Ahmad CHARANEK the Bile Canaliculus Revisited

Total Page:16

File Type:pdf, Size:1020Kb

Ahmad CHARANEK the Bile Canaliculus Revisited ANNÉE 2015 THÈSE / UNIVERSITÉ DE RENNES 1 sous le sceau de l’Université Européenne de Bretagne pour le grade de DOCTEUR DE L’UNIVERSITÉ DE RENNES 1 Mention : Biologie et Sciences de la Santé École doctorale Vie-Agro-Santé présentée par Ahmad CHARANEK Préparée dans l’Unité de Recherche INSERM UMR 991 «Foie, Métabolismes et Cancer» (Pharmacie) Thèse soutenue à Rennes The Bile Canaliculus le 10 Juin 2015 devant le jury composé de : Revisited: Pr Chantal HOUSSET Professeur des Universités Morphological And Université de Paris 6 / rapporteur Pr Marc PALLARDY Functional Professeur des Universités Université de Paris 11 / rapporteur Alterations Induced Pr Pierre BRISSOT Professeur des Universités By Cholestatic Université de Rennes 1 / examinateur Dr Richard WEAVER Drugs In HepaRG Scientific Director INSTITUT DE RECHERCHES INTERNATIONALES SERVIER / examinateur Cells Dr Christiane GUGUEN-GUILLOUZO Directeur de Recherches Emérite Inserm Université de Rennes 1 / examinateur Pr André GUILLOUZO Professeur des Universités Université de Rennes 1 / directeur de thèse 1 The test of our progress is not whether we add more to the abundance of those who have much; it is whether we provide enough for those who have little. Franklin Delano Roosevelt 2 Acknowledgment Foremost, I would like to express my sincere gratitude to my supervisor Pr. André Guillouzo, for his constant guidance, continuous encouragement, and patience along the thesis preparation. I am grateful to the trust he gave me, and the moral support he provided. I highly appreciate his confidence in my ambitious goals, and his enormous efforts to provide me with all the required facilities. I am so thankful for his priceless advices that will pave the road for my future career. I would like to thank to all jury members: Mme Chantal Housset, Mr Marc Pallardy, Mr Pierre Brissot, and Mr Richard Weaver. Thank you for giving me the honor of judging my thesis work. I won’t be able to complete this journey without the support and guidance of Mme Guillouzo, I highly acknowledge her massive assistance, fruitful discussions, directions, patience, great scientific ideas, and attention to tiny details that taught me to strive towards my goal with steady steps. Special thanks and appreciation are expressed to Pr. Ziad Abdel-Razzak. Words cannot express my gratitude and respect for you. Your help and support are unforgettable. I can’t forget your patience, insistence, and massive effort you did to help me finding a way to d thios thesis “I won’t be able to do this thesis without your favor”. You were always supportive in need. May Allah reward you for all what you did. I would to express my sincere gratitude and deep thanks for the Lebanese Association for Scientific Research (LASeR) for supporting financially a part of my thesis work. 3 I would like also to express my gratitude for all the members of INSERM U991 especially, Mme Marie-Anne Robin, Mr Bernard Fromenty for all your support and help in need. Special and deep gratitude for my lab-mates, no words can express my appreciation and love for you all: Eva, Dounia, Anais, Camille, Nicolas, Sacha, Simon, Karima, Pégah, Yasmine, Sofie, Thomas O., Thomas G., Karim, Rozenn and Sebastien. I would like to thank Mr Dominique Rainteau and his team for their generous help and measurement of bile acids in his laboratory. I greatly appreciate Rémy Le Guével for his availability, effort, and enormous time he passed in image analysis. I won’t be able to complete this journey without the support of my Lebanese friends; Fida and Elise, since I arrived to Rennes you were very supportive and encouraging, thank you for the nice moments we passed together. Houssein you are special, you are a real brother, we shared all the good and bad moments of the thesis together, I don’t know how it could be without you, and how hard to be lonely. I will never forget your spontaneous support, kindness and generous help. Thank you because you don’t know how to say “NO”. Thank you for all the time you made me laugh when I was stressed. You compensated the feelings of loneliness since you arrived. May Allah bless you and compensate you by the best. Pamela, I can’t find the words to express my gratitude for you and your family; Ellie and Marcosa. Thank you for all what you did, for the amazing days we passed together I hope that we will have again the opportunity to work together, I greatly appreciate your assistance, support and advices. I can tell you there is only 4 cyclosporine in the life “hahahha”. I can’t compensate you for all what you did but Allah will do. My special appreciation and deep gratitude are expressed to you Audrey. You are exceptional. This work would not have been possible unless you were beside me, not only for the enormous experimental work you did and enormous effort in the success of this thesis, but also for your