In Brief Modified to Increase Engine Reliability

Total Page:16

File Type:pdf, Size:1020Kb

In Brief Modified to Increase Engine Reliability r bulletin 102 — may 2000 3rd Space Station ESA, together with a European industrial Element to be Launched consortium headed by DaimlerChrysler (D) and including Belgian, Dutch and French NASA and the Russian Aviation and partners, was responsible for the design, Space Agency (Rosaviakosmos) plan that development and delivery of the core data the next component of the International management system, which provides Space Station (ISS) – the Zvezda service Zvezda’s main computer. module – will be launched on 12 July from the Baikonur Cosmodrome in Kazakhstan. ESA also has a contract with Rosaviakosmos and RSC-Energia for Following a Joint Programme Review and performing system and interface a General Designers’ Review in Moscow, it integration tasks required for docking with was agreed that Zvezda (Russian for Zvezda by ESA’s Automated Transfer ‘star’) will be launched by a Proton rocket Vehicle (ATV), which will be used for ISS with the second and third stage engines re-boost and logistics support missions In Brief modified to increase engine reliability. from 2003 onwards. Through its ATV industrial consortium led by Aerospatiale Zvezda will provide the early living quarters Matra Lanceurs (F), ESA is also procuring for ISS crew, together with the life sup- some Russian hardware and software for port, electrical power distribution, data use with the ATV. management, flight control, and propul- sion systems for the ISS. On the scientific side, ESA has concluded contracts with Rosaviakosmos and RSC- Energia for the conduct of scientific experiments on Zvezda, including the Global Timing System (GTS) and a radiobiology experiment (called Matroshka) to monitor and analyse radiation doses in ISS crew. Cooperation on further scientific experiments to be conducted on the Russian segment of the ISS is continuing with Rosaviakosmos and Russia’s IBMP (Institute for Biomedical Research). r Zvezda (left-most module) is the third infrastructure element of the International Space Station (ESA/D. Ducros) Zvezda integration at the Baikonur Cosmodrome 156 in brief Synergies and programme. The main thrust of this effort € 700 million. On that basis, the ministers Cooperation Save was to make Columbus a four-rack module, responsible for space gathered in similar in length to the ASI Multi-Purpose Toulouse in November 1995 were able to on European Logistics Module (MPLM), in order to approve the overall ISS programme. Contribution to the ISS radically reduce the programme’s design and operational costs. Alenia Spazio, as the MPLM prime At a ceremony held on 14 April at Alenia contractor, manufactured the structure Spazio in Turin, Italy, the Columbus flight In the second half of 1994, and into 1995, and performed ECLSS integration for the structure was handed over to ESA by ASI ESA and ASI reached an agreement Multi-Purpose Logistics Module under ASI (Italian Space Agency). On the same whereby they would cooperate both contract; DASA-Dornier, as the ECLSS occasion, the Environmental Control and generally on the development of subcontractor for Columbus, was Life Support Subsystem (ECLSS) pressurised modules and specifically on entrusted with ECLSS development and ownership transfer from ESA to ASI was two particular cases. The essence of this verification under a contract with ESA. The formalised. agreement was that: industrial activities were jointly controlled by ESA and ASI. Columbus, the cornerstone of ESA's – ESA would design and verify an contribution to the International Space Environmental Control and Life Support In addition to these specific joint Station, is a scientific laboratory scheduled Subsystem which would satisfy the developments, further synergies were for launch in 2004. Astronauts from requirements of both the MPLM and found. Alenia Spazio became the prime Europe and elsewhere will be able to use the Columbus laboratory, and would contractor for ISS Nodes-2 and -3, a the laboratory to conduct material deliver to ASI engineering models, three contract managed by ASI on behalf of sciences, medicine, biology and sets of flight hardware, some spares ESA, the price of which is being used to technology experiments, many eventually and the ground support equipment for offset the launch costs of the Columbus leading to benefits in commercial the MPLM. ESA would then use this laboratory by NASA's Space Shuttle. processes or everyday life on Earth. equipment for its Columbus module. European industry is thus developing hardware for the Station using ESA funds, rather than ESA paying NASA in dollars for the launch of Columbus. Alenia Spazio is also the contractor for the pressurised Carrier part of the Automated Transfer Vehicle (ATV) which, launched atop Ariane-5, will be used as a 'ferry' vehicle for payload, propellant, fresh food and general provisions. This agreement has also fostered an increasing use of common subcontractors (and hence common