An Examination of the Long-Term CO Records from MOPITT and IASI

Total Page:16

File Type:pdf, Size:1020Kb

An Examination of the Long-Term CO Records from MOPITT and IASI An examination of the long-term CO records from MOPITT and IASI: comparison of retrieval methodology Maya George, Cathy Clerbaux, Idir Bouarar, Pierre-Fran¸coisCoheur, Merritt N. Deeter, David P. Edwards, G. Francis, John C. Gille, Juliette Hadji-Lazaro, Daniel Hurtmans, et al. To cite this version: Maya George, Cathy Clerbaux, Idir Bouarar, Pierre-Fran¸coisCoheur, Merritt N. Deeter, et al.. An examination of the long-term CO records from MOPITT and IASI: comparison of retrieval methodology. Atmospheric Measurement Techniques, European Geosciences Union, 2015, 8 (10), pp.4313-4328. <10.5194/amt-8-4313-2015>. <insu-01145299> HAL Id: insu-01145299 https://hal-insu.archives-ouvertes.fr/insu-01145299 Submitted on 15 Oct 2015 HAL is a multi-disciplinary open access L'archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destin´eeau d´ep^otet `ala diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publi´esou non, lished or not. The documents may come from ´emanant des ´etablissements d'enseignement et de teaching and research institutions in France or recherche fran¸caisou ´etrangers,des laboratoires abroad, or from public or private research centers. publics ou priv´es. Atmos. Meas. Tech., 8, 4313–4328, 2015 www.atmos-meas-tech.net/8/4313/2015/ doi:10.5194/amt-8-4313-2015 © Author(s) 2015. CC Attribution 3.0 License. An examination of the long-term CO records from MOPITT and IASI: comparison of retrieval methodology M. George1, C. Clerbaux1,2, I. Bouarar3, P.-F. Coheur2, M. N. Deeter4, D. P. Edwards4, G. Francis4, J. C. Gille4, J. Hadji-Lazaro1, D. Hurtmans2, A. Inness5, D. Mao4, and H. M. Worden4 1Sorbonne Universités, UPMC Univ. Paris 06, Université Versailles St-Quentin, CNRS/INSU, LATMOS-IPSL, Paris, France 2Spectroscopie de l’Atmosphère, Chimie Quantique et Photophysique, Université Libre de Bruxelles (U.L.B.), Brussels, Belgium 3Max Planck Institute for Meteorology, Hamburg, Germany 4Atmospheric Chemistry Observations and Modeling, National Center for Atmospheric Research, Boulder, CO, USA 5European Centre for Medium-Range Weather Forecasts, Reading, UK Correspondence to: M. George ([email protected]) Received: 12 February 2015 – Published in Atmos. Meas. Tech. Discuss.: 23 April 2015 Revised: 14 August 2015 – Accepted: 8 September 2015 – Published: 15 October 2015 Abstract. Carbon monoxide (CO) is a key atmospheric com- stant vs. a variable a priori. On one hand, MOPITT agrees pound that can be remotely sensed by satellite on the global better with the aircraft profiles for observations with persist- scale. Fifteen years of continuous observations are now avail- ing high levels of CO throughout the year due to pollution or able from the MOPITT/Terra mission (2000 to present). An- seasonal fire activity (because the climatology-based a pri- other 15 and more years of observations will be provided ori is supposed to be closer to the real atmospheric state). On by the IASI/MetOp instrument series (2007–2023 >). In or- the other hand, IASI performs better when unexpected events der to study long-term variability and trends, a homogeneous leading to high levels of CO occur, due to a larger variability record is required, which is not straightforward as the re- associated with the a priori. trieved quantities are instrument and processing dependent. The present study aims at evaluating the consistency between the CO products derived from the MOPITT and IASI mis- sions, both for total columns and vertical profiles, during 1 Introduction a 6-year overlap period (2008–2013). The analysis is per- formed by first comparing the available 2013 versions of the Measuring the variability and trends in carbon monox- retrieval algorithms (v5T for MOPITT and v20100815 for ide (CO) on the global scale is essential as it is an ozone and IASI), and second using a dedicated reprocessing of MO- carbon dioxide precursor, and it regulates the oxidizing ca- PITT CO profiles and columns using the same a priori in- pacity of the troposphere through its destruction cycle involv- formation as the IASI product. MOPITT total columns are ing the hydroxyl radical (OH) (Duncan and Logan, 