great will of assistance, support and encouragement. Your generosity, love and care compensated the feelings of loneliness, foreignness, and weakness I have experienced during hard moments away from my family. Thank you for cheering me up and stood by me through all the times. Sure I won’t forget to thank you Matthew, you deserves special and best thanks not only for participating in the success of the thesis, but also for the amazing moments, jokes and the interesting ambience we experienced together. I wont forget how much you were attentive with me especialy when I was sick. At the end, I will not forget my family, I would like to express my profound gratitude and high appreciation to you Rawaa, Rima, Nijmi, Mohammad and Omar for your precious support, and your continuous encouragement and prays, for all the sacrifices that you have made on my behalf. This work is dedicated for you MOM and DAD, how can I compensate everything you did for me, I am indebted for you. May Allah guard and reward you. I feel so blessed with everything, thanks to almighty Allah for everything. 5 6 Abstract Cholestasis is one of the most common manifestations of drug-induced liver injury (DILI). Since up to now it is unpredictable in 40% of all cases its accurate prediction represents a major challenge. First, we validated that differentiated HepaRG human liver cells are a suitable in vitro model to study drug-induced cholestasis, by comparing localization of influx and efflux transporters and their functional activity in these cells and primary human hepatocytes. All tested influx and efflux transporters were correctly localized to canalicular (BSEP, MRP2, MDR1, and MDR3) or basolateral (NTCP, MRP3) membrane domains and were functional. In addition, the HepaRG cell line also exhibits bile acids (BAs) metabolizing enzymes and has the capacity to synthesize BAs and to further amidate these BAs with taurine and glycine as well as sulfate, at a rate similar to that of primary hepatocytes. Concentration- dependent changes were observed in total BAs disposition after treatment of HepaRG cells by the cholestatic drug cyclosporine A (CsA). Inhibition of efflux and uptake of taurocholate was evidenced as early as 15 min and 1 h respectively. These early effects were associated with deregulation of cPKC pathway and induction of endoplasmic reticulum stress that preceded generation of oxidative stress. We also showed for the first time intracellular accumulation of endogenous BAs by a cholestatic drug in vitro. In addition, our work brings evidences that motility of bile canaliculi (BC) is essential for BAs clearance where ROCK pathway and actomyosin complex are highly implicated. We provided the first demonstration that ROCK pathway and BC dynamics are major targets of cholestatic compounds. Our data should help in the development of screening methods for early prediction of drug- induced cholestatic side effects. 7 Résumé La cholestase est l’une des manifestations les plus courantes des lésions induites par des médicaments. Dans 40% des cas elle n’est pas prévisible; une meilleure prédictibilité représente donc un défi majeur. Tout d’abord, nous avons démontré que les cellules hépatiques humaines HepaRG différenciées sont un modèle approprié pour étudier la cholestase induite par les médicaments en comparant la localisation et l’activité des transporteurs d’influx et d’efflux avec les hépatocytes humains primaires. Tous les transporteurs d’efflux et d’influx testés ont été correctement localisés au niveau des membranes canaliculaire (BSEP, MRP2, MDR1 et MDR3) et basolatéral (NTCP, MRP3) et sont fonctionnels. En outre, ces cellules expriment également les enzymes qui métabolisent les acides biliaires (ABs) et ont la capacité de les synthétiser et de les conjuguer avec la taurine, la glycine et le sulfate, à un taux similaire à celui des hépatocytes primaires. Des changements ont été observés sur la répartition des ABs totaux après traitements de cellules HepaRG par un médicament cholestatique, la cyclosporine A (CsA), de manière concentration- dépendante. L’inhibition de l’efflux et de l’influx de taurocholate a été observée après 15 min et 1 h respectivement. Ces premiers effets ont été associés à la dérégulation de la voie des cPKC et l’induction d’un stress du réticulum endoplasmique puis d’un stress oxydant. Nous avons également montré pour la première fois une accumulation intracellulaire d’ABs endogènes avec un médicament cholestatique in vitro. En outre, notre travail apporte des preuves que la motilité des canalicules biliaires (BC) est indispensable à la clairance des ABs. La voie ROCK et le complexe actomyosine sont fortement impliqués. Nous avons fourni la première démonstration que la voie ROCK et les dynamiques des BC sont des cibles majeures des composés cholestatiques. Nos données devraient contribuer à l’élaboration de méthodes de screening pour la prédiction précoce des effets secondaires induits par les médicaments cholestatiques.