design principles) for the Columbus and Node harnesses and Mechanical Ground Support Equipment (OHB, Germany) and Thermal Control Subsystems (Microtecnica, Italy), further The ECLSS, composed of fans, heat – ASI, which was already developing the improving the cost-efficiency of European exchangers, sensors and motorised and MPLM, would supply ESA with a flight human spaceflight projects. These pneumatic valves, all operated and unit primary structure for Columbus synergies will continue into the operational monitored via the onboard computer, based on that of the MPLM, and would phase, in terms of integration, payload provides comfortable working conditions provide the MPLM qualification data to operation and logistics activities. inside the space laboratories. In particular, enable ESA to qualify Columbus on the the system controls temperature, humidity basis of commonality, thereby avoiding The final ECLSS equipment and the and ventilation, regulates atmospheric the need for a separate qualification Columbus primary structure were delivered pressure, detects fire and monitors test model. in March/April. Much of the ECLSS contamination of the living environment. hardware is already at NASA/Kennedy Thanks to this agreement, both Agencies Space Center awaiting the first launch of Prior to the ESA Council meeting at would avoid duplicating high development the MPLM Leonardo, currently planned for ministerial level in Toulouse in November costs and would help save roughly February 2001, but several tonnes of 1995, it had seemed that approval of € 70 million of taxpayers’ money. Further ECLSS and structure equipment can still European participation in the ISS would be reductions arising from the downsizing of be viewed in Turin, together with other impossible to obtain, owing to the excessive the Columbus laboratory enabled the elements of ASI and Alenia Spazio's price of the proposed programme. In mid- Columbus part of the ESA ISS contribution to the development of the 1994, ESA had embarked on a serious development programme to be literally International Space Station. r 'design-to-cost' exercise to revive the halved in price, down to approximately 157 r bulletin 102 — may 2000 Physics on Stage competitions will select some of the best Europe. CERN is delighted to take part in and most convincing new ideas for this collaboration between the European Physics is everywhere. The laws of presentations and educational materials Community and the continent's three physics govern the Universe, the Sun, the which will receive development support leading physics research organisations." Earth and even our own lives. In today’s from the programme. rapidly developing society, we are Catherine Cesarsky (ESO): "Astronomy becoming increasingly dependent on high The project will culminate in November and astrophysics are at the very heart of technology – computers, transport and 2000, with approximately 400 delegates modern physics. As vibrant research communication are just some of the key converging at CERN for the 'Physics on disciplines they use the most advanced areas that are the result of discoveries by Stage' conference. The conference will technology available to humanity to scientists working in physics. enable the national competition winners, explore the cosmos. It is also a science of science teachers, science communicators, extreme conditions – the largest But how much does the average person publishers, top scientists and high-level distances, the longest periods of time, the really know about physics? There is now a representatives of the ministries and highest temperatures, the strongest unique opportunity to learn more about European organisations to brainstorm electrical and magnetic fields, the highest this elusive subject! Three major European solutions to bolster the popularity of and lowest densities and the most research establishments have organised a physics. The conference will also include extreme energies. The cosmos is indeed unique Europe-wide programme to raise spectacular demonstrations of educational the greatest physics laboratory. For years, public awareness of physics and related tools, the best of which will be disse- ESO - Europe's Astronomy Organisation - sciences. minated over national TV networks and has been engaged in communicating the other media to the European public. outcome of the exciting research 'Physics on Stage' was launched in programmes carried out at the ESO February by ESA, CERN (European Statements by the Directors General observatories to a wide audience and in Laboratory for Particle Physics) and ESO of ESA, CERN, and ESO particular to Europe's youth. I warmly
Recommended publications
  • The Contribution of Global Ocean Observation of Continuity of HY-2
