<<

ACPL-T350 2.5 Amp Output Current IGBT Gate Driver Optocoupler with Low ICC

Data Sheet

Lead (Pb) Free RoHS 6 fully compliant RoHS 6 fully compliant options available; -xxxE denotes a lead-free product

Description Features The ACPL-T350 contains a GaAsP LED. The LED is optically  2.5A Absolute Maximum Peak Output Current coupled to an with a power output  15 kV/μs minimum Common Mode Rejection (CMR) at stage. These optocouplers are ideally suited for driving VCM = 1500 V power IGBTs and used in motor control inverter applications. The high operating voltage range of the  1.5 V maximum low level output voltage (VOL) output stage provides the drive voltages required by  ICC = 4 mA maximum supply current gate controlled devices. The voltage and current supplied  Under Voltage Lock-Out protection (UVLO) with by these optocouplers make them ideally suited for hysteresis directly driving IGBTs with ratings up to 1200 V/100 A. For IGBTs with higher ratings, the ACPL-T350 series can  Wide operating VCC range: 15 to 30 Volts be used to drive a discrete power stage whichs drives the  500 ns maximum switching speeds IGBT gate. The ACPL-T350 has an insulation voltage of  Industrial temperature range: -40°C to 100°C VIORM = 630 Vpeak (Option 060).  Safety Approval Functional Diagram - UL Recognized 3750 Vrms for 1 min. - CSA Approval ACPL-T350 - IEC/EN/DIN EN 60747-5-5 Approved VIORM = 630 Vpeak (Option 060) N/C 1 8 VCC Applications ANODE 2 7 VO  IGBT/MOSFET gate drive CATHODE 3 6 VO  Inverter for Home Appliances

N/C 4 5 VEE  Industrial Inverters SHIELD  Switching Power Supplies (SPS) Note: A 0.1 μF bypass must be connected between pins VCC and VEE. UVLO Truth Table

VCC – VEE VCC – VEE “POSITIVE GOING” “NEGATIVE GOING” LED (i.e., TURN-ON) (i.e., TURN-OFF) VO OFF 0 - 30 V 0 - 30 V LOW ON 0 - 11 V 0 - 9.5 V LOW ON 11 - 13.5 V 9.5 - 12 V TRANSITION ON 13.5 - 30 V 12 - 30 V HIGH

CAUTION: It is advised that normal static precautions be taken in handling and assembly of this component to prevent damage and/or degradation which may be induced by ESD. Ordering Information ACPL-T350 is UL Recognized with 3750 Vrms for 1 minute per UL1577.

Part Option IEC/EN/DIN EN number RoHS Compliant Package Surface Mount Gull Wing Tape& Reel 60747-5-5 Quantity ACPL-T350 -000E 300mil DIP-8 50 per tube -300E X X 50 per tube -500E/500ME X X X 1000 per reel -060E X 50 per tube -360E X X X 50 per tube -560E/560ME XXXX1000 per reel

To order, choose a part number from the part number column and combine with the desired option from the option column to form an order entry. Example 1: ACPL-T350-560E to order product of 300mil DIP Gull Wing Surface Mount package in Tape and Reel packaging with IEC/EN/DIN EN 60747-5-5 Safety Approval in RoHS compliant. Example 2: ACPL-T350-000E to order product of 300mil DIP package in tube packaging and RoHS compliant. Option datasheets are available. Contact your Avago sales representative or authorized distributor for information. Remarks: The notation ‘#XXX’ is used for existing products, while (new) products launched since 15th July 2001 and RoHS compliant option will use ‘-XXXE‘.

Regulatory Information The ACPL-T350 is approved by the following organizations: IEC/EN/DIN EN 60747-5-5 (ACPL-T350 Option 060 only) UL Approval under: Approval under UL 1577, component recognition DIN EN 60747-5-5 (VDE 0884-5):2011-11 program, File E55361. EN 60747-5-5:2011 CSA Approval under CSA Component Acceptance Notice #5, File CA 88324.

Recommended Pb-Free IR Profi le Recommended refl ow condition as per JEDEC Standard, J-STD-020 (latest revision). Non-Halide Flux should be used.