Recommended publications
  • Vocabulario De Morfoloxía, Anatomía E Citoloxía Veterinaria
    Vocabulario de Morfoloxía, anatomía e citoloxía veterinaria (galego-español-inglés) Servizo de Normalización Lingüística Universidade de Santiago de Compostela COLECCIÓN VOCABULARIOS TEMÁTICOS N.º 4 SERVIZO DE NORMALIZACIÓN LINGÜÍSTICA Vocabulario de Morfoloxía, anatomía e citoloxía veterinaria (galego-español-inglés) 2008 UNIVERSIDADE DE SANTIAGO DE COMPOSTELA VOCABULARIO de morfoloxía, anatomía e citoloxía veterinaria : (galego-español- inglés) / coordinador Xusto A. Rodríguez Río, Servizo de Normalización Lingüística ; autores Matilde Lombardero Fernández ... [et al.]. – Santiago de Compostela : Universidade de Santiago de Compostela, Servizo de Publicacións e Intercambio Científico, 2008. – 369 p. ; 21 cm. – (Vocabularios temáticos ; 4). - D.L. C 2458-2008. – ISBN 978-84-9887-018-3 1.Medicina �������������������������������������������������������������������������veterinaria-Diccionarios�������������������������������������������������. 2.Galego (Lingua)-Glosarios, vocabularios, etc. políglotas. I.Lombardero Fernández, Matilde. II.Rodríguez Rio, Xusto A. coord. III. Universidade de Santiago de Compostela. Servizo de Normalización Lingüística, coord. IV.Universidade de Santiago de Compostela. Servizo de Publicacións e Intercambio Científico, ed. V.Serie. 591.4(038)=699=60=20 Coordinador Xusto A. Rodríguez Río (Área de Terminoloxía. Servizo de Normalización Lingüística. Universidade de Santiago de Compostela) Autoras/res Matilde Lombardero Fernández (doutora en Veterinaria e profesora do Departamento de Anatomía e Produción Animal.