    CGMS-XXXVI-CNSA-WP-04 Prepared by CNSA Agenda Item: III/3&4 The contribution of global ocean observation of continuity of HY-2 satellite HY-2 satellite, an ocean dynamic environment observation satellite, mainly ` objective is monitoring and detecting the parameters of ocean dynamic environment. These parameters include sea surface wind fields, sea surface height, wave height, gravity field, ocean circulation and sea surface temperature etc. The contribution of global ocean observation of continuity of HY-2 satellite 1. Introduction HY-2 satellite scatterometer provides sea surface wind fields, which can offset the observation gap of the plan of global scatterometer. At the same time, HY-2 satellite altimeter provides sea surface height, significant wave height, sea surface wind speed and polar ice sheet elevation, which can offset the observation gap of the plan of global altimeter around 2012, and can offset the observation gap of JASON-1&2 at polar area. More details as follows. 2. Observation of sea surface wind fields The analysis accuracy of wind field for ocean-atmosphere can improve 10-20% by using the satellite scatterometer data, by which can improve greatly the quality of initial wind field of numerical atmospheric forecast model in coastal ocean. Satellite scatterometer data has play important role on study of large-scale ocean phenomenon, such as sea-air interactions, ocean circulation, EI Nino etc. The figure 1 shows that QuikSCAT scatterometer has operational application in 1999, but it has not the following plan. ERS-2 scatterometer mission has transferred to METOP ASCAT in 2006. GCOM-B1 will launch in 2008, one of its payloads is an ocean vector wind measurement (OVWM) instruments, and it also called AlphaScat.
    [Show full text]
  • AATSR Frequently Asked Questions (FAQ)
    AATSR Frequently Asked Questions (FAQ) Author : IDEAS+ AATSR QC Team (Telespazio VEGA UK) IDEAS+-VEG-OQC-REP-2117 Issue 3 14 December 2016 AATSR Frequently Asked Questions (FAQ) Issue 3 AMENDMENT RECORD SHEET The Amendment Record Sheet below records the history and issue status of this document. ISSUE DATE REASON 1 20 Dec 2005 Initial Issue (as AEP_REP_001) 2 02 Oct 2013 Updated with new questions and information (issued as IDEAS- VEG-OQC-REP-0955) 3 14 Dec 2016 General updates, major edits to Q37., new questions: Q17., Q25., Q26., Q28., Q32., Q38., Q39., Q48. Now issued as IDEAS+-VEG-OQC-REP-2117 TABLE OF CONTENTS 1. INTRODUCTION ........................................................................................................................ 5 1.1 The Third AATSR Reprocessing Dataset (IPF 6.05) ............................................................ 5 1.2 References ............................................................................................................................ 6 2. GENERAL QUESTIONS ........................................................................................................... 7 Q1. What does AATSR stand for? ........................................................................................ 7 Q2. What is AATSR and what does it do? ............................................................................ 7 Q3. What is Envisat? ............................................................................................................. 7 Q4. What orbit does Envisat use? ........................................................................................
    [Show full text]
  • On the Use of Scatterometer Winds in Nwp
    ON THE USE OF SCATTEROMETER WINDS IN NWP Ad Stoffelen KNMI, de Bilt, the Netherlands, Email: [email protected] Lars Isaksen, Didier le Meur ECMWF, Reading, UK ABSTRACT Over the last years the processing of ERS scatterometer winds has been refined. Subsequently, High Resolution Limited Area Model, HIRLAM, and ECMWF model data assimilation experiments have been carried out to assess the impact of one scatterometer, ERS-1 and of two scatterometers, ERS-1 and ERS-2, on the analyses and forecasts. We found that scatterometer winds have a clear and beneficial impact in the data assimilation cycle and on the forecasts. Furthermore, ECMWF has shown that ERS scatterometer data improve the prediction of tropical cyclones in 4Dvar, where unprecedented skillful medium-range forecasts result of potential large social-economic value. Nevertheless, scatterometer winds contain much sub-synoptic scale information where the smallest scales resolved are difficult to assimilate into a Numerical Weather Prediction, NWP, model. This is mainly due to the otherwise general sparsity of the observing system over the ocean. In line with this it is found that scatterometer data coverage is very important for obtaining a large impact. In that respect future scatterometer systems such as SeaWinds on QuikSCAT and ADEOS- II, and ASCAT on EPS are promising. 1. INTRODUCTION After the launch of ERS-1 much improvement has been made in the interpretation of scatterometer backscatter measurements and a good quality wind product has emerged (Stoffelen and Anderson, 1997a, 1997b and 1997c). The consistency of the scatterometer winds over the swath makes them particularly useful for nowcasting purposes and several examples of the usefulness of the direct visual presentation of scatterometer winds to a meteorologist can be given.
