Game Theory and Industrial Organization
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Use of Mixed Signaling Strategies in International Crisis Negotiations
USE OF MIXED SIGNALING STRATEGIES IN INTERNATIONAL CRISIS NEGOTIATIONS DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Unislawa M. Wszolek, B.A., M.A. ***** The Ohio State University 2007 Dissertation Committee: Approved by Brian Pollins, Adviser Daniel Verdier Adviser Randall Schweller Graduate Program in Political Science ABSTRACT The assertion that clear signaling prevents unnecessary war drives much of the recent developments in research on international crises signaling, so much so that this work has aimed at identifying types of clear signals. But if clear signals are the only mechanism for preventing war, as the signaling literature claims, an important puzzle remains — why are signals that combine both carrot and stick components sent and why are signals that are partial or ambiguous sent. While these signals would seemingly work at cross-purposes undermining the signaler’s goals, actually, we observe them frequently in crises that not only end short of war but also that realize the signaler’s goals. Through a game theoretic model, this dissertation theorizes that because these alternatives to clear signals increase the attractiveness, and therefore the likelihood, of compliance they are a more cost-effective way to show resolve and avoid unnecessary conflict than clear signals. In addition to building a game theoretic model, an additional contribution of this thesis is to develop a method for observing mixed versus clear signaling strategies and use this method to test the linkage between signaling and crisis outcomes. Results of statistical analyses support theoretical expectations: clear signaling strategies might not always be the most effective way to secure peace, while mixed signaling strategies can be an effective deterrent. -
Equilibrium Refinements
Equilibrium Refinements Mihai Manea MIT Sequential Equilibrium I In many games information is imperfect and the only subgame is the original game. subgame perfect equilibrium = Nash equilibrium I Play starting at an information set can be analyzed as a separate subgame if we specify players’ beliefs about at which node they are. I Based on the beliefs, we can test whether continuation strategies form a Nash equilibrium. I Sequential equilibrium (Kreps and Wilson 1982): way to derive plausible beliefs at every information set. Mihai Manea (MIT) Equilibrium Refinements April 13, 2016 2 / 38 An Example with Incomplete Information Spence’s (1973) job market signaling game I The worker knows her ability (productivity) and chooses a level of education. I Education is more costly for low ability types. I Firm observes the worker’s education, but not her ability. I The firm decides what wage to offer her. In the spirit of subgame perfection, the optimal wage should depend on the firm’s beliefs about the worker’s ability given the observed education. An equilibrium needs to specify contingent actions and beliefs. Beliefs should follow Bayes’ rule on the equilibrium path. What about off-path beliefs? Mihai Manea (MIT) Equilibrium Refinements April 13, 2016 3 / 38 An Example with Imperfect Information Courtesy of The MIT Press. Used with permission. Figure: (L; A) is a subgame perfect equilibrium. Is it plausible that 2 plays A? Mihai Manea (MIT) Equilibrium Refinements April 13, 2016 4 / 38 Assessments and Sequential Rationality Focus on extensive-form games of perfect recall with finitely many nodes. An assessment is a pair (σ; µ) I σ: (behavior) strategy profile I µ = (µ(h) 2 ∆(h))h2H: system of beliefs ui(σjh; µ(h)): i’s payoff when play begins at a node in h randomly selected according to µ(h), and subsequent play specified by σ. -
Lecture Notes
GRADUATE GAME THEORY LECTURE NOTES BY OMER TAMUZ California Institute of Technology 2018 Acknowledgments These lecture notes are partially adapted from Osborne and Rubinstein [29], Maschler, Solan and Zamir [23], lecture notes by Federico Echenique, and slides by Daron Acemoglu and Asu Ozdaglar. I am indebted to Seo Young (Silvia) Kim and Zhuofang Li for their help in finding and correcting many errors. Any comments or suggestions are welcome. 2 Contents 1 Extensive form games with perfect information 7 1.1 Tic-Tac-Toe ........................................ 7 1.2 The Sweet Fifteen Game ................................ 7 1.3 Chess ............................................ 7 1.4 Definition of extensive form games with perfect information ........... 10 1.5 The ultimatum game .................................. 10 1.6 Equilibria ......................................... 11 1.7 The centipede game ................................... 11 1.8 Subgames and subgame perfect equilibria ...................... 13 1.9 The dollar auction .................................... 14 1.10 Backward induction, Kuhn’s Theorem and a proof of Zermelo’s Theorem ... 15 2 Strategic form games 17 2.1 Definition ......................................... 17 2.2 Nash equilibria ...................................... 17 2.3 Classical examples .................................... 17 2.4 Dominated strategies .................................. 22 2.5 Repeated elimination of dominated strategies ................... 22 2.6 Dominant strategies .................................. -