    [Show full text]
  • Liver • Gallbladder
    NORMAL BODY Microscopic Anatomy! Accessory Glands of the GI Tract,! lecture 2! ! • Liver • Gallbladder John Klingensmith [email protected] Objectives! By the end of this lecture, students will be able to: ! • trace the flow of blood and bile within the liver • describe the structure of the liver in regard to its functions • indicate the major cell types of the liver and their functions • distinguish the microanatomy of exocrine and endocrine function by the hepatocytes • explain the functional organization of the gallbladder at the cellular level (Lecture plan: overview of structure and function, then increasing resolution of microanatomy and cellular function) Liver and Gallbladder Liver October is “Liver Awareness Month” -- http://www.liverfoundation.org Liver • Encapsulated by CT sheath and mesothelium • Lobes largely composed of hepatocytes in parenchyma • Receives blood from small intestine and general circulation Major functions of the liver • Production and secretion of digestive fluids to small intestine (exocrine) • Production of plasma proteins and lipoproteins (endocrine) • Storage and control of blood glucose • Detoxification of absorbed compounds • Source of embyronic hematopoiesis The liver lobule • Functional unit of the parenchyma • Delimited by CT septa, invisible in humans (pig is shown) • Surrounds the central vein • Bordered by portal tracts Central vein, muralia and sinusoids Parenchyma: Muralia and sinusoids • Hepatocyte basolateral membrane faces sinusoidal lumen • Bile canaliculi occur between adjacent hepatocytes • Cords anastomose Vascularization of the liver • Receives veinous blood from small intestine via portal vein • Receives freshly oxygenated blood from hepatic artery • Discharges blood into vena cava via hepatic vein Blood flow in the liver lobes • flows in via the portal vein and hepatic artery • oozes through the liver lobules to central veins • flows out via the hepatic vein Portal Tract! (aka portal triad) • Portal venule • Hepatic arteriole • Bile duct • Lymph vessel • Nerves • Connective tissue Central vein! (a.k.a.
    [Show full text]
  • Nomina Histologica Veterinaria, First Edition
    NOMINA HISTOLOGICA VETERINARIA Submitted by the International Committee on Veterinary Histological Nomenclature (ICVHN) to the World Association of Veterinary Anatomists Published on the website of the World Association of Veterinary Anatomists www.wava-amav.org 2017 CONTENTS Introduction i Principles of term construction in N.H.V. iii Cytologia – Cytology 1 Textus epithelialis – Epithelial tissue 10 Textus connectivus – Connective tissue 13 Sanguis et Lympha – Blood and Lymph 17 Textus muscularis – Muscle tissue 19 Textus nervosus – Nerve tissue 20 Splanchnologia – Viscera 23 Systema digestorium – Digestive system 24 Systema respiratorium – Respiratory system 32 Systema urinarium – Urinary system 35 Organa genitalia masculina – Male genital system 38 Organa genitalia feminina – Female genital system 42 Systema endocrinum – Endocrine system 45 Systema cardiovasculare et lymphaticum [Angiologia] – Cardiovascular and lymphatic system 47 Systema nervosum – Nervous system 52 Receptores sensorii et Organa sensuum – Sensory receptors and Sense organs 58 Integumentum – Integument 64 INTRODUCTION The preparations leading to the publication of the present first edition of the Nomina Histologica Veterinaria has a long history spanning more than 50 years. Under the auspices of the World Association of Veterinary Anatomists (W.A.V.A.), the International Committee on Veterinary Anatomical Nomenclature (I.C.V.A.N.) appointed in Giessen, 1965, a Subcommittee on Histology and Embryology which started a working relation with the Subcommittee on Histology of the former International Anatomical Nomenclature Committee. In Mexico City, 1971, this Subcommittee presented a document entitled Nomina Histologica Veterinaria: A Working Draft as a basis for the continued work of the newly-appointed Subcommittee on Histological Nomenclature. This resulted in the editing of the Nomina Histologica Veterinaria: A Working Draft II (Toulouse, 1974), followed by preparations for publication of a Nomina Histologica Veterinaria.