    [Show full text]
  • ASCAT – Metop's Advanced Scatterometer
    ascat ASCAT – Metop’s Advanced Scatterometer R.V. Gelsthorpe Earth Observation Programmes Development Department, ESA Directorate of Application Programmes, ESTEC, Noordwijk, The Netherlands E. Schied Dornier Satelllitensysteme*, Friedrichshafen, Germany J.J.W. Wilson Eumetsat, Darmstadt, Germany Introduction Figure 1 indicates the form of the variation of Wind scatterometers already flown on ESA’s backscattering coefficient with relative wind ERS-1 and ERS-2 satellites have demonstrated direction (at a fixed incidence angle) for a range the value of such instruments for the global of wind speeds. determination of sea-surface wind vectors. These highly successful instruments – part of If an instrument were to be constructed that the Active Microwave Instrument (AMI) – were determined the sea-surface backscattering conceived about twenty years ago. During coefficient from a single look direction, the the intervening period, there has been a overlapping nature of the curves would limit considerable evolution in the capabilities of its capabilities to providing a rather coarse spaceborne hardware. estimate of wind speed and no information on wind direction. The earliest successful space- ASCAT is an advanced scatterometer that will fly as part of the borne wind scatterometer, that of Seasat, used payload of the Metop satellites, which in turn form part of the two dual-polarised antennas pointed at 45 and Eumetsat Polar System. It is developed by Dornier Satellitensysteme 135 deg with respect to the satellite’s direction under the leadership of Matra Marconi Space**, the satellite Prime of flight to determine sea-surface scattering Contractor, for ESA. From its polar orbit, ASCAT will measure sea- coefficients from two directions separated by surface winds in two 500 km wide swaths and will achieve global 90 deg.
    [Show full text]
  • FAME-C: Cloud Property Retrieval Using Synergistic AATSR and MERIS Observations
    Atmos. Meas. Tech., 7, 3873–3890, 2014 www.atmos-meas-tech.net/7/3873/2014/ doi:10.5194/amt-7-3873-2014 © Author(s) 2014. CC Attribution 3.0 License. FAME-C: cloud property retrieval using synergistic AATSR and MERIS observations C. K. Carbajal Henken, R. Lindstrot, R. Preusker, and J. Fischer Institute for Space Sciences, Freie Universität Berlin (FUB), Berlin, Germany Correspondence to: C. K. Carbajal Henken ([email protected]) Received: 29 April 2014 – Published in Atmos. Meas. Tech. Discuss.: 19 May 2014 Revised: 17 September 2014 – Accepted: 11 October 2014 – Published: 25 November 2014 Abstract. A newly developed daytime cloud property re- trievals. Biases are generally smallest for marine stratocu- trieval algorithm, FAME-C (Freie Universität Berlin AATSR mulus clouds: −0.28, 0.41 µm and −0.18 g m−2 for cloud MERIS Cloud), is presented. Synergistic observations from optical thickness, effective radius and cloud water path, re- the Advanced Along-Track Scanning Radiometer (AATSR) spectively. This is also true for the root-mean-square devia- and the Medium Resolution Imaging Spectrometer (MERIS), tion. Furthermore, both cloud top height products are com- both mounted on the polar-orbiting Environmental Satellite pared to cloud top heights derived from ground-based cloud (Envisat), are used for cloud screening. For cloudy pixels radars located at several Atmospheric Radiation Measure- two main steps are carried out in a sequential form. First, ment (ARM) sites. FAME-C mostly shows an underestima- a cloud optical and microphysical property retrieval is per- tion of cloud top heights when compared to radar observa- formed using an AATSR near-infrared and visible channel.
