Cassini RADAR Sequence Planning and Instrument Performance Richard D
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Contribution of Global Ocean Observation of Continuity of HY-2
CGMS-XXXVI-CNSA-WP-04 Prepared by CNSA Agenda Item: III/3&4 The contribution of global ocean observation of continuity of HY-2 satellite HY-2 satellite, an ocean dynamic environment observation satellite, mainly ` objective is monitoring and detecting the parameters of ocean dynamic environment. These parameters include sea surface wind fields, sea surface height, wave height, gravity field, ocean circulation and sea surface temperature etc. The contribution of global ocean observation of continuity of HY-2 satellite 1. Introduction HY-2 satellite scatterometer provides sea surface wind fields, which can offset the observation gap of the plan of global scatterometer. At the same time, HY-2 satellite altimeter provides sea surface height, significant wave height, sea surface wind speed and polar ice sheet elevation, which can offset the observation gap of the plan of global altimeter around 2012, and can offset the observation gap of JASON-1&2 at polar area. More details as follows. 2. Observation of sea surface wind fields The analysis accuracy of wind field for ocean-atmosphere can improve 10-20% by using the satellite scatterometer data, by which can improve greatly the quality of initial wind field of numerical atmospheric forecast model in coastal ocean. Satellite scatterometer data has play important role on study of large-scale ocean phenomenon, such as sea-air interactions, ocean circulation, EI Nino etc. The figure 1 shows that QuikSCAT scatterometer has operational application in 1999, but it has not the following plan. ERS-2 scatterometer mission has transferred to METOP ASCAT in 2006. GCOM-B1 will launch in 2008, one of its payloads is an ocean vector wind measurement (OVWM) instruments, and it also called AlphaScat. -
Mission to Jupiter
This book attempts to convey the creativity, Project A History of the Galileo Jupiter: To Mission The Galileo mission to Jupiter explored leadership, and vision that were necessary for the an exciting new frontier, had a major impact mission’s success. It is a book about dedicated people on planetary science, and provided invaluable and their scientific and engineering achievements. lessons for the design of spacecraft. This The Galileo mission faced many significant problems. mission amassed so many scientific firsts and Some of the most brilliant accomplishments and key discoveries that it can truly be called one of “work-arounds” of the Galileo staff occurred the most impressive feats of exploration of the precisely when these challenges arose. Throughout 20th century. In the words of John Casani, the the mission, engineers and scientists found ways to original project manager of the mission, “Galileo keep the spacecraft operational from a distance of was a way of demonstrating . just what U.S. nearly half a billion miles, enabling one of the most technology was capable of doing.” An engineer impressive voyages of scientific discovery. on the Galileo team expressed more personal * * * * * sentiments when she said, “I had never been a Michael Meltzer is an environmental part of something with such great scope . To scientist who has been writing about science know that the whole world was watching and and technology for nearly 30 years. His books hoping with us that this would work. We were and articles have investigated topics that include doing something for all mankind.” designing solar houses, preventing pollution in When Galileo lifted off from Kennedy electroplating shops, catching salmon with sonar and Space Center on 18 October 1989, it began an radar, and developing a sensor for examining Space interplanetary voyage that took it to Venus, to Michael Meltzer Michael Shuttle engines. -
In Brief Modified to Increase Engine Reliability
