Treaties and Other International Acts Series 94-1115 ______
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
NASA) Memoranda and Reports Concerning the Decommissioning of the International Space Station (ISS), 2010-2016
Description of document: Unpublished National Aeronautics and Space Administration (NASA) memoranda and reports concerning the decommissioning of the International Space Station (ISS), 2010-2016 Requested date: 28-July-2016 Released date: 05-April-2017 Posted date: 21-May-2018 Source of document: NASA Headquarters 300 E Street, SW Room 5Q16 Washington, DC 20546 Fax: (202) 358-4332 Email: [email protected] The governmentattic.org web site (“the site”) is noncommercial and free to the public. The site and materials made available on the site, such as this file, are for reference only. The governmentattic.org web site and its principals have made every effort to make this information as complete and as accurate as possible, however, there may be mistakes and omissions, both typographical and in content. The governmentattic.org web site and its principals shall have neither liability nor responsibility to any person or entity with respect to any loss or damage caused, or alleged to have been caused, directly or indirectly, by the information provided on the governmentattic.org web site or in this file. The public records published on the site were obtained from government agencies using proper legal channels. Each document is identified as to the source. Any concerns about the contents of the site should be directed to the agency originating the document in question. GovernmentAttic.org is not responsible for the contents of documents published on the website. National Aeronautics and Space Administration Lyndon B. Johnson Space Center 2101 NASA Parkway Houston, Texas 77058-3696 April 5, 2017 Replytoattn.of AD91 l/JSC FOIA Office REF: 16-JSC-F-00829 - Final Release Thank you for your Freedom oflnformation Act (FOIA) request dated and received in the NASA Headquarters FOIA Office on July 28, 2016. -
AATSR Frequently Asked Questions (FAQ)
AATSR Frequently Asked Questions (FAQ) Author : IDEAS+ AATSR QC Team (Telespazio VEGA UK) IDEAS+-VEG-OQC-REP-2117 Issue 3 14 December 2016 AATSR Frequently Asked Questions (FAQ) Issue 3 AMENDMENT RECORD SHEET The Amendment Record Sheet below records the history and issue status of this document. ISSUE DATE REASON 1 20 Dec 2005 Initial Issue (as AEP_REP_001) 2 02 Oct 2013 Updated with new questions and information (issued as IDEAS- VEG-OQC-REP-0955) 3 14 Dec 2016 General updates, major edits to Q37., new questions: Q17., Q25., Q26., Q28., Q32., Q38., Q39., Q48. Now issued as IDEAS+-VEG-OQC-REP-2117 TABLE OF CONTENTS 1. INTRODUCTION ........................................................................................................................ 5 1.1 The Third AATSR Reprocessing Dataset (IPF 6.05) ............................................................ 5 1.2 References ............................................................................................................................ 6 2. GENERAL QUESTIONS ........................................................................................................... 7 Q1. What does AATSR stand for? ........................................................................................ 7 Q2. What is AATSR and what does it do? ............................................................................ 7 Q3. What is Envisat? ............................................................................................................. 7 Q4. What orbit does Envisat use? ........................................................................................ -
In Brief Modified to Increase Engine Reliability