    [Show full text]
  • Cassini RADAR Sequence Planning and Instrument Performance Richard D
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 47, NO. 6, JUNE 2009 1777 Cassini RADAR Sequence Planning and Instrument Performance Richard D. West, Yanhua Anderson, Rudy Boehmer, Leonardo Borgarelli, Philip Callahan, Charles Elachi, Yonggyu Gim, Gary Hamilton, Scott Hensley, Michael A. Janssen, William T. K. Johnson, Kathleen Kelleher, Ralph Lorenz, Steve Ostro, Member, IEEE, Ladislav Roth, Scott Shaffer, Bryan Stiles, Steve Wall, Lauren C. Wye, and Howard A. Zebker, Fellow, IEEE Abstract—The Cassini RADAR is a multimode instrument used the European Space Agency, and the Italian Space Agency to map the surface of Titan, the atmosphere of Saturn, the Saturn (ASI). Scientists and engineers from 17 different countries ring system, and to explore the properties of the icy satellites. have worked on the Cassini spacecraft and the Huygens probe. Four different active mode bandwidths and a passive radiometer The spacecraft was launched on October 15, 1997, and then mode provide a wide range of flexibility in taking measurements. The scatterometer mode is used for real aperture imaging of embarked on a seven-year cruise out to Saturn with flybys of Titan, high-altitude (around 20 000 km) synthetic aperture imag- Venus, the Earth, and Jupiter. The spacecraft entered Saturn ing of Titan and Iapetus, and long range (up to 700 000 km) orbit on July 1, 2004 with a successful orbit insertion burn. detection of disk integrated albedos for satellites in the Saturn This marked the start of an intensive four-year primary mis- system. Two SAR modes are used for high- and medium-resolution sion full of remote sensing observations by a dozen instru- (300–1000 m) imaging of Titan’s surface during close flybys.
    [Show full text]
  • Highlights in Space 2010
    International Astronautical Federation Committee on Space Research International Institute of Space Law 94 bis, Avenue de Suffren c/o CNES 94 bis, Avenue de Suffren UNITED NATIONS 75015 Paris, France 2 place Maurice Quentin 75015 Paris, France Tel: +33 1 45 67 42 60 Fax: +33 1 42 73 21 20 Tel. + 33 1 44 76 75 10 E-mail: : [email protected] E-mail: [email protected] Fax. + 33 1 44 76 74 37 URL: www.iislweb.com OFFICE FOR OUTER SPACE AFFAIRS URL: www.iafastro.com E-mail: [email protected] URL : http://cosparhq.cnes.fr Highlights in Space 2010 Prepared in cooperation with the International Astronautical Federation, the Committee on Space Research and the International Institute of Space Law The United Nations Office for Outer Space Affairs is responsible for promoting international cooperation in the peaceful uses of outer space and assisting developing countries in using space science and technology. United Nations Office for Outer Space Affairs P. O. Box 500, 1400 Vienna, Austria Tel: (+43-1) 26060-4950 Fax: (+43-1) 26060-5830 E-mail: [email protected] URL: www.unoosa.org United Nations publication Printed in Austria USD 15 Sales No. E.11.I.3 ISBN 978-92-1-101236-1 ST/SPACE/57 *1180239* V.11-80239—January 2011—775 UNITED NATIONS OFFICE FOR OUTER SPACE AFFAIRS UNITED NATIONS OFFICE AT VIENNA Highlights in Space 2010 Prepared in cooperation with the International Astronautical Federation, the Committee on Space Research and the International Institute of Space Law Progress in space science, technology and applications, international cooperation and space law UNITED NATIONS New York, 2011 UniTEd NationS PUblication Sales no.