2 Package Outline Drawings ACPL-T350 Outline Drawing

9.65 – 0.25 7.62 – 0.25 (0.380 – 0.010) (0.300 – 0.010)

TYPE NUMBER 8 7 6 5 6.35 – 0.25 OPTION CODE* (0.250 – 0.010) A XXXXZ DATE CODE

YYWW

1 2 3 4

1.78 (0.070) MAX. 1.19 (0.047) MAX.

+ 0.076 5° TYP. 0.254 - 0.051 + 0.003) 3.56 – 0.13 4.70 (0.185) MAX. (0.010 (0.140 – 0.005) - 0.002)

0.51 (0.020) MIN. 2.92 (0.115) MIN. DIMENSIONS IN MILLIMETERS AND (INCHES). * MARKING CODE LETTER FOR OPTION NUMBERS. 1.080 – 0.320 0.65 (0.025) MAX. "V" = OPTION 060 (0.043 – 0.013) 2.54 – 0.25 OPTION NUMBERS 300 AND 500 NOT MARKED. (0.100 – 0.010) NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 mils) MAX.

ACPL-T350 Outline Drawing

LAND PATTERN RECOMMENDATION 9.65 – 0.25 1.016 (0.040) (0.380 – 0.010)

8 7 6 5

6.350 – 0.25 (0.250 – 0.010) 10.9 (0.430)

1 2 3 4

2.0 (0.080) 1.27 (0.050)

1.780 9.65 – 0.25 (0.070) (0.380 – 0.010) 1.19 MAX. (0.047) 7.62 – 0.25 (0.300 – 0.010) MAX. + 0.076 0.254 - 0.051 3.56 – 0.13 + 0.003) (0.140 – 0.005) (0.010 - 0.002)

1.080 – 0.320 (0.043 – 0.013) 0.635 – 0.25 (0.025 – 0.010) 12° NOM. 2.54 0.635 – 0.130 (0.100) (0.025 – 0.005) BSC

DIMENSIONS IN MILLIMETERS (INCHES). LEAD COPLANARITY = 0.10 mm (0.004 INCHES).

NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 mils) MAX.

3 Table 1. IEC/EN/DIN EN 60747-5-5 Insulation Characteristics* (ACPL-T350 Option 060) ACPL-T350 Description Symbol Option 060 Unit Installation classifi cation per DIN VDE 0110/39, Table 1 for rated mains voltage ≤ 150 Vrms I – IV for rated mains voltage ≤ 300 Vrms I – IV for rated mains voltage ≤ 450 Vrms I – III Climatic Classifi cation 55/100/21 Pollution Degree (DIN VDE 0110/39) 2

Maximum Working Insulation Voltage VIORM 630 Vpeak

Input to Output Test Voltage, Method b* VPR 1181 Vpeak VIORM x 1.875=VPR, 100% Production Test with tm=1 sec, Partial discharge < 5 pC

Input to Output Test Voltage, Method a* VPR 1008 Vpeak VIORM x 1.6=VPR, Type and Sample Test, tm=10 sec, Partial discharge < 5 pC

Highest Allowable Overvoltage (Transient Overvoltage tini = 60 sec) VIOTM 6000 Vpeak Safety-limiting values – maximum values allowed in the event of a failure

Case Temperature TS 175 °C

Input Current IS, INPUT 230 mA

Output Power PS, OUTPUT 600 mW

Insulation Resistance at TS, VIO = 500 V RS >109  * Refer to the optocoupler section of the Isolation and Control Components Designer’s S ACPL-T350 Option 060 Catalog, under Product Safety Regulations section, (IEC/EN/DIN EN 60747-5-5) for a 1000 detailed description of Method a and Method b partial discharge test profi les. P (mW) 800 S Note: These optocouplers are suitable for “safe electrical isolation” only within the safety IS (mA) limit data. Maintenance of the safety data shall be ensured by means of protective circuits. Surface mount classifi cation is Class A in accordance with CECC 00802. 600 , INPUT CURRENT - I S 400