2008). generally slightly higher over land (bias ranging from 0 to The background CO atmospheric loading varies as a func- 13 %) than IASI data. When IASI and MOPITT data are re- tion of season and latitude and is significantly perturbed by trieved with the same a priori constraints, correlation coeffi- human activities related to combustion processes: car traffic, cients are slightly improved. Large discrepancies (total col- heating/cooking systems, industrial activities, etc. CO accu- umn bias over 15 %) observed in the Northern Hemisphere mulates in the Northern Hemisphere (NH) during the win- during the winter months are reduced by a factor of 2 to 2.5. ter months due to low solar insolation corresponding to less The detailed analysis of retrieved vertical profiles compared chemical destruction, and concentrations peak in early spring with collocated aircraft data from the MOZAIC-IAGOS net- each year. Natural and human-induced fires also affect the work, illustrates the advantages and disadvantages of a con- CO budget, in particular in boreal areas where intense fires occur during the dry season and in the tropics where large Published by Copernicus Publications on behalf of the European Geosciences Union. 4314 M. George et al.: Long-term CO records from MOPITT and IASI emissions are linked to agricultural practices (Edwards et al., retrieval process is the choice of the a priori, which con- 2006). CO emissions inventories still present large uncertain- sists of an expected profile (xa/ and its associated variance- ties (Streets et al., 2013), and separating anthropogenic and covariance matrix (Sa/, to constrain the retrieved CO profile biomass burning contributions is essential for attributing CO to fall within the range of physically realistic solutions (based long-term trends (Strode and Pawson, 2013). on the known variability of this species). Due to its moderate lifetime (1–3 months), CO is an excel- Previous studies have inter-compared CO retrieved lent tracer of tropospheric pollution, which can often travel columns or profiles over specific areas and limited time pe- far downwind, even between continents (HTAP, 2010). CO riods. Clerbaux et al. (2002) made a first comparison of the can easily be measured by infrared remote sensing as it com- TES, MOPITT, and IASI retrieval algorithms to retrieve CO bines high variability and significant perturbations over back- columns from a common nadir radiance data set, provided ground concentration levels with a strong infrared absorption by the IMG/ADEOS thermal infrared instrument. Luo et signature. Over the last 2 decades, Earth-observing satellites al. (2007) compared, for 2 days in September 2004, TES- have revolutionized our ability to map CO and to understand retrieved CO profiles adjusted to the MOPITT a priori with its evolving concentration on regional and global scales. At the MOPITT retrievals and also the adjusted TES CO profiles the moment several satellite missions using the thermal in- with the MOPITT profiles vertically smoothed by the TES frared (TIR) spectral range to sound the atmosphere are de- averaging kernels. Warner et al. (2007) used the MOPITT livering CO data, including MOPITT on EOS/Terra launched a priori profile as AIRS first guess and showed global im- at the end of 1999 (Drummond and Mand, 1996; Deeter et provements to the agreements between CO at 500 hPa from al., 2003), AIRS on the EOS/Aqua satellite launched in 2002 these two instruments, for the 2-month time period of the (Aumann et al., 2003; McMillan et al., 2005), TES on the INTEX-A campaign. Ho et al. (2009) applied TES a priori EOS/Aura satellite launched in 2003 (Beer, 2006; Rinsland et profiles and covariance matrix to a modified MOPITT re- al., 2006), and IASI on the EPS/MetOp-A satellite launched trieval algorithm, for a 1-month study. George et al. (2009) in 2006 (Clerbaux et al., 2009; George et al., 2009). All these compared the IASI CO columns with MOPITT, AIRS and missions are maturing and have exceeded their foreseen life- TES CO columns, adjusted with the IASI a priori assump- times. More recently, the CrIS (Gambacorta et al., 2014) tions, for three different months (August 2008, November and IASI/MetOp-B instruments were launched onboard the 2008 and February 2009) and on the global scale. Illingworth