r bulletin 102 — may 2000 3rd Space Station ESA, together with a European industrial Element to be Launched consortium headed by DaimlerChrysler (D) and including Belgian, Dutch and French NASA and the Russian Aviation and partners, was responsible for the design, Space Agency (Rosaviakosmos) plan that development and delivery of the core data the next component of the International management system, which provides Space Station (ISS) – the Zvezda service Zvezda’s main computer. module – will be launched on 12 July from the Baikonur Cosmodrome in Kazakhstan. ESA also has a contract with Rosaviakosmos and RSC-Energia for Following a Joint Programme Review and performing system and interface a General Designers’ Review in Moscow, it integration tasks required for docking with was agreed that Zvezda (Russian for Zvezda by ESA’s Automated Transfer ‘star’) will be launched by a Proton rocket Vehicle (ATV), which will be used for ISS with the second and third stage engines re-boost and logistics support missions In Brief modified to increase engine reliability. from 2003 onwards. Through its ATV industrial consortium led by Aerospatiale Zvezda will provide the early living quarters Matra Lanceurs (F), ESA is also procuring for ISS crew, together with the life sup- some Russian hardware and software for port, electrical power distribution, data use with the ATV. management, flight control, and propul- sion systems for the ISS. On the scientific side, ESA has concluded contracts with Rosaviakosmos and RSC- Energia for the conduct of scientific experiments on Zvezda, including the Global Timing System (GTS) and a radiobiology experiment (called Matroshka) to monitor and analyse radiation doses in ISS crew. -
Baikonur-International Space Station : International Approach to Lunar Exploration
ICEUM4, 10-15 July 2000, ESTEC, Noordwijk, The Netherlands Baikonur-International Space Station : International Approach to Lunar Exploration Gulnara Omarova, National Aerospace Agency; Chinghis Omarov, ISU Summer Session '98 alumni On 20th November 1998 our aircraft made soft landing at the Baikonur airport. I was among onboard passengers - officials from Kazakhstan Space, press and diplomats. We all were invited to attend the launch of the International Space Station (ISS) first component (the Russian-made Zarya or Functional Cargo Module FGB) by Proton launch-vehicle at the Baikonur spaceport. Two hours before ISS first module launch we joined the official delegations from NASA, Russian Space Agency (RSA), ESA, Canadian Space Agency (CSA) and NASDA to see the modified facilities of both "Energiya" Corp. and Khrunichev's Proton assembly-and- test building. Mr. Yuri Koptev, Chief of RSA and Mr. Dan Goldin, NASA Administrator actively were drinking russian tea and talking about crucial issues of the International Space Station and the future of Space Exploration. In fact, Cold War is over and the world's top space powers accomplishments are stunning: • The first human flight in space in 1961; • Human space flight initiatives to ascertain if and how long a human could survive in space; • Project Gemini (flights during 1965-1966) to practice space operations, especially rendezvous and docking of spacecraft and extravehicular activity; • Project Apollo (flights during 1968-1972) to explore the Moon; • Space Shuttle's flights (1981 - present); • Satellite programs; • A permanently occupied space station "Mir" (during 1976-1999); • A permanently occupied International Space Station presently underway. We and a few people approached them to learn much more particulars of their talking and to ask them most interesting questions. -
FAME-C: Cloud Property Retrieval Using Synergistic AATSR and MERIS Observations
Atmos. Meas. Tech., 7, 3873–3890, 2014 www.atmos-meas-tech.net/7/3873/2014/ doi:10.5194/amt-7-3873-2014 © Author(s) 2014. CC Attribution 3.0 License. FAME-C: cloud property retrieval using synergistic AATSR and MERIS observations C. K. Carbajal Henken, R. Lindstrot, R. Preusker, and J. Fischer Institute for Space Sciences, Freie Universität Berlin (FUB), Berlin, Germany Correspondence to: C. K. Carbajal Henken ([email protected]) Received: 29 April 2014 – Published in Atmos. Meas. Tech. Discuss.: 19 May 2014 Revised: 17 September 2014 – Accepted: 11 October 2014 – Published: 25 November 2014 Abstract. A newly developed daytime cloud property re- trievals. Biases are generally smallest for marine stratocu- trieval algorithm, FAME-C (Freie Universität Berlin AATSR mulus clouds: −0.28, 0.41 µm and −0.18 g m−2 for cloud MERIS Cloud), is presented. Synergistic observations from optical thickness, effective radius and cloud water path, re- the Advanced Along-Track Scanning Radiometer (AATSR) spectively. This