    [Show full text]
  • Title Bile Canalicular Abnormalities in the Early Phase of a Mouse
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Kyoto University Research Information Repository Bile canalicular abnormalities in the early phase of a mouse Title model of sclerosing cholangitis. Miyao, Masashi; Ozeki, Munetaka; Abiru, Hitoshi; Manabe, Author(s) Sho; Kotani, Hirokazu; Tsuruyama, Tatsuaki; Tamaki, Keiji Citation Digestive and liver disease (2013), 45(3): 216-225 Issue Date 2013-03 URL http://hdl.handle.net/2433/173350 © 2012 Editrice Gastroenterologica Italiana S.r.l. Published by Right Elsevier Ltd. Type Journal Article Textversion author Kyoto University 1 Bile canalicular abnormalities in the early phase of a mouse model of sclerosing cholangitis Masashi Miyao1M.D.; Munetaka Ozeki1Ph.D.; Hitoshi Abiru1B.S.; Sho Manabe1B.S.; Hirokazu Kotani1M.D.; Tatsuaki Tsuruyama2 M.D. and Keiji Tamaki1 M.D. 1Department of Forensic Medicine and Molecular Pathology, Kyoto University Graduate School of Medicine 2Center for Anatomical Studies, Kyoto University Graduate School of Medicine Corresponding author: Keiji Tamaki. Telephone: +81 75 753 4474. Fax: +81 75 761 9591. E-mail: [email protected]. Department of Forensic Medicine and Molecular Pathology, Kyoto University Graduate School of Medicine, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan Conflict of Interest: The authors declare no conflict of interest. Word count: 3484 words (excluding abstract, references, figures). 2 Abstract Background: The bile canaliculus is the smallest and first biliary channel and is formed by two or three adjacent hepatocytes. Previous studies of chronic cholangiopathies such as primary sclerosing cholangitis have focused on the bile ductules. However, little is known about the pathological alterations in bile canaliculi in the early phase of cholangiopathies.
    [Show full text]
  • 20.201 Mechanisms of Drug Action the Liver and Metabolism
    3/20/2007 Page 1 20.201 Mechanisms of Drug Action The Liver and Metabolism September 30, 2005 3/20/2007 Page 2 Distribution of Chemicals to Liver • Chemicals entering blood are distributed in the general circulation via the aorta • Chemicals enter various organs • Focus now on liver Epiglottis Mouth Grinds food and mixes it Flap that closes with saliva; where digestion windpipe during begins. • Liver anatomy swallowing. Salivary Glands ~ Largest organ and gland (1.5 kg) Trachea Make saliva, Windpipe (not part of start digestion of starch. ~ Structure: lobes (2 large - R and L; 2 small digestive system) Esophagus - caudate, quadrate) Hepatic Vein* Passes food from mouth to Vein that carries blood stomach by a process known ~ Blood supply: portal blood flow, 80%; away from liver. as peristalsis (contractions by walls of digestive tract that hepatic artery, 20%; outflow into vena cava Liver* move food forward). Stores food and makes ~ Bile duct/gall bladder: bile secreted into bile chemical changes in it. Stomach Holds and mixes food; duct/gall bladder; then into duodenum Gallbladder* glands in lining of upper two thirds produce Sheltered by the liver, digestive juice, which acts It stores bile. • Liver function on protein; lower third Duodenum serves as pump. ~ major metabolic organ in body First part of small intestine; bile from liver breaks up fat Pancreas ~ significant route of xenobiotic excretion and juice from pancreas digests Make enzymes that break all food types. down all types of food. ~ exocrine gland: albumin, clotting factors Portal Vein Carries blood from entire Small Intestine (prothrombin, fibrinogen, factors 7,9,10) digestive tract to liver.
    [Show full text]
  • Motility of Bile Canaliculi in the Living Animal: Implications for Bile Flow Norihito Watanabe, Nobuhiro Tsukada, Charles R
    Motility of Bile Canaliculi in the Living Animal: Implications for Bile Flow Norihito Watanabe, Nobuhiro Tsukada, Charles R. Smith, and M. James Phillips Research Institute and Departments of Pathology and Pediatrics, The Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada M5G 1X8 Abstract. Modem fluorescence microscopic techniques direction towards the portal bile ducts. Contractions were used to image the bile canalicular, system in the were not seen in the network of canaliculi on the sur- intact rat liver, in vivo. By combining the use of sodi- face of the liver. Cytochalasin B administration resulted um fluorescein secretion into bile, with digitally en- in reduced canalicular motility, progressive dilation of hanced fluorescence microscopy and time-lapse video, zone 1 canaliculi, and impairment of bile flow. Cana- it was possible to capture and record the canalicular licular dilations invariably involved the branch points motility events that accompany the secretion of bile in of the canalicular network. The findings add substan- life. Active bile canalicular contractions were found tively to previous in vitro studies using couplets, and predominantly in zone 1 (periportal) hepatocytes of suggest that canalicular contractions contribute physio- the liver. The contractile movements were repetitive, logically to bile flow in the liver. forceful, and appeared unidirectional moving bile in a TIN, myosin and associated proteins involved in con- tile collapses of canaliculi resulting from secretory pressure tractile movements have been found in smooth muscle with rupture of canaliculi (9, 11, 30, 35). In this report, we and nonmuscle cells (1, 16, 18, 24, 42, 43, 56, 61, have taken advantage of the biliary secretion of sodium 65).