r bulletin 102 — may 2000 3rd Space Station ESA, together with a European industrial Element to be Launched consortium headed by DaimlerChrysler (D) and including Belgian, Dutch and French NASA and the Russian Aviation and partners, was responsible for the design, Space Agency (Rosaviakosmos) plan that development and delivery of the core data the next component of the International management system, which provides Space Station (ISS) – the Zvezda service Zvezda’s main computer. module – will be launched on 12 July from the Baikonur Cosmodrome in Kazakhstan. ESA also has a contract with Rosaviakosmos and RSC-Energia for Following a Joint Programme Review and performing system and interface a General Designers’ Review in Moscow, it integration tasks required for docking with was agreed that Zvezda (Russian for Zvezda by ESA’s Automated Transfer ‘star’) will be launched by a Proton rocket Vehicle (ATV), which will be used for ISS with the second and third stage engines re-boost and logistics support missions In Brief modified to increase engine reliability. from 2003 onwards. Through its ATV industrial consortium led by Aerospatiale Zvezda will provide the early living quarters Matra Lanceurs (F), ESA is also procuring for ISS crew, together with the life sup- some Russian hardware and software for port, electrical power distribution, data use with the ATV. management, flight control, and propul- sion systems for the ISS. On the scientific side, ESA has concluded contracts with Rosaviakosmos and RSC- Energia for the conduct of scientific experiments on Zvezda, including the Global Timing System (GTS) and a radiobiology experiment (called Matroshka) to monitor and analyse radiation doses in ISS crew. -
Generation of GOES-16 True Color Imagery Without a Green Band
Confidential manuscript submitted to Earth and Space Science 1 Generation of GOES-16 True Color Imagery without a Green Band 2 M.K. Bah1, M. M. Gunshor1, T. J. Schmit2 3 1 Cooperative Institute for Meteorological Satellite Studies (CIMSS), 1225 West Dayton Street, 4 Madison, University of Wisconsin-Madison, Madison, Wisconsin, USA 5 2 NOAA/NESDIS Center for Satellite Applications and Research, Advanced Satellite Products 6 Branch (ASPB), Madison, Wisconsin, USA 7 8 Corresponding Author: Kaba Bah: ([email protected]) 9 Key Points: 10 • The Advanced Baseline Imager (ABI) is the latest generation Geostationary Operational 11 Environmental Satellite (GOES) imagers operated by the U.S. The ABI is improved in 12 many ways over preceding GOES imagers. 13 • There are a number of approaches to generating true color images; all approaches that use 14 the GOES-16 ABI need to first generate the visible “green” spectral band. 15 • Comparisons are shown between different methods for generating true color images from 16 the ABI observations and those from the Earth Polychromatic Imaging Camera (EPIC) on 17 Deep Space Climate Observatory (DSCOVR). 18 Confidential manuscript submitted to Earth and Space Science 19 Abstract 20 A number of approaches have been developed to generate true color images from the Advanced 21 Baseline Imager (ABI) on the Geostationary Operational Environmental Satellite (GOES)-16. 22 GOES-16 is the first of a series of four spacecraft with the ABI onboard. These approaches are 23 complicated since the ABI does not have a “green” (0.55 µm) spectral band. Despite this 24 limitation, representative true color images can be built. -
Envision Conference
Image credit: JAXA/DART/Damia Bouic NASA/GSFC/U. Arizona http://envisionvenus.eu http:/bit.ly/venus2020 M5/EnVision Project Cosmic Vision mission timeline M3 M1 M2 M5 M4 Image credit: http://envisionvenus.eu ESA Science - adapted from Wikipedia M5/EnVision : timeline Apr. 2016: Release of call for M5 mission Oct. 2016: EnVision proposal submitted Jan. 2017: 1st programmatic evaluation rejected Feb. 2017: EnVision scientific & programmatic evaluation resumes May 2018: ESA selects 3 M5 mission concepts to study Jun. 2018: ESA Science Directorate forms Science Study Team (SST) Nov 2018: CDF study (Phase 0) completed / EnVision Mission Definition Review (MDR) 2019-2020: Industrial phase A study (2 independent ESA contractors) Image credit M5/EnVision Project Mar. 2020 : EnVision Mission Consolidation Review (MCR) Dec. 2020 : EnVision Assessment Study Report (Yellow Book) Feb. 2021 : EnVision Mission Selection Review (MSR) http://envisionvenus.eu Image credit ESA Three very different M5 finalists "A high-energy survey of the early Universe, an infrared observatory to study the formation of stars, planets and galaxies, and a Venus orbiter are to be considered for ESA’s fifth medium class mission in its Cosmic Vision science programme, with a planned launch date in 2032." Spectroscopy from 12 to 230 μ Soft X-ray, X-gamma rays LEO orbit Image credit M5/EnVision Project M5/SPICA Project http://envisionvenus.eu M5/Theseus Project DAY 1 You are warmly invited to join •EnVision mission overview the international conference •Surface to discuss the scientific Magellan heritage investigations of ESA's DAY 2 EnVision mission. •Interior structure (radial : tidal, viscosity, crust, lithosphere structure) The conference will welcome •Activity detection all presentations related to DAY 3 the mission’s payload an its •Atmosphere VEx, Akatsuki Heritage science investigations. -