is also true for the root-mean-square devia- and the Medium Resolution Imaging Spectrometer (MERIS), tion. Furthermore, both cloud top height products are com- both mounted on the polar-orbiting Environmental Satellite pared to cloud top heights derived from ground-based cloud (Envisat), are used for cloud screening. For cloudy pixels radars located at several Atmospheric Radiation Measure- two main steps are carried out in a sequential form. First, ment (ARM) sites. FAME-C mostly shows an underestima- a cloud optical and microphysical property retrieval is per- tion of cloud top heights when compared to radar observa- formed using an AATSR near-infrared and visible channel. -
Earth Science Data and Information System (ESDIS) Project Update
Earth Science Data and Information System (ESDIS) Project Update October 15-16, 2008 National Snow and Ice Data Center & Physical Oceanography DAAC User Working Group Meeting Pasadena, CA [email protected] ESDIS Project Code 423 NASA GSFC Topics •• ESDISESDIS OrganizationOrganization •• SystemSystem ContextContext •• KeyKey MetricsMetrics •• DataData ArchitectureArchitecture •• KeyKey ActivitiesActivities – Data Discovery – Customer Satisfaction & Metrics – Operations Management 2 Earth Science Data and Information System (ESDIS) Project • The ESDIS Project is responsible for the Earth Observing System Data and Information System (EOSDIS), one of the largest civilian Science Information System in the world • The EOSDIS: – Ingests, archives, processes, and distributes an unprecedented volume of science data for NASA’s flagship Earth science missions (e.g., Terra, Aqua, Aura, ICESat) – Supports unique requirements of a variety of Earth science disciplines (e.g., land, atmosphere, snow/ice, and ocean) as well as inter- disciplinary researchers, climate This Jason sea-surface height image shows modelers, and application users sea surface height anomalies with the seasonal cycle (the effects of summer, fall, (e.g., U.S. Forest Service) winter, and spring) removed. Each image is a 10-day average of data, centered on the date – Employs state-of-the-art hardware indicated. and software technology to achieve Courtesy: NASA EOSDIS Physical 3 Oceanography DAAC required data throughput EOSDIS Manages Data For All 24 EOS Measurements Aqua (5/02) -
Highlights in Space 2010
International Astronautical Federation Committee on Space Research International Institute of Space Law 94 bis, Avenue de Suffren c/o CNES 94 bis, Avenue de Suffren UNITED NATIONS 75015 Paris, France 2 place Maurice Quentin 75015 Paris, France Tel: +33 1 45 67 42 60 Fax: +33 1 42 73 21 20 Tel. + 33 1 44 76 75 10 E-mail: : [email protected] E-mail: [email protected] Fax. + 33 1 44 76 74 37 URL: www.iislweb.com OFFICE FOR OUTER SPACE AFFAIRS URL: www.iafastro.com E-mail: [email protected] URL : http://cosparhq.cnes.fr Highlights in Space 2010 Prepared in cooperation with the International Astronautical Federation, the Committee on Space Research and the International Institute of Space Law The United Nations Office for Outer Space Affairs is responsible for promoting international cooperation in the peaceful uses of outer space and assisting developing countries in using space science and technology. United Nations Office for Outer Space Affairs P. O. Box 500, 1400 Vienna, Austria Tel: (+43-1) 26060-4950 Fax: (+43-1) 26060-5830 E-mail: [email protected] URL: www.unoosa.org United Nations publication Printed in Austria USD 15 Sales No. E.11.I.3 ISBN 978-92-1-101236-1 ST/SPACE/57 *1180239* V.11-80239—January 2011—775 UNITED NATIONS OFFICE FOR OUTER SPACE AFFAIRS UNITED NATIONS OFFICE AT VIENNA Highlights in Space 2010 Prepared in cooperation with the International Astronautical Federation, the Committee on Space Research and the International Institute of Space Law Progress in space science, technology and applications, international cooperation and space law UNITED NATIONS New York, 2011 UniTEd NationS PUblication Sales no. -
Sentinel-1A Launch