    [Show full text]
  • High-Resolution Land/Ice Imaging Using Seasat Scatterometer Measurements
    HIGH-RESOLUTION LAND/ICE IMAGING USING SEASAT SCATTEROMETER MEASUREMENTS D. G. Long*, P. T. Whiting1, P. J. Hardin2 Electrical and Computer Engineering Department, 'Geography Department Brigham Young University, Provo, UT 84602 ABSTRACT is the measurement number) is a weighted average of the bo's of the individual high-resolution elements covered by the measurement, i.e., In this paper we introduce a new method for obtaining high res- olution images (to 4 km) of the land backscatter from low-resolution Seasat-A scatterometer (SASS) measurements. The method utilizes the measurement cell overlap in multiple spacecraft passes over the c=Lk e=Bk region of interest and signal processing techniques to generate high resolution images of the radar backscatter. The overlap in the 0' res- where Lk, Rk, Tk,and Bk define a bounding rectangle for the kth olution cells is exploited to estimate the underlying high resolution hexagonal U' measurement cell, h(c,a; IC) is the weighting function surface radar backscatter characteristics using a robust new mul- for the (c, a)th high-resolution element, and uo(c,a; k)is the 0" value tivariate image reconstruction algorithm. The new algorithm has for the (c, a)th high-resolution element. The incidence angle depen- been designed to operate in the high noise environment typical of dence of d' and h is subsumed in the k index. [In Eq. (2) c denotes scatterometer measurements. The ultimate resolution obtainable is the cross-track dimension while a denotes the along-track dimen- a function of the number of measurements and the measurement sion.] Over a given scatterometer measurement cell the incidence overlap.
    [Show full text]
  • Sentinel-1A Launch
    SENTINEL-1A LAUNCH Arianespace’s seventh Soyuz launch from the Guiana Space Center will orbit Sentinel-1A, the first satellite in Europe’s Earth observation program, Copernicus. The European Space Agency (ESA) chose Thales Alenia Space to design, develop and build the satellite, as well as perform related tests. Copernicus is the new name for the European program previously known as GMES (Global Monitoring for Environment and Security), and is the European Commission’s second major space program, following Galileo. Copernicus is designed to give Europe continuous, independent and reliable access to Earth observation data. With the Soyuz, Ariane 5 and Vega launchers at the Guiana Space Center (CSG), Arianespace is the only launch services provider in the world capable of launching all types of payloads into all orbits, from the smallest to the largest geostationary satellites, from satellite clusters for constellations to cargo missions for the International Space Station (ISS). Arianespace sets the launch services standard for all operators, whether commercial or governmental, and guarantees access to space for scientific missions. Sentinel-1A is the 50th satellite with an Earth observation payload to be launched by Arianespace. Arianespace has seven more Earth observation missions in its order book, including four commercial missions (signed in 2013 and 2014). The Copernicus program is designed to give Europe complete independence in the acquisition and management of environmental data concerning our planet. ESA’s Sentinel programs comprise five satellite families: Sentinel-1, to provide continuity for radar data from ERS and Envisat. Sentinel-2 and Sentinel-3, dedicated to the observation of the Earth and its oceans.
    [Show full text]
  • Metop Second Generation Payload
    MetOp Second Generation Payload Marc Loiselet, Ville Kangas, Ilias Manolis, Franco Fois, Salvatore d’Addio European Space Agency, ESA/ESTEC, Keplerlaan 1, 2200 AG Noordwijk, The Netherlands E-mail: [email protected] MetOp-Second Generation Satellite Instruments Instrument Provider The ESA MetOp Second Generation (MetOp-SG) Programme was approved at the ESA Council Meeting at Ministerial level in Naples in Sat-A METimage DLR via EUMETSAT November 2012. IASI-NG CNES via EUMETSAT MetOp-SG is a follow-on to the current, first generation series of MetOp satellites, which is now established as a cornerstone of the global MWS ESA – MetOp-SG network of meteorological satellites. RO ESA – MetOp-SG The MetOp-SG programme is being implemented in collaboration with EUMETSAT. 3MI ESA – MetOp-SG ESA will develop the prototype MetOp-SG satellites (including associated instruments) and procure, on behalf of EUMETSAT, the recurrent Sentinel-5 ESA – GMES satellites (and associated instruments). The overall MetOp-SG space segment architecture consists of two series of satellites (Sat-A, Sat-B), each carrying different suites of instruments and operating in LEO polar orbit. The planned launches of the first of each series of satellites Sat-B SCA ESA – MetOp-SG are at the beginning of 2021 and at end 2022, respectively. MWI ESA – MetOp-SG RO ESA – MetOp-SG More information can be found in the “MetOp Second Generation – Overview” presentation from Graeme Mason, Hubert Barré, Maurizio ICI ESA – MetOp-SG Betto, ESA-ESTEC, The Netherlands. Argos-4 CNES via EUMETSAT Payload ESA is responsible for instrument design of six instruments, namely the MicroWave Sounder (MWS), Scatterometer (SCA), the Radio Occultation (RO), the MicroWave Imaging (MWI), the Ice Cloud Imager (ICI), and the Multi-viewing, Multi-channel, Multi-polarisation imager (3MI).