On the Use of Scatterometer Winds in Nwp
ON THE USE OF SCATTEROMETER WINDS IN NWP Ad Stoffelen KNMI, de Bilt, the Netherlands, Email: [email protected] Lars Isaksen, Didier le Meur ECMWF, Reading, UK ABSTRACT Over the last years the processing of ERS scatterometer winds has been refined. Subsequently, High Resolution Limited Area Model, HIRLAM, and ECMWF model data assimilation experiments have been carried out to assess the impact of one scatterometer, ERS-1 and of two scatterometers, ERS-1 and ERS-2, on the analyses and forecasts. We found that scatterometer winds have a clear and beneficial impact in the data assimilation cycle and on the forecasts. Furthermore, ECMWF has shown that ERS scatterometer data improve the prediction of tropical cyclones in 4Dvar, where unprecedented skillful medium-range forecasts result of potential large social-economic value. Nevertheless, scatterometer winds contain much sub-synoptic scale information where the smallest scales resolved are difficult to assimilate into a Numerical Weather Prediction, NWP, model. This is mainly due to the otherwise general sparsity of the observing system over the ocean. In line with this it is found that scatterometer data coverage is very important for obtaining a large impact. In that respect future scatterometer systems such as SeaWinds on QuikSCAT and ADEOS- II, and ASCAT on EPS are promising. 1. INTRODUCTION After the launch of ERS-1 much improvement has been made in the interpretation of scatterometer backscatter measurements and a good quality wind product has emerged (Stoffelen and Anderson, 1997a, 1997b and 1997c). The consistency of the scatterometer winds over the swath makes them particularly useful for nowcasting purposes and several examples of the usefulness of the direct visual presentation of scatterometer winds to a meteorologist can be given. -
GRAIL Twins Toast New Year from Lunar Orbit
Jet JANUARY Propulsion 2012 Laboratory VOLUME 42 NUMBER 1 GRAIL twins toast new year from Three-month ‘formation flying’ mission will By Mark Whalen lunar orbit study the moon from crust to core Above: The GRAIL team celebrates with cake and apple cider. Right: Celebrating said. “So it does take a lot of planning, a lot of test- the other spacecraft will accelerate towards that moun- GRAIL-A’s Jan. 1 lunar orbit insertion are, from left, Maria Zuber, GRAIL principal ing and then a lot of small maneuvers in order to get tain to measure it. The change in the distance between investigator, Massachusetts Institute of Technology; Charles Elachi, JPL director; ready to set up to get into this big maneuver when we the two is noted, from which gravity can be inferred. Jim Green, NASA director of planetary science. go into orbit around the moon.” One of the things that make GRAIL unique, Hoffman JPL’s Gravity Recovery and Interior Laboratory (GRAIL) A series of engine burns is planned to circularize said, is that it’s the first formation flying of two spacecraft mission celebrated the new year with successful main the twins’ orbit, reducing their orbital period to a little around any body other than Earth. “That’s one of the engine burns to place its twin spacecraft in a perfectly more than two hours before beginning the mission’s biggest challenges we have, and it’s what makes this an synchronized orbit around the moon. 82-day science phase. “If these all go as planned, we exciting mission,” he said. -
Editorial for the Special Issue “Remote Sensing of Clouds”