SNPP and MetOp-B satellites, in 2011 and 2012, respec- et al. (2011) compared IASI CO with MOPITT CO data over tively. a localized region of Africa, for 1 day. They first retrieved the Each of these thermal infrared sensors has a dedicated CO MOPITT profiles using IASI a priori assumptions and then retrieval algorithm that was improved over time and has ben- applied the averaging kernels resulting from these new MO- efited from cross comparisons with other products. The opti- PITT retrievals to the IASI CO profiles. Finally, Worden et mal estimation (OE) retrieval approach (Rodgers, 2000) is a al. (2013) examined hemispheric and regional trends for CO widely used inverse method in atmospheric sciences to derive from all four missions, from 2000 through 2011. geophysical products from instrument measurements (e.g., The present study compares the CO record from MOPITT radiances). It regularizes the under-determined inverse prob- and IASI on the global scale, in order to setup a framework lem and provides the best estimates given the observations for building a consistent long-term data set. These two sen- and some prior knowledge of the atmospheric state. For MO- sors together already provided a 15-year record of data, in- PITT and IASI, one CO vertical profile and its associated cluding 6 years of common observation (2008–2013). The integrated total column are retrieved at each sounding loca- analysis is performed on both retrieved total columns and tion and the OE provides useful diagnostic variables such as vertical profiles, and focuses on identifying differences in the averaging kernel matrix (the sensitivity of both the in- the retrievals due to a priori assumptions.
Recommended publications
  • Earth Science Data and Information System (ESDIS) Project Update
    Earth Science Data and Information System (ESDIS) Project Update October 15-16, 2008 National Snow and Ice Data Center & Physical Oceanography DAAC User Working Group Meeting Pasadena, CA [email protected] ESDIS Project Code 423 NASA GSFC Topics •• ESDISESDIS OrganizationOrganization •• SystemSystem ContextContext •• KeyKey MetricsMetrics •• DataData ArchitectureArchitecture •• KeyKey ActivitiesActivities – Data Discovery – Customer Satisfaction & Metrics – Operations Management 2 Earth Science Data and Information System (ESDIS) Project • The ESDIS Project is responsible for the Earth Observing System Data and Information System (EOSDIS), one of the largest civilian Science Information System in the world • The EOSDIS: – Ingests, archives, processes, and distributes an unprecedented volume of science data for NASA’s flagship Earth science missions (e.g., Terra, Aqua, Aura, ICESat) – Supports unique requirements of a variety of Earth science disciplines (e.g., land, atmosphere, snow/ice, and ocean) as well as inter- disciplinary researchers, climate This Jason sea-surface height image shows modelers, and application users sea surface height anomalies with the seasonal cycle (the effects of summer, fall, (e.g., U.S. Forest Service) winter, and spring) removed. Each image is a 10-day average of data, centered on the date – Employs state-of-the-art hardware indicated. and software technology to achieve Courtesy: NASA EOSDIS Physical 3 Oceanography DAAC required data throughput EOSDIS Manages Data For All 24 EOS Measurements Aqua (5/02)
    [Show full text]
  • Treaties and Other International Acts Series 94-1115 ______
    TREATIES AND OTHER INTERNATIONAL ACTS SERIES 94-1115 ________________________________________________________________________ SPACE Cooperation Memorandum of Understanding Between the UNITED STATES OF AMERICA and CANADA Signed at Washington November 15, 1994 with Appendix NOTE BY THE DEPARTMENT OF STATE Pursuant to Public Law 89—497, approved July 8, 1966 (80 Stat. 271; 1 U.S.C. 113)— “. .the Treaties and Other International Acts Series issued under the authority of the Secretary of State shall be competent evidence . of the treaties, international agreements other than treaties, and proclamations by the President of such treaties and international agreements other than treaties, as the case may be, therein contained, in all the courts of law and equity and of maritime jurisdiction, and in all the tribunals and public offices of the United States, and