    [Show full text]
  • 26 April 2010 TE Prepublication Page 1 Nomina Generalia General Terms
    26 April 2010 TE PrePublication Page 1 Nomina generalia General terms E1.0.0.0.0.0.1 Modus reproductionis Reproductive mode E1.0.0.0.0.0.2 Reproductio sexualis Sexual reproduction E1.0.0.0.0.0.3 Viviparitas Viviparity E1.0.0.0.0.0.4 Heterogamia Heterogamy E1.0.0.0.0.0.5 Endogamia Endogamy E1.0.0.0.0.0.6 Sequentia reproductionis Reproductive sequence E1.0.0.0.0.0.7 Ovulatio Ovulation E1.0.0.0.0.0.8 Erectio Erection E1.0.0.0.0.0.9 Coitus Coitus; Sexual intercourse E1.0.0.0.0.0.10 Ejaculatio1 Ejaculation E1.0.0.0.0.0.11 Emissio Emission E1.0.0.0.0.0.12 Ejaculatio vera Ejaculation proper E1.0.0.0.0.0.13 Semen Semen; Ejaculate E1.0.0.0.0.0.14 Inseminatio Insemination E1.0.0.0.0.0.15 Fertilisatio Fertilization E1.0.0.0.0.0.16 Fecundatio Fecundation; Impregnation E1.0.0.0.0.0.17 Superfecundatio Superfecundation E1.0.0.0.0.0.18 Superimpregnatio Superimpregnation E1.0.0.0.0.0.19 Superfetatio Superfetation E1.0.0.0.0.0.20 Ontogenesis Ontogeny E1.0.0.0.0.0.21 Ontogenesis praenatalis Prenatal ontogeny E1.0.0.0.0.0.22 Tempus praenatale; Tempus gestationis Prenatal period; Gestation period E1.0.0.0.0.0.23 Vita praenatalis Prenatal life E1.0.0.0.0.0.24 Vita intrauterina Intra-uterine life E1.0.0.0.0.0.25 Embryogenesis2 Embryogenesis; Embryogeny E1.0.0.0.0.0.26 Fetogenesis3 Fetogenesis E1.0.0.0.0.0.27 Tempus natale Birth period E1.0.0.0.0.0.28 Ontogenesis postnatalis Postnatal ontogeny E1.0.0.0.0.0.29 Vita postnatalis Postnatal life E1.0.1.0.0.0.1 Mensurae embryonicae et fetales4 Embryonic and fetal measurements E1.0.1.0.0.0.2 Aetas a fecundatione5 Fertilization
    [Show full text]
  • Digestive Glands
    Digestive glands Department of Histology and Embryology of Jilin university ----Jiang Wenhua 1.general description of digestive glands Small digestive glands oesophageal glands gastric glands pyloric glands intestinal glands large digestive glands salivary glands pancreas liver Function: excretion digestive juice incretion 2 salivary glands 2.1.The General Structure of Salivary Glands being composed of acinus and duct striated ducts mucous acinus intercalated ducts serous acinus serous demilune Schematic drawing of the structure of Salivary Glands 2.1.1 acinus (1) serous acinus (2) mucous acinus (3) mixed acinus serous acinus • Serous cells are usually pyramidal in shape, with a broad base and a narrow apical surface .They exhibit characteristics of protein-secreting cells. Adjacent secretory cells are joined together and usually form a spherical mass of cells called acinus, with a lumen in the center . striated ducts mucous acinus intercalated ducts serous acinus serous demilune Schematic drawing of the structure of Salivary Glands mucous cells Mucous cells are usually cuboidal to columnar in shape; their nuclei are oval and pressed toward the bases of the cells. They exhibit the characteristics of mucus-secreting cells , containing glycoproteins important for the moistening and lubricating functions of the saliva. striated ducts mucous acinus intercalated ducts serous acinus serous demilune Schematic drawing of the structure of Salivary Glands The cytoplasm stains lighter in an H and E preparation.large mucigen granules are present
    [Show full text]
  • The Biliary System, Second Edition the Biliary System
