Resonant Gate-Drive Circuits for High-Frequency Power Converters
Resonant Gate-Drive Circuits for High-Frequency Power Converters A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy By Hur Jedi B. S., University of Baghdad, Baghdad, Iraq, 2003 M. S., University Putra Malaysia, Selangor, Malaysia, 2010 2018 Wright State University WRIGHT STATE UNIVERSITY GRADUATE SCHOOL November 16, 2018 I HEREBY RECOMMEND THAT THE DISSERTATION PREPARED UNDER MY SUPERVISION BY Hur Jedi ENTITLED Resonant Gate-Drive Circuits for High-Frequency Power Converters BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Doctor of Philosophy. Marian K. Kazimierczuk, Ph.D. Dissertation Director Arnab Shaw, Ph.D. Director, Electrical Engineering Ph.D. Program Barry Milligan, Ph.D. Interim Dean of the Graduate School Committee on Final Examination Marian K. Kazimierczuk, Ph.D. Ray Siferd, Ph.D. Henry Chen, Ph.D. Saiyu Ren, Ph.D. Yan Zhuang, Ph.D. Abstract Jedi, Hur. Ph.D., Electrical Engineering Ph.D. Program, Department of Electrical Engineering, Wright State University, 2018. Resonant Gate-Drive Circuits for High- Frequency Power Converters. The development trend of power converters motivates the pursuit with high den- sity, high efficiency, and low cost. Increasing the frequency can improve the power density and lead to small passive elements and a fast dynamic response. Each one of these power converters must be driven by a gate-drive circuit to operate efficiently. Conventional gate-drivers are used up to frequencies of about 5 MHz and suffer from switching losses. Therefore, the development of switch-mode power supplies (SMPS) operating at high frequencies requires high-speed gate drivers.
[Show full text]