SENTINEL-1A LAUNCH Arianespace’s seventh Soyuz launch from the Guiana Space Center will orbit Sentinel-1A, the first satellite in Europe’s Earth observation program, Copernicus. The European Space Agency (ESA) chose Thales Alenia Space to design, develop and build the satellite, as well as perform related tests. Copernicus is the new name for the European program previously known as GMES (Global Monitoring for Environment and Security), and is the European Commission’s second major space program, following Galileo. Copernicus is designed to give Europe continuous, independent and reliable access to Earth observation data. With the Soyuz, Ariane 5 and Vega launchers at the Guiana Space Center (CSG), Arianespace is the only launch services provider in the world capable of launching all types of payloads into all orbits, from the smallest to the largest geostationary satellites, from satellite clusters for constellations to cargo missions for the International Space Station (ISS). Arianespace sets the launch services standard for all operators, whether commercial or governmental, and guarantees access to space for scientific missions. Sentinel-1A is the 50th satellite with an Earth observation payload to be launched by Arianespace. Arianespace has seven more Earth observation missions in its order book, including four commercial missions (signed in 2013 and 2014). The Copernicus program is designed to give Europe complete independence in the acquisition and management of environmental data concerning our planet. ESA’s Sentinel programs comprise five satellite families: Sentinel-1, to provide continuity for radar data from ERS and Envisat. Sentinel-2 and Sentinel-3, dedicated to the observation of the Earth and its oceans. -
Sentinel-3 Product Notice
Copernicus S3 Product Notice – Altimetry Mission S3 Sensor SRAL / MWR Product LAND L2 NRT, STC and NTC Product Notice ID S3A.PN-STM-L2L.10 Issue/Rev Date 16/07/2020 Version 1.1 This Product Notice was prepared by the S3 Mission Performance Centre Preparation and ESA experts Approval ESA Mission Management Summary This is a Product Notice (PN) for the Copernicus Sentinel-3A and Sentinel-3B Surface Topography Mission (STM) Level-2 Land products at Near Real Time (NRT), Short Time Critical (STC) and Non Time Critical (NTC) timeliness. The Notice describes the STM current status, product quality and limitations, and product availability status. © ESA page 1 / 16 Processing Baseline S3A S3B Processing Baseline • Processing Baseline: 2.68 • Processing Baseline: 1.42 • • SR_1 IPF version: 06.18 SR_1 IPF version: 06.18 • MW_1 IPF version: 06.11 IPFs version • MW_1 IPF version: 06.11 • • SM_2 IPF version: 06.19 SM_2 IPF version: 06.19 Current Operational Processing Baseline IPF IPF Version In OPE since S3A SR1 06.18 Land Centres: NRT mode : 2020-07-09 STC mode : 2020-07-09 NTC mode : 2020-07-09 S3A MW1 06.11 Land Centres: NRT mode : 2020-01-21 STC mode : 2020-01-21 NTC mode : 2020-01-21 S3A SM2 06.19 Land Centres: NRT mode : 2020-07-09 STC mode : 2020-07-09 NTC mode : 2020-07-09 S3B SR1 06.18 Land Centres: NRT mode : 2020-07-09 STC mode : 2020-07-09 NTC mode : 2020-07-09 S3B MW1 06.11 Land Centres: NRT mode : 2020-01-21 STC mode : 2020-01-21 NTC mode : 2020-01-21 S3B SM2 06.19 Land Centres: NRT mode : 2020-07-09 STC mode : 2020-07-09 NTC mode : 2020-07-09 © ESA page 2 / 16 Status of the Processing Baseline S3A The Processing Baseline (PB) for Copernicus Sentinel-3A STM products associated to this PN is reported above. -
IADC Space Debris Mitigation Guidelines
IADC-02-01 Revision 2 Mar 2020 IADC Space Debris Mitigation Guidelines Issued by IADC Steering Group and Working Group 4 Table of Contents Table of Contents .................................................................................................................. 1 Revision History .................................................................................................................... 2 List of Abbreviations .............................................................................................................. 3 1 Scope ............................................................................................................................. 6 2 Application ...................................................................................................................... 6 3 Terms and definitions ..................................................................................................... 