    [Show full text]
  • Sentinel-3 Product Notice
    Copernicus S3 Product Notice – Altimetry Mission S3 Sensor SRAL / MWR Product LAND L2 NRT, STC and NTC Product Notice ID S3A.PN-STM-L2L.10 Issue/Rev Date 16/07/2020 Version 1.1 This Product Notice was prepared by the S3 Mission Performance Centre Preparation and ESA experts Approval ESA Mission Management Summary This is a Product Notice (PN) for the Copernicus Sentinel-3A and Sentinel-3B Surface Topography Mission (STM) Level-2 Land products at Near Real Time (NRT), Short Time Critical (STC) and Non Time Critical (NTC) timeliness. The Notice describes the STM current status, product quality and limitations, and product availability status. © ESA page 1 / 16 Processing Baseline S3A S3B Processing Baseline • Processing Baseline: 2.68 • Processing Baseline: 1.42 • • SR_1 IPF version: 06.18 SR_1 IPF version: 06.18 • MW_1 IPF version: 06.11 IPFs version • MW_1 IPF version: 06.11 • • SM_2 IPF version: 06.19 SM_2 IPF version: 06.19 Current Operational Processing Baseline IPF IPF Version In OPE since S3A SR1 06.18 Land Centres: NRT mode : 2020-07-09 STC mode : 2020-07-09 NTC mode : 2020-07-09 S3A MW1 06.11 Land Centres: NRT mode : 2020-01-21 STC mode : 2020-01-21 NTC mode : 2020-01-21 S3A SM2 06.19 Land Centres: NRT mode : 2020-07-09 STC mode : 2020-07-09 NTC mode : 2020-07-09 S3B SR1 06.18 Land Centres: NRT mode : 2020-07-09 STC mode : 2020-07-09 NTC mode : 2020-07-09 S3B MW1 06.11 Land Centres: NRT mode : 2020-01-21 STC mode : 2020-01-21 NTC mode : 2020-01-21 S3B SM2 06.19 Land Centres: NRT mode : 2020-07-09 STC mode : 2020-07-09 NTC mode : 2020-07-09 © ESA page 2 / 16 Status of the Processing Baseline S3A The Processing Baseline (PB) for Copernicus Sentinel-3A STM products associated to this PN is reported above.
    [Show full text]
  • NASA Quick Scatterometer
    NASA Quick Scatterometer QuikSCAT Science Data Product User's Manual Overview & Geophysical Data Products Version 3.0 September 2006 D-18053 – Rev A VERSION 3.0 – SEP 2006 Editor: Ted Lungu; Sep 2006-09-18 Philip S. Callahan ACKNOWLEDGEMENTS: The following JPL staff has contributed to the QuikSCAT Science Data Product User’s Manual since 1999: Scott Dunbar, Barry Weiss, Bryan Stiles, James Huddleston, Phil Callahan, Glenn Shirtliffe, Kelly L. Perry and Carol Hsu. Carl Mears, Frank Wentz and Deborah Smith of Remote Sensing Systems also contributed to this document. Many thanks are also extended to Prof. Mike Freilich and the late Prof. Willard J. Pierson for their review of, and comments on earlier versions of this document. II VERSION 3.0 – SEP 2006 Table of Contents 1 Introduction _____________________________________________________________ 1 1.1 How to Use this Document ___________________________________________________ 1 1.2 Conventions _______________________________________________________________ 1 1.2.1 Units ___________________________________________________________________________1 1.2.2 Resolution_______________________________________________________________________2 1.2.3 Wind Direction Convention _________________________________________________________2 1.2.4 Reference Height for Surface Winds __________________________________________________2 1.2.5 Data Flagging and Editing __________________________________________________________2 1.3 Applicable Documents_______________________________________________________ 3 1.3.1
    [Show full text]