200

0

OUTPUT POWER - P 0 2550 75 100125 150 175 TS - CASE TEMPERATURE - qC

Table 2. Insulation and Safety Related Specifi cations Parameter Symbol ACPL-T350 Units Conditions Minimum External Air L(101) 7.1 mm Measured from input terminals to output terminals, shortest distance Gap (Clearance) through air. Minimum External L(102) 7.4 mm Measured from input terminals to output terminals, shortest distance Tracking (Creepage) path along body. Minimum Internal 0.08 mm Through insulation distance conductor to conductor, usually the Plastic Gap straight line distance thickness between the emitter and detector. (Internal Clearance) Tracking Resistance CTI > 175 V DIN IEC 112/VDE 0303 Part 1 (Comparative Tracking Index) Isolation Group IIIa Material Group (DIN VDE 0110, 1/89, Table 1) All Avago data sheets report the creepage and clearance inherent to the optocoupler component itself. These dimensions are needed as a starting point for the equipment designer when determining the circuit insulation requirements. However, once mounted on a , minimum creepage and clearance requirements must be met as specifi ed for individual equipment standards. For creepage, the shortest distance path along the surface of a printed circuit board between the solder fi llets of the input and output leads must be considered (the recommended Land Pattern does not necessarily meet the minimum creepage of the device). There are recommended techniques such as grooves and ribs which may be used on a printed circuit board to achieve desired creepage and clearances. Creepage and clearance distances will also change depending on factors such as pollution degree and insulation level.

4 Table 3. Absolute Maximum Ratings Parameter Symbol Min. Max. Units Note

Storage Temperature TS -55 125 °C

Operating Temperature TA -40 100 °C

Average Input Current IF(AVG) 25 mA 1

Peak Transient Input Current IF(TRAN) 1.0 A (<1 μs pulse width, 300pps)

Reverse Input Voltage VR 5V

“High” Peak Output Current IOH(PEAK) 2.5 A 2

“Low” Peak Output Current IOL(PEAK) 2.5 A 2

Supply Voltage VCC – VEE 035V

Input Current (Rise/Fall Time) tr(IN) /tf(IN) 500 ns

Output Voltage VO(PEAK) 0VCC V

Output Power Dissipation PO 250 mW 3

Total Power Dissipation PT 295 mW 4 Lead Solder Temperature 260°C for 10 sec., 1.6 mm below seating plane

Table 4. Recommended Operating Conditions Parameter Symbol Min. Max. Units Note

Power Supply VCC - VEE 15 30 V

Input Current (ON) IF(ON) 716mA

Input Voltage (OFF) VF(OFF) - 3.6 0.8 V

IOH(PEAK) / IOL (PEAK) TA - 2.0 2.0 A

Operating Temperature TA - 40 100 °C

5 Table 5. Electrical Specifi cations (DC) Over recommended operating conditions (TA = -40 to 100°C, IF(ON) = 7 to 16 mA, VF(OFF) = -3.6 to 0.8 V, VCC = 15 to 30 V, VEE = Ground) unless otherwise specifi ed. All typical values at TA = 25°C and VCC - VEE = 30 V, unless otherwise noted. Parameter Symbol Min. Typ. Max. Units Test Conditions Fig. Note