of the several States, without any further proof or authentication thereof.” CANADA Space: Cooperation Memorandum of Understanding signed at Washington November 15, 1994; Entered into force November 15, 1994. With appendix. MEMORANDUM OF UNDERSTANDING between the UNITED STATES NATIONAL AERONAUTICS AND SPACE ADMINISTRATION and the CANADIAN SPACE AGENCY concerning COOPERATION IN THE FLIGHT OF THE MEASUREMENTS OF POLLUTION IN THE TROPOSPHERE (MOPITT) INSTRUMENT ON THE NASA POLAR ORBITING PLATFORM AND RELATED SUPPORT FOR AN INTERNATIONAL EARTH OBSERVING SYSTEM 2 The United States National Aeronautics and Space Administration (hereinafter "NASA") and the Canadian Space Agency (hereinafter "CSA")
    [Show full text]
  • Assessing Measurements of Pollution in the Troposphere (MOPITT) Carbon Monoxide Retrievals Over Urban Versus Non-Urban Regions
    Atmos. Meas. Tech., 13, 1337–1356, 2020 https://doi.org/10.5194/amt-13-1337-2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License. Assessing Measurements of Pollution in the Troposphere (MOPITT) carbon monoxide retrievals over urban versus non-urban regions Wenfu Tang1,2, Helen M. Worden2, Merritt N. Deeter2, David P. Edwards2, Louisa K. Emmons2, Sara Martínez-Alonso2, Benjamin Gaubert2, Rebecca R. Buchholz2, Glenn S. Diskin3, Russell R. Dickerson4, Xinrong Ren4,5, Hao He4, and Yutaka Kondo6 1Advanced Study Program, National Center for Atmospheric Research, Boulder, CO, USA 2Atmospheric Chemistry Observations and Modeling, National Center for Atmospheric Research, Boulder, CO, USA 3NASA Langley Research Center, Hampton, VA, USA 4Department of Atmospheric and Oceanic Science, University of Maryland, College Park, MD, USA 5Air Resources Laboratory, National Oceanic and Atmospheric Administration, College Park, MD, USA 6National Institute of Polar Research, Tachikawa, Japan Correspondence: Wenfu Tang ([email protected]) Received: 4 November 2019 – Discussion started: 28 November 2019 Revised: 31 January 2020 – Accepted: 16 February 2020 – Published: 23 March 2020 Abstract. The Measurements of Pollution in the Tropo- luted scenes. We test the sensitivities of the agreements be- sphere (MOPITT) retrievals over urban regions have not been tween MOPITT and in situ profiles to assumptions and data validated systematically, even though MOPITT observations filters applied during the comparisons of MOPITT
    [Show full text]
  • Article Is financed by CNRS-INSU
    Atmos. Chem. Phys., 10, 2175–2194, 2010 www.atmos-chem-phys.net/10/2175/2010/ Atmospheric © Author(s) 2010. This work is distributed under Chemistry the Creative Commons Attribution 3.0 License. and Physics Midlatitude stratosphere – troposphere exchange as diagnosed by MLS O3 and MOPITT CO assimilated fields L. El Amraoui1, J.-L. Attie´1,2, N. Semane3, M. Claeyman1,2, V.-H. Peuch1, J. Warner4, P. Ricaud2, J.-P. Cammas2, A. Piacentini5, B. Josse1, D. Cariolle5, S. Massart5, and H. Bencherif6 1CNRM-GAME, Met´ eo-France´ and CNRS, URA 1357, Toulouse, France 2Laboratoire d’Aerologie,´ Universite´ de Toulouse, CNRS/INSU, Toulouse, France 3CNRM, Direction de la Met´ eorologie´ Nationale, Casablanca, Morocco 4University of Maryland, Baltimore County, USA 5CERFACS, Toulouse, France 6Laboratoire de l’Atmosphere` et des Cyclones, Universite´ de La Reunion,´ France Received: 5 June 2009 – Published in Atmos. Chem. Phys. Discuss.: 1 October 2009 Revised: 12 February 2010 – Accepted: 16 February 2010 – Published: 2 March 2010 Abstract. This paper presents a comprehensive charac- and the free model they are 6.3 ppbv, 16.6 ppbv and 0.71, re- terization of a very deep stratospheric intrusion which oc- spectively. The paper also presents a demonstration of the curred over the British Isles on 15 August 2007. The sig- capability of O3 and CO assimilated fields to better describe nature of this event is diagnosed using ozonesonde mea- a stratosphere-troposphere exchange (STE) event in compar- ◦ ◦ surements over Lerwick, UK (60.14 N, 1.19 W) and is ison with the free run modelled O3 and CO fields. Although also well characterized using meteorological analyses from the assimilation of MLS data improves the distribution of O3 the global operational weather prediction model of Met´ eo-´ above the tropopause compared to the free model run, it is France, ARPEGE.