Recent Advances in Understanding Competitive Markets
Recent Advances in Understanding Competitive Markets Chris Shannon Department of Economics University of California, Berkeley March 4, 2002 1 Introduction The Arrow-Debreu model of competitive markets has proven to be a remark- ably rich and °exible foundation for studying an array of important economic problems, ranging from social security reform to the determinants of long-run growth. Central to the study of such questions are many of the extensions and modi¯cations of the classic Arrow-Debreu framework that have been ad- vanced over the last 40 years. These include dynamic models of exchange over time, as in overlapping generations or continuous time, and under un- certainty, as in incomplete ¯nancial markets. Many of the most interesting and important recent advances have been spurred by questions about the role of markets in allocating resources and providing opportunities for risk- sharing arising in ¯nance and macroeconomics. This article is intended to give an overview of some of these more recent developments in theoretical work involving competitive markets, and highlight some promising areas for future work. I focus on three broad topics. The ¯rst is the role of asymmetric informa- tion in competitive markets. Classic work in information economics suggests that competitive markets break down in the face of informational asymme- 0 tries. Recently these issues have been reinvestigated from the vantage point of more general models of the market structure, resulting in some surpris- ing results overturning these conclusions and clarifying the conditions under which perfectly competitive markets can incorporate informational asymme- tries. The second concentrates on the testable implications of competitive markets. -
The Monty Hall Problem in the Game Theory Class
The Monty Hall Problem in the Game Theory Class Sasha Gnedin∗ October 29, 2018 1 Introduction Suppose you’re on a game show, and you’re given the choice of three doors: Behind one door is a car; behind the others, goats. You pick a door, say No. 1, and the host, who knows what’s behind the doors, opens another door, say No. 3, which has a goat. He then says to you, “Do you want to pick door No. 2?” Is it to your advantage to switch your choice? With these famous words the Parade Magazine columnist vos Savant opened an exciting chapter in mathematical didactics. The puzzle, which has be- come known as the Monty Hall Problem (MHP), has broken the records of popularity among the probability paradoxes. The book by Rosenhouse [9] and the Wikipedia entry on the MHP present the history and variations of the problem. arXiv:1107.0326v1 [math.HO] 1 Jul 2011 In the basic version of the MHP the rules of the game specify that the host must always reveal one of the unchosen doors to show that there is no prize there. Two remaining unrevealed doors may hide the prize, creating the illusion of symmetry and suggesting that the action does not matter. How- ever, the symmetry is fallacious, and switching is a better action, doubling the probability of winning. There are two main explanations of the paradox. One of them, simplistic, amounts to just counting the mutually exclusive cases: either you win with ∗[email protected] 1 switching or with holding the first choice. -
Chapter 2 Equilibrium
Chapter 2 Equilibrium The theory of equilibrium attempts to predict what happens in a game when players be- have strategically. This is a central concept to this text as, in mechanism design, we are optimizing over games to find the games with good equilibria. Here, we review the most fundamental notions of equilibrium. They will all be static notions in that players are as- sumed to understand the game and will play once in the game. While such foreknowledge is certainly questionable, some justification can be derived from imagining the game in a dynamic setting where players can learn from past play. Readers should look elsewhere for formal justifications. This chapter reviews equilibrium in both complete and incomplete information games. As games of incomplete information are the most central to mechanism design, special at- tention will be paid to them. In particular, we will characterize equilibrium when the private information of each agent is single-dimensional and corresponds, for instance, to a value for receiving a good or service. We will show that auctions with the same equilibrium outcome have the same expected revenue. Using this so-called revenue equivalence we will describe how to solve for the equilibrium strategies of standard auctions in symmetric environments. Emphasis is placed on demonstrating the central theories of equilibrium and not on providing the most comprehensive or general results. For that readers are recommended to consult a game theory textbook. 2.1 Complete Information Games In games of compete information all players are assumed to know precisely the payoff struc- ture of all other players for all possible outcomes of the game. -
The Oppressive Pressures of Globalization and Neoliberalism on Mexican Maquiladora Garment Workers