6 3.1 Space Debris ........................................................................................................... 6 3.2 Spacecraft, Launch Vehicles, and Orbital Stages .................................................... 6 3.3 Orbits and Protected Regions ................................................................................. 7 3.4 Mitigation Measures and Related Terms ................................................................. 8 3.5 Operational Phases ................................................................................................. 8 4 General Guidance ......................................................................................................... -
International Space Exploration Coordination Group (ISECG) Provides an Overview of ISECG Activities, Products and Accomplishments in the Past Year
Annual Report 2012 of the International Space Exploration Coordination Group INTERNATIONAL SPACE EXPLORATION COORDINATION GROUP ISECG Secretariat Keplerlaan 1, PO Box 299, NL-2200 AG Noordwijk, The Netherlands +31 (0) 71 565 3325 [email protected] ISECG publications can be found on: http://www.globalspaceexploration.org/ 2 Table of Contents 1. Introduction 4 2. Executive Summary 4 3. Background 5 4. Activities 4.1. Overview 7 4.2. Activities on ISECG Level 7 4.3. Working Group Activities 8 4.3.1. Exploration Roadmap Working Group (ERWG) 8 4.3.2. International Architecture Working Group (IAWG) 9 4.3.3. International Objectives Working Group (IOWG) 10 4.3.4. Strategic Communications Working Group (SCWG) 10 Annex: Space Exploration Highlights of ISECG Member Agencies 12 1. Agenzia Spaziale Italiana (ASI), Italy 13 2. Centre National d’Etudes Spatiales (CNES), France 15 3. Canadian Space Agency (CSA), Canada 17 4. Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR), Germany 21 5. European Space Agency (ESA) 23 6. Japan Aerospace Exploration Agency (JAXA), Japan 28 7. Korea Aerospace Research Institute (KARI), Republic of Korea 30 8. National Aeronautics and Space Administration (NASA), USA 31 9. State Space Agency of Ukraine (SSAU), Ukraine 33 10. UK Space Agency (UKSA), United Kingdom 35 3 1 Introduction The 2012 Annual Report of the International Space Exploration Coordination Group (ISECG) provides an overview of ISECG activities, products and accomplishments in the past year. In the annex many of the ISECG participating agencies report on national space exploration highlights in 2012. 2 Executive Summary ISECG was established in response to the “The Global Exploration Strategy: The Framework for Coordination” (GES) developed by 14 space agencies1 and released in May 2007. -
Assessing Measurements of Pollution in the Troposphere (MOPITT) Carbon Monoxide Retrievals Over Urban Versus Non-Urban Regions
Atmos. Meas. Tech., 13, 1337–1356, 2020 https://doi.org/10.5194/amt-13-1337-2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License. Assessing Measurements of Pollution in the Troposphere (MOPITT) carbon monoxide retrievals over urban versus non-urban regions Wenfu Tang1,2, Helen M. Worden2, Merritt N. Deeter2, David P. Edwards2, Louisa K. Emmons2, Sara Martínez-Alonso2, Benjamin Gaubert2, Rebecca R. Buchholz2, Glenn S. Diskin3, Russell R. Dickerson4, Xinrong Ren4,5, Hao He4, and Yutaka Kondo6 1Advanced Study Program, National Center for Atmospheric Research, Boulder, CO, USA 2Atmospheric Chemistry Observations and Modeling, National Center for Atmospheric Research, Boulder, CO, USA 3NASA Langley Research Center, Hampton, VA, USA 4Department of Atmospheric and Oceanic Science, University of Maryland, College Park, MD, USA 5Air Resources Laboratory, National Oceanic and Atmospheric Administration, College Park, MD, USA 6National Institute of Polar Research, Tachikawa, Japan Correspondence: Wenfu Tang ([email protected]) Received: 4 November 2019 – Discussion started: 28 November 2019 Revised: 31 January 2020 – Accepted: 16 February 2020 – Published: 23 March 2020 Abstract. The Measurements of Pollution in the Tropo- luted scenes. We test the sensitivities of the agreements be- sphere (MOPITT) retrievals over urban regions have not been tween MOPITT and in situ profiles to assumptions and data validated systematically, even though MOPITT observations filters applied during the comparisons of MOPITT