    [Show full text]
  • Key Terra Facts Joint with Japan and Canada Orbit: Type: Near-Polar, Sun-Synchronous Equatorial Crossing: 10:30 A.M
    Terra Key Terra Facts Joint with Japan and Canada Orbit: Type: Near-polar, sun-synchronous Equatorial Crossing: 10:30 a.m. Altitude: 705 km Inclination: 98.1° Terra URL Period: 98.88 minutes terra.nasa.gov Repeat Cycle: 16 days Dimensions: 2.7 m × 3.3 m × 6.8 m Mass: 5,190 kg Power: 2,530 W Summary Design Life: 6 years The Terra (formerly called EOS AM-1) satellite is the flagship of NASA’s Earth Science Missions. Terra is the first EOS (Earth Observing System) platform and pro- vides global data on the state of the atmosphere, land, and Launch oceans, as well as their interactions with solar radiation • Date and Location: December 18, 1999, from Van- and with one another. denberg Air Force Base, California • Vehicle: Atlas Centaur IIAS expendable launch Instruments vehicle • Clouds and the Earth’s Radiant Energy System (CERES; two copies) • Multi-angle Imaging SpectroRadiometer (MISR) Relevant Science Focus Areas • Moderate Resolution Imaging Spectroradiometer (see NASA’s Earth Science Program section) (MODIS) • Atmospheric Composition • Measurements of Pollution in The Troposphere • Carbon Cycle, Ecosystems, and Biogeochemistry (MOPITT) • Climate Variability and Change • Advanced Spaceborne Thermal Emission and Reflec- • Earth Surface and Interior tion Radiometer (ASTER) • Water and Energy Cycles • Weather Points of Contact • Terra Project Scientist: Marc Imhoff, NASA Related Applications Goddard Space Flight Center (see Applied Science Program section) • Terra Deputy Project Scientist: Si-Chee Tsay, NASA • Agricultural Efficiency Goddard
    [Show full text]
  • EOSDIS DAAC Summary Table of Functions
    EOSDIS DAAC Summary Table Name Location Data Management Expertise Atmospheric NASA Langley o Spaceborne data: CERES, MISR, CALIPSO, o Provides sensor-specific search tools Sciences Data Research ISCCP, SAGE III, MOPITT, TES and from field as well as more general tools and Center (ASDC) Center and airborne campaigns including DISCOVER- services, such as atmosphere product AQ, ATTREX, AirMISR, INTEX-A&B subsetting o Responsible for processing all science data o Provides unique expertise on Earth products for CERES (on TRMM, Terra, Aqua, Radiation Budget, solar radiation, and SNPP) and MISR (on Terra) instruments atmosphere composition, o MEaSUREs Program datasets tropospheric chemistry and aerosols o Connectivity to LaRC science teams Alaska Satellite Geophysical o Spaceborne data: o Provides specialized support in SAR Facility (ASF) Institute at the Seasat, RADARSAT-1 processing and enhanced data DAAC University of Advanced Land Observing Satellite (ALOS) products for science researchers Alaska, PALSAR, o Provides science support for Polar Fairbanks European Remote Sensing Satellite-1, -2 processes and land vegetation (ERS-1 and -2), measurements associated with SAR Japanese Earth Resources Satellite-1 (JERS- instruments 1) o Airborne mission data: Airborne SAR (AIRSAR), Jet Propulsion Laboratory Uninhabited Aerial Vehicle SAR (UAVSAR) o MEaSUREs Program datasets Crustal NASA Goddard o Data and derived products from a global o Provides specialized data services in Dynamics Data Space Flight network of observing stations equipped with space geodesy and solid Earth Information Center one or more of the following measurement dynamics System (CDDIS) techniques: o Connectivity to NASA’s Space Geodesy • Satellite Laser Ranging (SLR) and Lunar Network of observing systems Laser Ranging (LLR) • Very Long Baseline Interferometry (VLBI) • Global Navigation Satellite System (GNSS) • Doppler Orbitography and Radiopositioning Integrated by Satellite (DORIS) o MEaSUREs Program datasets Goddard Earth NASA Goddard o Process AIRS data into standard products.