Pursuit - The Journal of Undergraduate Research at The University of Tennessee Volume 9 Issue 1 Article 7 July 2019 The Oppressive Pressures of Globalization and Neoliberalism on Mexican Maquiladora Garment Workers Jenna Demeter The University of Tennessee, Knoxville, [email protected] Follow this and additional works at: https://trace.tennessee.edu/pursuit Part of the Business Administration, Management, and Operations Commons, Business Law, Public Responsibility, and Ethics Commons, Economic History Commons, Gender and Sexuality Commons, Growth and Development Commons, Income Distribution Commons, Industrial Organization Commons, Inequality and Stratification Commons, International and Comparative Labor Relations Commons, International Economics Commons, International Relations Commons, International Trade Law Commons, Labor and Employment Law Commons, Labor Economics Commons, Latin American Studies Commons, Law and Economics Commons, Macroeconomics Commons, Political Economy Commons, Politics and Social Change Commons, Public Economics Commons, Regional Economics Commons, Rural Sociology Commons, Unions Commons, and the Work, Economy and Organizations Commons Recommended Citation Demeter, Jenna (2019) "The Oppressive Pressures of Globalization and Neoliberalism on Mexican Maquiladora Garment Workers," Pursuit - The Journal of Undergraduate Research at The University of Tennessee: Vol. 9 : Iss. 1 , Article 7. Available at: https://trace.tennessee.edu/pursuit/vol9/iss1/7 This Article is brought to you for free and open access by -
Incomplete Information I. Bayesian Games
Bayesian Games Debraj Ray, November 2006 Unlike the previous notes, the material here is perfectly standard and can be found in the usual textbooks: see, e.g., Fudenberg-Tirole. For the examples in these notes (except for the very last section), I draw heavily on Martin Osborne’s excellent recent text, An Introduction to Game Theory, Oxford University Press. Obviously, incomplete information games — in which one or more players are privy to infor- mation that others don’t have — has enormous applicability: credit markets / auctions / regulation of firms / insurance / bargaining /lemons / public goods provision / signaling / . the list goes on and on. 1. A Definition A Bayesian game consists of 1. A set of players N. 2. A set of states Ω, and a common prior µ on Ω. 3. For each player i a set of actions Ai and a set of signals or types Ti. (Can make actions sets depend on type realizations.) 4. For each player i, a mapping τi :Ω 7→ Ti. 5. For each player i, a vN-M payoff function fi : A × Ω 7→ R, where A is the product of the Ai’s. Remarks A. Typically, the mapping τi tells us player i’s type. The easiest case is just when Ω is the product of the Ti’s and τi is just the appropriate projection mapping. B. The prior on states need not be common, but one view is that there is no loss of generality in assuming it (simply put all differences in the prior into differences in signals and redefine the state space and si-mappings accordingly). -
Uniqueness and Stability in Symmetric Games: Theory and Applications
Uniqueness and stability in symmetric games: Theory and Applications Andreas M. Hefti∗ November 2013 Abstract This article develops a comparably simple approach towards uniqueness of pure- strategy equilibria in symmetric games with potentially many players by separating be- tween multiple symmetric equilibria and asymmetric equilibria. Our separation approach is useful in applications for investigating, for example, how different parameter constel- lations may affect the scope for multiple symmetric or asymmetric equilibria, or how the equilibrium set of higher-dimensional symmetric games depends on the nature of the strategies. Moreover, our approach is technically appealing as it reduces the complexity of the uniqueness-problem to a two-player game, boundary conditions are less critical compared to other standard procedures, and best-replies need not be everywhere differ- entiable. The article documents the usefulness of the separation approach with several examples, including applications to asymmetric games and to a two-dimensional price- advertising game, and discusses the relationship between stability and multiplicity of symmetric equilibria. Keywords: Symmetric Games, Uniqueness, Symmetric equilibrium, Stability, Indus- trial Organization JEL Classification: C62, C65, C72, D43, L13 ∗Author affiliation: University of Zurich, Department of Economics, Bluemlisalpstr. 10, CH-8006 Zurich. E-mail: [email protected], Phone: +41787354964. Part of the research was accomplished during a research stay at the Department of Economics, Harvard University, Littauer Center, 02138 Cambridge, USA. 1 1 Introduction Whether or not there is a unique (Nash) equilibrium is an interesting and important question in many game-theoretic settings. Many applications concentrate on games with identical players, as the equilibrium outcome of an ex-ante symmetric setting frequently is of self-interest, or comparably easy to handle analytically, especially in presence of more than two players. -
Econ 8747: Industrial Organization Theory Fall 2018
