAO) A/C Aircraft AA Approved Urgency (CFMU) AA Aircraft Address (IFPS SSR MODE-S) AAAS Amadeus Airline Ancillary Services AABC ARINC Automated Border Control AAC Airworthiness Advisory Circular (CASA) AAC Airline Administrative Communication (ACP) AACC Airport Associations Coordinating Council (ACI / AACI) AACE Airfield Approach Control Element AACI Airports Association Council International (ACI) AACO Arab Air Carriers Organisation AAD Assigned Altitude Deviation (ICAO) AAE Above Aerodrome Elevation (CA) AAF ATM Added Functions AAFCE Allied Air Forces Central Europe AAG AIS Automation Group AAGDI Automated Air / Ground Data Interchange AAH Autonomous Aircraft Hybrid AAI Arrival Aircraft Interval (FAA AAR) AAI Angle of Approach Indicator AAIB Air Accident Investigation Branch (UK equivalent of NTSB) AAIM Aircraft Autonomous Integrity Monitoring (ICAO) AAIS Automated AIS AAL Altitude Above Aerodrome level (ICAO) AALS Advanced Approach and Landing System AAM Airbus Asset Management AAM Airline Administration Message AAME Association of Aviation Medical Examiners AAP Advanced Automation Program AAP Accident Analysis & Prevention (IFALPA) AAPA Association of Asia Pacific Airlines AAR Airport Acceptance Rate or Airport Arrival Rate (FAA) AAR Air to Air Refueling or Automated Aerial Refueling (Boeing) AAS Advanced Automated System (FAA) AASA Air Lines Association of Southern Africa AASC Airport Authorities Steering Committee AASI Aeronautical
    [Show full text]
  • Eurocontrol Airial
    w AIRIAL w EUROCONTROL Air Navigation Inter-site Acronym List w w w AIRIAL lists abbreviations and acronyms used in EUROCONTROL documents and publications. This PDF version is generated automatically from the AIRIAL online database (hyperlink) as regularly updated. w User input is an important part of the AIRIAL system. Should you have any feedback (new acronyms for inclusion in the list or proposals for corrections or amendments), please use the 'Add New' function available on the AIRIAL webpage, or contact us at [email protected] w w The AIRIAL Editorial Board blanc Denis Deramaut (Central Flow Management Unit) Robin Deransy (EUROCONTROL Experimental Centre) Angela Friesen (Directorate Resources) Michel Nicolay (Maastricht Upper Area Control Centre) Rik Simoens (EUROCONTROL Institute of Air Navigation Services) Lut Stessens (Maastricht Upper Area Control Centre) Mark Whitely (Corporate Network Design) blanc Stephen Fairhurst (AIRIAL Project Manager) w w w w Browsing of the material available on the EUROCONTROL site (including the copying of such material in RAM or other temporary forms of storage necessary to facilitate such browsing) is authorised. ReproductionEUROCONTROL is authorised for personal use only provided AIRIAL the source is duly acknowledged.All other uses are prohibited. w Information on air navigation and air traffic control does not engage the responsibility of the European Organisation for the Safety of Air Navigation. While our goal is to keep this information timely and accurate, we cannot guarantee either.
    [Show full text]
  • Implementation of Inmarsat Satellite-Based Global
    International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT) - 2016 Airborne Satellite Antenna Steering and Mounting Systems Dimov Stojce Ilcev ([email protected]) – Durban University of Technology (DUT), Durban, South Africa Abstract: This paper describes the steering and mount systems of Airborne Satellite Antenna (ASA) as a most important and sensitive part of both Aeronautical Mobile Satellite Communication (AMSA) and Aeronautical Mobile Satellite Broadcasting (AMSB) systems. In general, most of ASA solutions are small and easy to install onboard aircraft such as Low Gain Antenna (LGA). However, in particular, some of ASA systems are quite complex, relatively large and heavy, especially airborne High Gain Antenna (HGA) for Aircraft Earth Stations (AES), such as Inmarsat-H, High Speed Data (HSD), Swift64, SwiftBroadband and Digital Video Broadcasting-Return Channel via Satellite (DVB-RCS) antennas, so they need sophisticated steering and mounting systems. Over the past decade are developed the steering ASA broadband system, which main components are reduced considerably in both physical size and weight. These reductions are presented in this research that brings greater Effective Isotropic Radiated Power (EIRP) from satellite transponders coupled with GaAs-FET technology at the front end the satellite receiver. In this paper are also introduced existing types of mechanical, electrical, combined and other mount systems of ASA steering system. The ASA has to be always pointed towards the satellite in spite of aircraft motions. At this point, the mount airborne satellite system as one of the main requirements in designing the mobile satellite antenna systems from the technical and rational viewpoints is discussed. Key Words: ASA, AMSA, AMSB, LGA, HGA, DVB-RCS, BCU, ACU, Antenna Steering and Mounting 1.