    [Show full text]
  • EOSDIS Space Administration
    National Aeronautics and EOSDIS Space Administration FALL 2019 Earth Science Data and Information System (ESDIS) Project A PUBLICATIONUpdate OF THE EARTH OBSERVING SYSTEM DATA AND INFORMATION SYSTEM (EOSDIS), CODE 423 TOP STORIES IN THIS ISSUE: TOP STORIES LANCE Top 10 at 10 LANCE Top 10 at 10 ...................................1 NASA’s Land, Atmosphere Near Real-time Capability for EOS, NASA Earth Observing Data and Tools Aid better known as LANCE, is 10 years old. Here’s a look at 10 LANCE International Education ...............................4 milestones over the past decade. Now Available in NASA Worldview: Earth ince 2009, the Land, Atmosphere Near real- Every 10 Minutes .......................................5 Stime Capability for NASA’s Earth Observing System (EOS), or LANCE, has been providing DATA USER PROFILES ....................8 data and data products generally within three Dr. Philip Thompson hours of a satellite observation. The products, Dr. Kristy Tiampo services, and data distribution strategies Dr. Monica Pape developed by the LANCE team have helped transform not only how Earth observing data ANNOUNCEMENTS .........................9 are used, but also the worldwide accessibility of these data. As LANCE enters its New Global Sea Level Change Animation at NASA’s PO.DAAC… ...................................9 second decade, it’s worth looking back at some LANCE milestones. While this list is not meant to be all-inclusive, it provides an overview of how this major New Version of the ASTER GDEM .......................................... initiative evolved to provide data from instruments aboard Earth observing 10 satellites rapidly, accurately, and consistently. New PO.DAAC Saildrone Data Animation ...10 1. Development of the NRTPE and Rapid Response, the precursors WEBINARS ........................................11 to LANCE DATA RECIPES The evolution of what would become known as LANCE began in 2001 with AND TUTORIALS .............................12 the development of the NASA/NOAA/Department of Defense Near Real- Time Processing Effort (NRTPE).
    [Show full text]
  • 1999 EOS Reference Handbook
    1999 EOS Reference Handbook A Guide to NASA’s Earth Science Enterprise and the Earth Observing System http://eos.nasa.gov/ 1999 EOS Reference Handbook A Guide to NASA’s Earth Science Enterprise and the Earth Observing System Editors Michael D. King Reynold Greenstone Acknowledgements Special thanks are extended to the EOS Prin- Design and Production cipal Investigators and Team Leaders for providing detailed information about their Sterling Spangler respective instruments, and to the Principal Investigators of the various Interdisciplinary Science Investigations for descriptions of their studies. In addition, members of the EOS Project at the Goddard Space Flight Center are recognized for their assistance in verifying and enhancing the technical con- tent of the document. Finally, appreciation is extended to the international partners for For Additional Copies: providing up-to-date specifications of the instruments and platforms that are key ele- EOS Project Science Office ments of the International Earth Observing Mission. Code 900 NASA/Goddard Space Flight Center Support for production of this document, Greenbelt, MD 20771 provided by Winnie Humberson, William Bandeen, Carl Gray, Hannelore Parrish and Phone: (301) 441-4259 Charlotte Griner, is gratefully acknowl- Internet: [email protected] edged. Table of Contents Preface 5 Earth Science Enterprise 7 The Earth Observing System 15 EOS Data and Information System (EOSDIS) 27 Data and Information Policy 37 Pathfinder Data Sets 45 Earth Science Information Partners and the Working Prototype-Federation 47 EOS Data Quality: Calibration and Validation 51 Education Programs 53 International Cooperation 57 Interagency Coordination 65 Mission Elements 71 EOS Instruments 89 EOS Interdisciplinary Science Investigations 157 Points-of-Contact 340 Acronyms and Abbreviations 354 Appendix 361 List of Figures 1.