    WAN G • ET AL G • ET WAN Colloquium Lectures on Series ISSN: 2154-560X Integrated Systems Physiology From Molecule to Function to Disease LIFE SCIENCES Series Editors: D. Neil Granger, LSU Health Sciences, Shreveport Joey Granger, University of Mississippi Medical Center The Biliary System, Second Edition The Biliary System David Q.-H. Wang, Saint Louis University, USA THE BILIAR Brent A. Neuschwander-Tetri, Saint Louis University, USA Piero Portincasa, Saint Louis University and University of Bari Medical School, Italy Second Edition The biliary system is a complex network of microscopic and macroscopic structures involved in the formation of bile, an aqueous fluid in which a considerable amount of otherwise immiscible cholesterol is transported by other Y SYSTEM Y lipids such as bile acids and phospholipids. This book summarizes current understanding of the molecular and cellular mechanisms of cholesterol and bile acid metabolism, as well as the physical-chemistry of biliary lipids, with an emphasis on biliary lipid metabolism that is regulated by nuclear receptors in the hepatobiliary system. By guiding readers through the various aspects of anatomy, physiology, and biochemistry of all “players” involved in bile formation, this book is intended to be a manageable, easy-to-study compendium of recent EDITION SECOND , progresses in understanding the molecular mechanisms of cholesterol and bile acid metabolism. The authors clearly explain the molecular and cellular pathways that regulate hepatic lipid metabolism, and present color figures, tables, and flowcharts that explain the fundamental mechanisms of lipid synthesis and secretion, bile formation, the enterohepatic circulation, and intestinal absorption of biliary components. Moreover, the consequences of the complex events involving lipid metabolism in the hepatobiliary system are reviewed, with a focus on the translational value of current basic research in health and disease.
    [Show full text]
  • Nomina Histologica Veterinaria
    NOMINA HISTOLOGICA VETERINARIA Submitted by the International Committee on Veterinary Histological Nomenclature (ICVHN) to the World Association of Veterinary Anatomists Published on the website of the World Association of Veterinary Anatomists www.wava-amav.org 2017 CONTENTS Introduction i Principles of term construction in N.H.V. iii Cytologia – Cytology 1 Textus epithelialis – Epithelial tissue 10 Textus connectivus – Connective tissue 13 Sanguis et Lympha – Blood and Lymph 17 Textus muscularis – Muscle tissue 19 Textus nervosus – Nerve tissue 20 Splanchnologia – Viscera 23 Systema digestorium – Digestive system 24 Systema respiratorium – Respiratory system 32 Systema urinarium – Urinary system 35 Organa genitalia masculina – Male genital system 38 Organa genitalia feminina – Female genital system 42 Systema endocrinum – Endocrine system 45 Systema cardiovasculare et lymphaticum [Angiologia] – Cardiovascular and lymphatic system 47 Systema nervosum – Nervous system 52 Receptores sensorii et Organa sensuum – Sensory receptors and Sense organs 58 Integumentum – Integument 64 INTRODUCTION The preparations leading to the publication of the present first edition of the Nomina Histologica Veterinaria has a long history spanning more than 50 years. Under the auspices of the World Association of Veterinary Anatomists (W.A.V.A.), the International Committee on Veterinary Anatomical Nomenclature (I.C.V.A.N.) appointed in Giessen, 1965, a Subcommittee on Histology and Embryology which started a working relation with the Subcommittee on Histology of the former International Anatomical Nomenclature Committee. In Mexico City, 1971, this Subcommittee presented a document entitled Nomina Histologica Veterinaria: A Working Draft as a basis for the continued work of the newly-appointed Subcommittee on Histological Nomenclature. This resulted in the editing of the Nomina Histologica Veterinaria: A Working Draft II (Toulouse, 1974), followed by preparations for publication of a Nomina Histologica Veterinaria.