    [Show full text]
  • Executive Summary
    NASA/TP-2005-213606 (Vol. 1) UWB EMI To Aircraft Radios: Field Evaluation on Operational Commercial Transport Airplanes Jay J. Ely NASA Langley Research Center, Hampton, Virginia Warren L. Martin NASA Jet Propulsion Laboratory, Pasadena, California Timothy W. Shaver Federal Aviation Administration, Washington, DC Gerald L. Fuller Eagles Wings Incorporated, Mariposa, California John Zimmerman, Robert L. Fuschino United Airlines, Denver, Colorado William E. Larsen Federal Aviation Administration, Moffett Federal Airfield, California National Aeronautics and Space Administration Headquarters Washington, DC 20546-0001 January 2005 The NASA STI Program Office ... in Profile Since its founding, NASA has been dedicated to the advancement of aeronautics • CONFERENCE PUBLICATION. and space science. The NASA Scientific and Collected papers from scientific and Technical Information (STI) Program Office technical conferences, symposia, plays a key part in helping NASA maintain seminars, or other meetings sponsored this important role. or co-sponsored by NASA. The NASA STI Program Office is operated • SPECIAL PUBLICATION. Scientific, by Langley Research Center, the lead center technical, or historical information for NASA’s scientific and technical from NASA programs, projects, and information. The NASA STI Program Office missions, often concerned with provides access to the NASA STI Database, subjects having substantial public the largest collection of aeronautical and interest. space science STI in the world. The Program • Office is also NASA’s institutional TECHNICAL TRANSLATION. mechanism for disseminating the results of English-language translations of its research and development activities. foreign scientific and technical These results are published by NASA in the material pertinent to NASA’s mission. NASA STI Report Series, which includes the following report types: Specialized services that complement the STI Program Office’s diverse offerings include creating custom thesauri, building • TECHNICAL PUBLICATION.
    [Show full text]
  • Getting to Grips with Datalink Be Made Thereof Other Than That Expressely Authorised
    Flight Operations Support & Line Assistance April 2004 datalink getting to grips with AIRBUS S.A.S. getting to grips with 31707 BLAGNAC CEDEX, FRANCE Flight Operations Support & Line Assistance CUSTOMER SERVICES COMMUNICATION REF. GDCOS-A038/04 FEBRUARY 2004 PRINTED IN FRANCE © AIRBUS S.A.S. 2004 ALL RIGHTS RESERVED AN EADS JOINT COMPANY WITH BAE SYSTEMS datalink The statements made herein do not constitute an offer. They are based on the assumptions shown and are expressed in good faith. Where the supporting grounds for these statements are not shown, the Company will be pleased to explain the basis thereof. This document is the property of Airbus and is Flight Operations Support & Line Assistance supplied on the express condition that it is to be treated as confidential. No use of reproduction may getting to grips with datalink be made thereof other than that expressely authorised. April 2004 Flight Operations Support & Line Assistance Customer Services 1, rond-point Maurice Bellonte, BP 33 31707 BLAGNAC Cedex FRANCE Telephone (+33) 5 61 93 33 33 Telefax (+33) 5 61 93 29 68 Telex AIRBU 530526F SITA TLSBI7X getting to grips with datalink April 2004 Getting to grips with datalink Foreword FOREWORD The purpose of this document is to provide Airbus aircraft operators with basics on datalink systems and operations. All recommendations and guidance are intended to assist the operators in maximizing the cost-effectiveness of their operations. Traditionally, aircraft communications are based on analog voice via VHF and HF radios, but since the mid-1980s the use of datalink-based communications has emerged. Aircraft can now be equipped to use communication technologies that transport data and make possible to communicate efficiently with the ground at all times during a flight, enabling the exchanges of constant up-to-date information that allows a better decision making.
    [Show full text]