remote sensing Editorial Editorial for the Special Issue “Remote Sensing of Clouds” Filomena Romano Institute of Methodologies for Environmental Analysis, National Research Council (IMAA/CNR), 85100 Potenza, Italy; fi[email protected] Received: 7 December 2020; Accepted: 8 December 2020; Published: 14 December 2020 Keywords: clouds; satellite; ground-based; remote sensing; meteorology; microphysical cloud parameters Remote sensing of clouds is a subject of intensive study in modern atmospheric remote sensing. Cloud systems are important in weather, hydrological, and climate research, as well as in practical applications. Because they affect water transport and precipitation, clouds play an integral role in the Earth’s hydrological cycle. Moreover, they impact the Earth’s energy budget by interacting with incoming shortwave radiation and outgoing longwave radiation. Clouds can markedly affect the radiation budget, both in the solar and thermal spectral ranges, thereby playing a fundamental role in the Earth’s climatic state and affecting climate forcing. Global changes in surface temperature are highly sensitive to the amounts and types of clouds. Hence, it is not surprising that the largest uncertainty in model estimates of global warming is due to clouds. Their properties can change over time, leading to a planetary energy imbalance and effects on a global scale. Optical and thermal infrared remote sensing of clouds is a mature research field with a long history, and significant progress has been achieved using both ground-based and satellite instrumentation in the retrieval of microphysical cloud parameters. This Special Issue (SI) presents recent results in ground-based and satellite remote sensing of clouds, including innovative applications for meteorology and atmospheric physics, as well as the validation of retrievals based on independent measurements. -
ASCAT – Metop's Advanced Scatterometer
ascat ASCAT – Metop’s Advanced Scatterometer R.V. Gelsthorpe Earth Observation Programmes Development Department, ESA Directorate of Application Programmes, ESTEC, Noordwijk, The Netherlands E. Schied Dornier Satelllitensysteme*, Friedrichshafen, Germany J.J.W. Wilson Eumetsat, Darmstadt, Germany Introduction Figure 1 indicates the form of the variation of Wind scatterometers already flown on ESA’s backscattering coefficient with relative wind ERS-1 and ERS-2 satellites have demonstrated direction (at a fixed incidence angle) for a range the value of such instruments for the global of wind speeds. determination of sea-surface wind vectors. These highly successful instruments – part of If an instrument were to be constructed that the Active Microwave Instrument (AMI) – were determined the sea-surface backscattering conceived about twenty years ago. During coefficient from a single look direction, the the intervening period, there has been a overlapping nature of the curves would limit considerable evolution in the capabilities of its capabilities to providing a rather coarse spaceborne hardware. estimate of wind speed and no information on wind direction. The earliest successful space- ASCAT is an advanced scatterometer that will fly as part of the borne wind scatterometer, that of Seasat, used payload of the Metop satellites, which in turn form part of the two dual-polarised antennas pointed at 45 and Eumetsat Polar System. It is developed by Dornier Satellitensysteme 135 deg with respect to the satellite’s direction under the leadership of Matra Marconi Space**, the satellite Prime of flight to determine sea-surface scattering Contractor, for ESA. From its polar orbit, ASCAT will measure sea- coefficients from two directions separated by surface winds in two 500 km wide swaths and will achieve global 90 deg. -
Radar Remote Sensing - S
GEOINFORMATICS – Vol. I - Radar Remote Sensing - S. Quegan RADAR REMOTE SENSING S. Quegan Sheffield Centre for Earth Observation Science, University of Sheffield, U.K. Keywords: Scatterometry, altimetry, synthetic aperture radar, SAR, microwaves, scattering models, geocoding, radargrammetry, interferometry, differential interferometry, topographic mapping, digital elevation model, agriculture, forestry, hydrology, soil moisture, earthquakes, floods, oceanography, sea ice, land ice, snow Contents 1. Introduction 2. Basic Properties of Radar Systems 3. Characteristics of Radar Systems 4. What a Radar Measures 5. Radar Sensors and Their Applications 6. Synthetic Aperture Radar Applications 7. Future Prospects Glossary Bibliography Biographical Sketch Summary Radar sensors transmit radiation at radio wavelengths (i.e. from around 1 cm to several meters) and use the measured return to infer properties of the earth’s surface. The surface properties affecting the return (of which the most