High Level Output Current IOH 0.5 1.6 A VO = VCC – 4 V 2, 3, 15 5

2.0 A VO = VCC – 15 V 2

Low Level Output Current IOL 0.5 1.6 A VO = VEE + 2.5 V 5, 6, 16 5

2.0 A VO = VEE + 15 V 2

High Level Output Voltage VOH VCC-4 VCC-3 V IO = -100 mA 1, 3, 17 6, 7

Low Level Output Voltage VOL VEE+0.5 1.5 V IO = 100 mA 4, 6, 18

High Level Supply Current ICCH 2.0 4.0 mA Output open, 7, 8 IF = 7 to 16 mA

Low Level Supply Current ICCL 2.0 4.0 mA Output open, VF = -3.0 to +0.8 V

Threshold Input Current IFLH 2.0 5 mA IO = 0 mA, VO > 5 V 9, 19 Low to High

Threshold Input Voltage VFHL 0.8 V IO = 0 mA, VO > 5 V High to Low

Input Forward Voltage VF 1.2 1.5 1.8 V IF = 10 mA

Temperature Coeffi cient VF/TA -2.0 mV/°C IF = 10 mA of Input Forward Voltage

Input Reverse BVR 5VIR = 10 μA Breakdown Voltage

Input Capacitance CIN 60 pF f = 1 MHz, VF = 0 V

UVLO Threshold VUVLO+ 11.0 12.3 13.5 V IF = 10 mA, VO > 5 V 14, 20

VUVLO– 9.5 10.7 12.0 V IF = 10 mA, VO > 5 V

UVLO Hysteresis UVLOHYS 1.6 V IF = 10 mA, VO > 5 V

Table 6. Switching Specifi cations (AC) Over recommended operating conditions (TA = -40 to 100°C, IF(ON) = 7 to 16 mA, VF(OFF) = -3.6 to 0.8 V, VCC = 15 to 30 V, VEE = Ground) unless otherwise specifi ed. All typical values at TA = 25°C and VCC - VEE = 30 V, unless otherwise noted. Parameter Symbol Min. Typ. Max. Units Test Conditions Fig. Note

Propagation Delay Time tPLH 0.05 0.25 0.5 μs Rg = 10 , Cg = 10 nF, 10, 11, 8 to High Output Level f = 10 kHz, 12, 21 Duty Cycle = 50% Propagation Delay Time tPHL 0.05 0.25 0.5 μs to Low Output Level Pulse Width Distortion PWD 0.3 μs 9 Propagation Delay Diff erence PDD -0.35 0.35 μs 10 Between Any Two Parts or (tPHL – tPLH) Channels

Rise Time tR 15 ns 21

Fall Time tF 20 ns

Output High Level Common |CMH| 15 20 kV/μs TA = 25°C, 22 11, 12 Mode Transient Immunity IF = 10 to 16 mA, VCM = 1500 V, VCC = 30 V

Output Low Level Common |CML| 15 20 kV/μs TA = 25°C, VF = 0 V, 22 11, 13 Mode Transient Immunity VCM = 1500 V , VCC = 30 V

6 Table 7. Package Characteristics Over recommended temperature (TA = -40 to 100°C) unless otherwise specifi ed. All typicals at TA = 25°C. Parameter Symbol Min. Typ. Max. Units Test Conditions Fig. Note

Input-Output Momentary Withstand VISO 3750 Vrms RH < 50%, 14, 15 Voltage** t = 1 min., TA = 25°C

Resistance Input-Output) RI-O 1012  VI-O = 500 V 15

Capacitance Input-Output) CI-O 0.6 pF Freq=1 MHz

LED-to-Case Thermal Resistance LC 467 °C/W Thermocouple located at center underside of LED-to-Detector Thermal Resistance LD 442 °C/W package Detector-to-Case Thermal Resistance DC 126 °C/W

** The Input-Output Momentary Withstand Voltage is a dielectric voltage rating that should not be interpreted as an input-output continuous voltage rating. For the continuous voltage rating refers to your equipment level safety specifi cation or Avago Application Note 1074 entitled “Optocoupler Input-Output Endurance Voltage.”