    [Show full text]
  • Bile Canaliculi Can Be Seen Between the Hepatocytes
    DIGESTIVE GLANDS II Mr. Babatunde D.E Liver ❖ Is the second largest organ in the body. ❖ Is composed of a single type of parenchymal cell, the hepatocyte. Hepatocyte ❖ Possess a myriad of both endocrine and exocrine functions. Figure 16—18. Ultrastructure of a hepatocyte. RER, rough endoplasmic reticulum; SER, smooth endoplasmic reticulum. x10,000. Glisson’s Capsule ❖ Is composed of thin connective tissue that subdivides the liver into lobes and lobules. Blood Supply ❖ Of the liver is derived from two sources: abdominal aorta, via the hepatic artery; portal vein, which brings nutrient-laden blood from the alimentary tract and the spleen. Porta Hepatis ❖ Is the region where the hepatic artery and the portal vein enter and the hepatic ducts leave the liver. Drainage ❖ Of blood is via the hepatic vein. ❖ Hepatic vein is formed by the union of numerous sublobular veins. ❖ Sublobular veins collect blood from the central vein of each classical liver lobule. Bile ❖ Leaves the liver via the hepatic ducts. ❖ Is delivered to the gallbladder. Liver Lobules ❖ There are three types of liver lobules: classical (hexagonal in histologic section); portal lobule (triangular in histological section); liver acinus of Rappaport (liver acinus; diamond shaped in histologic section). CENTRAL VEIN PORTAL CANAL Classical Lobule ❖ Is based on the pig’s liver, where connective tissue elements clearly delineate it. ❖ Portal area (portal canal; triad) is present at each corner of the lobule. ❖ Portal area contains branches of the portal vein, hepatic artery, bile duct, and lymph vessel. Figure 16—12. Three- dimensional aspect of the normal liver. In the upper center is the central vein; in the lower center, the portal vein.
    [Show full text]
  • Expression and Compartmentalization of Integral Plasma Membrane Proteins by Hepatocytes and Their Progenitors in the Rat Pancreas
    Expression and compartmentalization of integral plasma membrane proteins by hepatocytes and their progenitors in the rat pancreas JAMES R. BARTLES1'*, M. SAMBASIVA RAO2, LIQIN ZHANG1, BARBARA E. FAYOS1, CHERYL L. NEHME1 and JANARDAN K. REDDY2 Departments oflCell, Molecular and Structural Biology and 2Pathology, Northwestern University Medical School, 303 East Chicago Avenue, Chicago, Illinois 60611, USA * Author for correspondence Summary A combination of Western blotting, Northern blotting analogy to their respective localizations on hepato- and immunofluorescence was used to examine the cytes in liver, rat hepatic lectin-1 was concentrated expression and compartmentalization of plasma on those surfaces exposed to the pancreatic matrix at membrane proteins by those hepatocyte-like cells the periphery of the hepatocyte clusters (the basal that arise in the pancreases of rats subjected to surface equivalent), whereas HA 321 was concen- sequential dietary copper depletion and repletion. trated on those surfaces exposed to adjacent hepato- The pancreatic hepatocytes were found to: (1) ex- cytes within the clusters. The hepatocyte plasma press several integral membrane proteins known to membrane proteins were found to be expressed in be concentrated within the apical, lateral or basolat- the pancreas at different times during the copper eral domains of the plasma membranes of hepato- depletion/repletion protocol: for example, rat hep- cytes in liver; and (2) compartmentalize the mem- atic lectin-1 and the bulk of the HA 4 were expressed brane proteins to equivalent plasma membrane relatively late in the protocol, only after large domains, despite the organization of these cells into numbers of pancreatic hepatocytes had appeared; clusters instead of highly vascularized plates.
    [Show full text]