important are the dielectric constant and geometrical structure) are very different from those determining observations at optical and infrared frequencies. Hence radar offers distinctive perspectives on the earth. In addition, the transparency of the atmosphere at radar wavelengths means that cloud does not prevent observation of the earth, so radar is well suited to monitoring purposes. Three types of spaceborne radar instrument are particularly important. Scatterometers make very accurate measurements of the backscatter fromUNESCO the earth, their most impor –tant EOLSSuse being to derive wind speeds and directions over the ocean. Altimeters measure the distance between the satellite platform and the surface to centimetric accuracy, from which several important geophysical quantities can be recovered, such as the topography of the ocean surface and its variation, oceanSAMPLE currents, significant wave height, CHAPTERS and the mass balance and dynamics of the major ice sheets. -
Linking the Solar System and Extrasolar Planetary
Linking the Solar System and Extrasolar Planetary Systems with Radar Astronomy Infrastructure for \Ground Truth" Comparison Authors: Joseph Lazio (Jet Propulsion Laboratory, California Institute of Technology), Am- ber Bonsall (Green Bank Observatory), Marina Brozovic (Jet Propulsion Laboratory, California Institute of Technology), Jon D. Giorgini (Jet Propulsion Laboratory, California Institute of Tech- nology), Karen O'Neil (Green Bank Observatory) Edgard Rivera-Valentin (Lunar & Planetary Institute), Anne Katariina Virkki (Univ. Central Florida) Endorsers: Francisco Cordova (Arecibo Observatory; Univ. Central Florida), Michael Busch (SETI Institute), Bruce A. Campbell (Smithsonian Institution), P. G. Edwards (CSIRO Astron- omy & Space Science), Yanga R. Fernandez (Univ. Central Florida), Ed Kruzins (Canberra Deep Space Communications Center), Noemi Pinilla-Alonso (Univ. Central Florida), Martin A. Slade (Jet Propulsion Laboratory, California Institute of Technology), F. C. F. Venditti (Univ. Central Florida) Point of Contact: Joseph Lazio, 818-354-4198; [email protected] (Left) Planetary radar image of Dione Regio on Venus. White arrows indicate radar- bright features that potentially represent debris from previous volcanic eruptions on Earth's twin planet. (Campbell et al. 2017) (Right) Planetary radar image of the near- Earth asteroid 2017 BQ6, acquired by the Goldstone Solar System Radar, showing sharp facets on this object. Near-Earth asteroids display a range of surface features, from which evolution and collisional processes occurring in the Sun's debris disk can be constrained. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. The Arecibo Planetary Radar Program is supported by the National Aeronautics and Space Administration's Near-Earth Object Observa- tions Program through Grant No. -
Fundamentals of Remote Sensing
Fundamentals of Remote Sensing A Canada Centre for Remote Sensing Remote Sensing Tutorial Natural Resources Ressources naturelles Canada Canada Fundamentals of Remote Sensing - Table of Contents Page 2 Table of Contents 1. Introduction 1.1 What is Remote Sensing? 5 1.2 Electromagnetic Radiation 7 1.3 Electromagnetic Spectrum 9 1.4 Interactions with the Atmosphere 12 1.5 Radiation - Target 16 1.6 Passive vs. Active Sensing 19 1.7 Characteristics of Images 20 1.8 Endnotes 22 Did You Know 23 Whiz Quiz and Answers 27 2. Sensors 2.1 On the Ground, In the Air, In Space 34 2.2 Satellite Characteristics 36 2.3 Pixel Size, and Scale 39 2.4 Spectral Resolution 41 2.5 Radiometric Resolution 43 2.6 Temporal Resolution 44 2.7 Cameras and Aerial Photography 45 2.8 Multispectral Scanning 48 2.9 Thermal Imaging 50 2.10 Geometric Distortion 52 2.11 Weather Satellites 54 2.12 Land Observation Satellites 60 2.13 Marine Observation Satellites 67 2.14 Other Sensors 70 2.15 Data Reception 72 2.16 Endnotes 74 Did You Know 75 Whiz Quiz and Answers 83 Canada Centre for Remote Sensing Fundamentals of Remote Sensing - Table of Contents Page 3 3. Microwaves 3.1 Introduction 92 3.2 Radar Basic 96 3.3 Viewing Geometry & Spatial Resolution 99 3.4 Image distortion 102 3.5 Target interaction 106 3.6 Image Properties 110 3.7 Advanced Applications 114 3.8 Polarimetry 117 3.9 Airborne vs Spaceborne 123 3.10 Airborne & Spaceborne Systems 125 3.11 Endnotes 129 Did You Know 131 Whiz Quiz and Answers 135 4.