Notes: 1. Derate linearly above 70°C free-air temperature at a rate of 0.3 mA /°C. 2. Maximum pulse width = 10 μs. 3. Derate linearly above 70° C free-air temperature at a rate of 4.8 mW /°C. 4. Derate linearly above 70° C free-air temperature at a rate of 5.4 mW /°C. The maximum LED junction temperature should not exceed 125°C. 5. Maximum pulse width = 50 μs 6. In this test VOH is measured with a dc load current. When driving capacitive loads VOH will approach VCC as IOH approaches zero amps. 7. Maximum pulse width = 1 ms 8. This load condition approximates the gate load of a 1200 V/100A IGBT. 9. Pulse Width Distortion (PWD) is defi ned as |tPHL - tPLH| for any given device. 10. The diff erence between tPHL and tPLH between any two ACPL-T350 parts under the same test condition. 11. Pins 1 and 4 need to be connected to LED common. 12. Common mode transient immunity in the high state is the maximum tolerable dVCM/dt of the common mode pulse, VCM, to assure that the output will remain in the high state (i.e., VO > 15.0 V). 13. Common mode transient immunity in a low state is the maximum tolerable dVCM/dt of the common mode pulse, VCM, to assure that the output will remain in a low state (i.e., VO < 2.0 V). 14. In accordance with UL1577, each optocoupler is proof tested by applying an insulation test voltage ≥ 4500 Vrms for 1 second (leakage detection current limit, II-O ≤ 5 μA). 15. Device considered a two-terminal device: pins 1, 2, 3, and 4 shorted together and pins 5, 6, 7, and 8 shorted together.

7 0 2.0 -1 I = 7 to 16 mA IF = 7 to 16 mA IF = 7 to 16 mA F V = 15 to 30 V IOUT = -100 mA VOUT = (VCC - 4 V) CC V = 0 V VCC = 15 to 30 V 1.8 VCC = 15 to 30 V -2 EE -1 VEE = 0 V VEE = 0 V

1.6 -3 -2 1.4 -4

-3 1.2 -5 100 °C ) - OUTPUT HIGH VOLTAGE DROP V ) - HIGH OUTPUT VOLTAGE DROP V °

- OUTPUT HIGH CURRENT - A 25 C CC CC -40 °C OH - V I

-4 1.0 V - -6 OH OH -40 -20 0204060 80 100 -40 -20 0204060 80 100 0 0.5 1.0 1.5 2.0 2.5 (V (V TA - TEMPERATURE - °C TA - TEMPERATURE - °C IOH - OUTPUT HIGH CURRENT - A

Figure 1. VOH vs. temperature. Figure 2. IOH vs. temperature. Figure 3. VOH vs. IOH.

0.25 4 4 V = -3.0 to 0.8 V VF (OFF) = -3.0 TO 0.8 V VF (OFF) = -3.0 TO 0.8 V F(OFF) VCC = 15 to 30 V IOUT = 100 mA VOUT = 2.5 V 0.20 VEE = 0 V V = 15 TO 30 V VCC = 15 TO 30 V CC 3 3 VEE = 0 V VEE = 0 V 0.15 2 2 0.10

1 1 0.05 100 °C - OUTPUT LOW VOLTAGE V - OUTPUT LOW VOLTAGE V - OUTPUT LOW CURRENT A 25 °C OL OL OL

I ° V V -40 C 0 0 0 -40 -20 02040 60 80 100 -40 -20 02040 60 80 100 0 0.5 1.0 1.5 2.0 2.5 ° ° TA - TEMPERATURE - C TA - TEMPERATURE - C IOL - OUTPUT LOW CURRENT - A

Figure 4. VOL vs. temperature. Figure 5. IOL vs. temperature. Figure 6. VOL vs. IOL.

3.00 3.00

2.50 2.50

2.00 2.00

1.50 1.50 ------I CcH ------ICcH Icc - SUPPLY CURRENT mA I CCL Icc - SUPPLY CURRENT mA ICCL 1.00 1.00 -40 -20 0 20 40 60 80 100 15 20 25 30 o TA - TEMPERATURE - C Vcc - SUPPLY VOLTAGE - V

Figure 7. ICC vs. Temperature Figure 8. ICC vs. VCC

8 5 500 500 I =7mA, T =25 oC V =30V, V =0V VCC = 15 TO 30 V F A CC EE Ω Rg= 10Ω, Cg = 10nF VEE = 0 V Rg = 10 , Cg = 10nF 4 OUTPUT = OPEN Duty = 50% f = 10kHz Duty = 50% f = 10kHz o 400 400 TA= 25 C

3 300 300 2

200 200 1 ------TpHL TpHL Tp - PROPAGATION DELAY ms Tp - PROPAGATION DELAY ms TpLH TpLH 100

- LOW TO HIGH CURRENT THRESHOLD - mA 100 0 7 8 9 10111213141516 -40 -20 0204060 80 100 15 20 25 30 FLH I Vcc-SUPPLY VOLTAGE-V IF - FORWARD LED CURRENT - mA TA - TEMPERATURE - °C

Figure 9. IFLH vs. temperature. Figure 10. Propagation delay vs. VCC. Figure 11. Propagation delay vs. IF.

