The Orbiting Carbon Observatory-2 early science investigations of regional carbon dioxide fluxes Authors: A. Eldering1*, P.O. Wennberg2, D. Crisp1, D. Schimel1, M.R. Gunson1, A. Chatterjee3,4, J. Liu1, F. M. Schwandner1, Y. Sun1, C.W. O’Dell5, C. Frankenberg2, T. Taylor5, B. 1 1 6 7 7 3,4 Fisher , G.B. Osterman , D. Wunch , J. Hakkarainen , J. Tamminen , B. Weir Affiliations: 1Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA. 2 Divisions of Geology and Planetary Sciences and Engineering and Applied Science, California Institute of Technology, Pasadena, CA. 3 Universities Space Research Association, Columbia, MD. 4 NASA Global Modeling and Assimilation Office, Greenbelt, MD. 5 Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, CO. 6 currently University of Toronto, Department of Physics, prior to December 2015 was Division of Geology and Planetary Sciences, California Institute of Technology, Pasadena, CA. 7 Finnish Meteorological Institute, Earth Observation, Helsinki, Finland. *Correspondence to:
[email protected] Abstract: NASA’s Orbiting Carbon Observatory-2 (OCO-2) mission was motivated by the need to diagnose how the increasing concentration of atmospheric carbon dioxide (CO2) is altering the productivity of the biosphere and the uptake of CO2 by the oceans. Launched on July 2, 2014, OCO-2 provides retrievals of the total column carbon dioxide (XCO2) as well as the fluorescence from chlorophyll in terrestrial plants. The seasonal pattern of uptake by the terrestrial biosphere is recorded in fluorescence and the drawdown of XCO2 during summer. Launched just prior to one of the most intense El Niños of the past century, OCO-2 measurements of XCO2 and fluorescence record the impact of the large change in ocean temperature and rainfall on uptake and release of CO2 by the oceans and biosphere.