    [Show full text]
  • Hal Maring Earth Science Division, Science Mission Directorate November 2013 Atmospheric Composition Research at NASA
    Hal Maring Earth Science Division, Science Mission Directorate November 2013 Atmospheric Composition Research at NASA • How is atmospheric composition changing? Carbon Cycle & • What chemical & Ecosystems (CO2, CH4) physical processes are important for air quality, Climate Variability radiative transfer and & Change (atmospheric climate? constituent effects on climate) • What trends in atmospheric Missions constituents, clouds and Atmospheric cloud properties as well as solar radiation are Models Composition driving global climate? • How do atmospheric Water & Energy trace constituents Technology respond to and affect Cycle (atmospheric water vapor) global environmental change? • How will changes in Earth Surface & atmospheric Interior (volcanic composition affect effects on atmosphere) ozone and regional- global climate? Weather (effects on air quality) 2 NASA Operating Missions Denotes International Collaboration LDCM NPP 3 Operating Satellite Status Current Life Mission Launch Phase Design Life (yr) (yr) Expected End Terra 18-Dec-99 Extended 5 13.3 2017 ACRIMSat 20-Dec-99 Extended 5 13.3 2020 Aqua 03-May-02 Extended 5 11.0 2022 SORCE 25-Jan-03 Extended 5 10.2 2015 Aura 15-Jul-04 Extended 5 8.8 2018 Cloudsat 28-Apr-06 Extended 3 7.0 2015 CALIPSO 28-Apr-06 Extended 3 7.0 2016 OCO - 1 24-Feb-09 Launch Failure 2 N/A N/A Glory 04-Mar-11 Launch Failure 3 N/A N/A Suomi-NPP 25-Oct-11 Prime till Oct 2016 5 1.4 not enough data 4 Operating Instrument Status INSTRUMENT INSTRUMENT MISSION STATUS Spectral Irradiance Monitor SIM SORCE Operating in
    [Show full text]
  • The Orbiting Carbon Observatory-2 Early Science Investigations of Regional Carbon Dioxide Fluxes
    The Orbiting Carbon Observatory-2 early science investigations of regional carbon dioxide fluxes Authors: A. Eldering1*, P.O. Wennberg2, D. Crisp1, D. Schimel1, M.R. Gunson1, A. Chatterjee3,4, J. Liu1, F. M. Schwandner1, Y. Sun1, C.W. O’Dell5, C. Frankenberg2, T. Taylor5, B. 1 1 6 7 7 3,4 Fisher , G.B. Osterman , D. Wunch , J. Hakkarainen , J. Tamminen , B. Weir Affiliations: 1Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA. 2 Divisions of Geology and Planetary Sciences and Engineering and Applied Science, California Institute of Technology, Pasadena, CA. 3 Universities Space Research Association, Columbia, MD. 4 NASA Global Modeling and Assimilation Office, Greenbelt, MD. 5 Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, CO. 6 currently University of Toronto, Department of Physics, prior to December 2015 was Division of Geology and Planetary Sciences, California Institute of Technology, Pasadena, CA. 7 Finnish Meteorological Institute, Earth Observation, Helsinki, Finland. *Correspondence to: [email protected] Abstract: NASA’s Orbiting Carbon Observatory-2 (OCO-2) mission was motivated by the need to diagnose how the increasing concentration of atmospheric carbon dioxide (CO2) is altering the productivity of the biosphere and the uptake of CO2 by the oceans. Launched on July 2, 2014, OCO-2 provides retrievals of the total column carbon dioxide (XCO2) as well as the fluorescence from chlorophyll in terrestrial plants. The seasonal pattern of uptake by the terrestrial biosphere is recorded in fluorescence and the drawdown of XCO2 during summer. Launched just prior to one of the most intense El Niños of the past century, OCO-2 measurements of XCO2 and fluorescence record the impact of the large change in ocean temperature and rainfall on uptake and release of CO2 by the oceans and biosphere.