500 1000 14 I ° IF = 7mA F TA = 25 C V =30V, V = 0V CC EE 100 + 12 Rg= 10Ω , Cg = 10nF VF 400 - (12.3, 10.8) Duty Cycle = 50%, f = 10kHz 10 10 (10.7, 9.2) 8 300 1.0 6 0.1 200 4

------TpHL - OUTPUT VOLTAGE - V

0.01 O - FORWARD CURRENT - mA 2 V F I Tp - PROPAGATION DELAY ms TpLH (10.7, 0.1) (12.3, 0.1) 100 0.001 0 -40 -20 0 20 40 60 80 100 1.10 1.20 1.30 1.40 1.50 1.60 0 5 10 15 20 o TA - TEMPERATURE - C VF - FORWARD VOLTAGE - VOLTS (VCC - VEE ) - SUPPLY VOLTAGE - V

Figure 12. Propagation delay vs. Temperature Figure 13. Input current vs. forward voltage. Figure 14. Under voltage lock out.

9 1 8 0.1 F + 2 7 - 4 V I = 7 to F + VCC = 15 16 mA - to 30 V 3 6 IOH

4 5

Figure 15. IOH test circuit.

1 8 1 8 0.1 F 0.1 F I OL V 2 7 2 7 OH + V = 15 CC I = 7 to - to 30 V F + VCC = 15 16 mA - to 30 V 2.5 V + 3 6 - 3 6 100 mA

4 5 4 5

Figure 16. IOL Test circuit. Figure 17. VOH Test circuit.

1 8 1 8 0.1 F 0.1 F 100 mA 2 7 2 7

+ VCC = 15 I + VCC = 15 - F - to 30 V VO > 5 V to 30 V 3 6 3 6 VOL

4 5 4 5

Figure 18. VOL Test circuit. Figure 19. IFLH Test circuit.

10 1 8 0.1 F

2 7

I = 10 mA + F - VCC VO > 5 V 3 6

4 5

Figure 20. UVLO Test Circuit

1 8 0.1 F IF IF = 7 to 16 mA V = 15 + CC 2 7 - to 30 V 500 Ω tr tf + VO 10 KHz - 90% 50% DUTY 3 6 10 Ω CYCLE 50% 10 nF VOUT 10% 4 5

tPLH tPHL

Figure 21. tPLH, tPHL, tr, and tf test circuit and waveforms.

VCM V VCM 1 8 = IF t t A 0.1 F 0 V 2 7 B t + V + 5 V - O - VCC = 30 V 3 6 VOH VO

SWITCH AT A: IF = 10 mA 4 5 V O VOL

SWITCH AT B: IF = 0 mA

+ -

VCM = 1500 V

Figure 22. CMR test circuit and waveforms.

11 Typical Application Circuit

+5 V ACPL-T350 1 8 VCC = 18 V 270 Ω 0.1 F + + HVDC - 2 7 Rg

CONTROL Q1 3-PHASE INPUT 3 6 AC

74XXX OPEN 4 5 COLLECTOR Q2 - HVDC

Figure 23. Recommended LED drive and application circuit.

+5 V ACPL-T350 1 8 VCC = 15 V 270 Ω 0.1 F + + HVDC - 2 7 Rg

CONTROL Q1 3-PHASE 3 6 AC INPUT VEE = -5 V + - 74XXX OPEN 4 5 COLLECTOR Q2 - HVDC

Figure 24. Typical application circuit with negative IGBT gate drive.

For product information and a complete list of distributors, please go to our web site: www.avagotech.com

Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies, Limited in the United States and other countries. Data subject to change. Copyright © 2012-2016 Avago Technologies Limited. All rights reserved. AV02-0308EN - September 23, 2016