Econ 8747: Industrial Organization Theory Fall 2018 Professor Yongmin Chen Office: Econ 112 Class Time/Location: 9:30-10:45 AM. TTH; ECON 5 Office Hours: 3:30-5:00pm, TTH; 10:00-11:30am, Wednesday Course Description: Industrial organization studies the behavior of firms and markets under imperfect competition. The course will cover selected topics in industrial organization theory. Recommended textbooks include: (1) The Theory of Industrial Organization by Jean Tirole, MIT Press, and (2) Industrial Organization: Contemporary Theory and Practice by Pepall, Richards, and Norman. A good source for references is the Handbook of Industrial Organization, Vol. 1, 2, and 3. HIO3 (2007, Mark Armstrong and Robert Porter edits) surveys the major developments in IO since Tirole. Grading: Grades are based on homework and class participation (30%), presentation (30%), and a term paper (40%). You are encouraged to form study groups to discuss homework and lecture materials. Requirements for the term paper will be discussed later. The course materials are arranged by topics (the topics are listed below), and each topic is usually covered in several classes. Tirole remains the classic graduate IO textbook, and you are encouraged to read the entire book and work out the exercise problems there (even though we only cover a few parts of the book in the course). You will also be asked to write short reviews/discussions (each review/discussion is 2-3 pages long, double spaced). A tentative course schedule is attached. There can be changes to this schedule during the semester, which will be announced in class. You are responsible for updating course information according to announcements made in class. -
Product Differentiation
Product differentiation Industrial Organization Bernard Caillaud Master APE - Paris School of Economics September 22, 2016 Bernard Caillaud Product differentiation Motivation The Bertrand paradox relies on the fact buyers choose the cheap- est firm, even for very small price differences. In practice, some buyers may continue to buy from the most expensive firms because they have an intrinsic preference for the product sold by that firm: Notion of differentiation. Indeed, assuming an homogeneous product is not realistic: rarely exist two identical goods in this sense For objective reasons: products differ in their physical char- acteristics, in their design, ... For subjective reasons: even when physical differences are hard to see for consumers, branding may well make two prod- ucts appear differently in the consumers' eyes Bernard Caillaud Product differentiation Motivation Differentiation among products is above all a property of con- sumers' preferences: Taste for diversity Heterogeneity of consumers' taste But it has major consequences in terms of imperfectly competi- tive behavior: so, the analysis of differentiation allows for a richer discussion and comparison of price competition models vs quan- tity competition models. Also related to the practical question (for competition authori- ties) of market definition: set of goods highly substitutable among themselves and poorly substitutable with goods outside this set Bernard Caillaud Product differentiation Motivation Firms have in general an incentive to affect the degree of differ- entiation of their products compared to rivals'. Hence, differen- tiation is related to other aspects of firms’ strategies. Choice of products: firms choose how to differentiate from rivals, this impacts the type of products that they choose to offer and the diversity of products that consumers face. -
History in the Study of Industrial Organization
History in the Study of Industrial Organization David Genesove Hebrew University of Jerusalem and C.E.P.R. May 13 2016 Preliminary Draft *I am grateful for comments by discussants Konrad Stahl, Chaim Fershtman, John Sutton and Bob Feinberg, and others in presentations at the 2012 Nordic IO Conference, the IDC, Herzlya, the MAACI Summer Institute on Competition Policy, Israel IO Day and the 2015 EARIE Conference. I. Introduction In studying Industrial Organization, economists have at times turned to the past to illustrate and test its theories. This includes some of the seminal papers of the new empiricism (e.g., Porter, 1983). This readiness to cull from the historical record has neither been examined critically, nor accompanied by much of an attempt to follow the industrial organization of markets over time. This paper asks how history can help us understand markets, by posing the following dual questions: (a) what are the advantages and disadvantages of using old markets to illuminate our understanding of current ones, and (b) is a historical approach to the study of Industrial Organization possible and worth pursuing? We are talking about history in two different ways: as the past, and as an analytical approach. History as the past means using old markets in empirical work in the same way one uses contemporary markets, whether that is inductively learning about markets in the “theory-development role of applied econometrics” (Morgan, cited by Snooks, 1993), estimating parameters of interest, or “using historical episodes to test economic models for their generality” (Kindleberger, 1990, p. 3). History as an analytic approach means describing a sequence of events as a logical progression informed by economic theory but unencumbered by it, with room for personalities and errors, and perhaps emphasis on certain events with overwhelming importance.