    [Show full text]
  • Measurements of Pollution in the Troposphere (MOPITT) Validation Through 2006
    Atmos. Chem. Phys., 9, 1795–1803, 2009 www.atmos-chem-phys.net/9/1795/2009/ Atmospheric © Author(s) 2009. This work is distributed under Chemistry the Creative Commons Attribution 3.0 License. and Physics Measurements of Pollution In The Troposphere (MOPITT) validation through 2006 L. K. Emmons1, D. P. Edwards1, M. N. Deeter1, J. C. Gille1, T. Campos1, P. Ned´ elec´ 2, P. Novelli3, and G. Sachse4 1National Center for Atmospheric Research, Boulder, CO, USA 2Laboratoire d’Aerologie,´ University P. Sabatier, Centre National de la Recherche Scientifique, Observatoire Midi-Pyren´ ees,´ Toulouse, France 3NOAA, Earth System Research Laboratory, Global Monitoring Division, Boulder, CO, USA 4NASA Langley Research Center, Hampton, VA, USA Received: 27 August 2008 – Published in Atmos. Chem. Phys. Discuss.: 15 October 2008 Revised: 18 February 2009 – Accepted: 18 February 2009 – Published: 11 March 2009 Abstract. Comparisons of aircraft measurements of car- tal issues have affected MOPITT operations since the cooler bon monoxide (CO) to the retrievals of CO using obser- failure in 2001. vations from the Measurements of Pollution in The Tropo- Validation of the MOPITT Version 3 (V3) retrievals sphere (MOPITT) instrument onboard the Terra satellite are against in situ measurements from aircraft has been per- presented. Observations made as part of the NASA INTEX- formed on a regular basis since the start of the mission (Em- B and NSF MIRAGE field campaigns during March–May mons et al., 2004, 2007). This has included comparison of 2006 are used to validate the MOPITT CO retrievals, along MOPITT CO retrievals to aircraft in situ measurements as with routine samples from 2001 through 2006 from NOAA part of routine sampling performed by NOAA at several sites, and the MOZAIC measurements from commercial aircraft.
    [Show full text]
  • CGMS-45 NASA-WP-01 V1, 15 June 2017 Prepared by NASA Agenda Item
    CGMS-45 NASA-WP-01 v1, 15 June 2017 Prepared by NASA Agenda Item: D.12 Discussed in Plenary NASA REPORT ON THE STATUS OF CURRENT AND FUTURE EARTH SATELLITE SYSTEMS Richard Blakeslee5, James Butler2, David Crisp3, Gregory Dell1, Richard Eckman1, Jack Kaye1, Brian Killough4, George Komar2, Philip Larkin2, John Lee1, Barry Lefer1, Anthony Mannucci3, Pamela Millar2, Peter Pilewskie6, Erik Richard6, William Schreiner7, Jeffrey Stehr1, Dong Wu2, and Elizabeth Yoseph1 1NASA Headquarters, 2NASA Goddard Space Flight Center, 3NASA Jet Propulsion Laboratory / California Institute of Technology, 4NASA Langley Research Center, 5NASA Marshall Space Flight Center, 6University of Colorado Boulder / Laboratory for Atmospheric and Space Physics, 7University Corporation of Atmospheric Research Executive summary NASA currently supports the operations of 20 Earth Science missions. Since the last CGMS-44 (June 2016), NASA’s Earth Science program launched one Earth Venture Mission and two instruments to the International Space Station (ISS), and continued development of several new missions. During this time period, the Earth Observing – 1 (EO-1) mission completed passivation and some instruments in extended mission operations have experienced reduced capability, but continue to provide valuable data. Although all NASA operated missions listed were conceived as research missions, the efficiency of the communications and ground data handling systems has supported operational and near-real-time applications. NASA has also continued to support the development and deployment of direct operational application Earth sensing missions with the Landsat series for the USGS and the GOES and JPSS series for NOAA. NASA's Earth Science Program is implementing a balanced and robust plan to accomplish a broad set of critical Earth observation measurements from space for advancing Earth sensing science research.
    [Show full text]