Digestive Glandgland

Total Page:16

File Type:pdf, Size:1020Kb

Digestive Glandgland digestivedigestive glandgland 刘佳梅 Components digestive glands found in the wall of digestive tract accessory digestive glands: salivary glands pancreas liver Salivary glands * Parotid * Submandibular G. * Sublingual G. Three types of acini * serous * mucous * seromucous Function: * moistening food * carbohydrate digestion * Secrete IgA * Parotid * Submandibular G. * Sublingual G. Pancreas capsule exocrine portion endocrine portion 1.1. ExocrineExocrine PortionPortion acinusacinus::serousserous cellscells LM:LM: EM:EM: Function:Function: centroacinarcentroacinar cellscells ductsducts:: intercalated ducts intralobular ducts interlobular ducts main duct function:function: 2.2. EndocrineEndocrine PortionPortion 2.12.1 PancreasPancreas IsletsIslets arrangedarranged cellcell groups,groups, abundantabundant fenestratedfenestrated capillariescapillaries betweenbetween thethe cellcell groupsgroups AA cellscells::glucagonglucagon BB cellscells::insulininsulin DD cellscells::somatostatinsomatostatin PPPP cellscells::pancreaticpancreatic polypeptidepolypeptide DD1 cells:cells: VIPVIP CC cells:cells: undiferentiationundiferentiation cellscells Liver CT of capsule hepatic lobules portal area HepaticHepatic LobulesLobules centralcentral veinvein hepatichepatic platesplates (( hepatichepatic cordcord )) hepatichepatic sinusoidsinusoid perisinusoidualperisinusoidual spacespace bilebile canaliculicanaliculi 1.1. hepatocyteshepatocytes LM:LM: polyhedralpolyhedral cells,cells, eosinophiliceosinophilic cytoplasmcytoplasm nuclearnuclear oror doubledouble nucleusnucleus EMEM:: mitochondria,mitochondria, SER,SER, RER,RER, GolgiGolgi complex,complex, lysosomelysosome,, microbodymicrobody,, inclusioninclusion Mitochondria:Mitochondria: supplysupply energyenergy toto cellscells RER:RER: bloodblood albumin,albumin, fibrinogenfibrinogen lipoproteinlipoprotein andand transferrintransferrin SERSER::synthesizingsynthesizing andand secretingsecreting bile,bile, metabolismmetabolism ofof lipidslipids andand hormoneshormones andand detoxifcationdetoxifcation GolgiGolgi complex:complex: LysosomeLysosome:: MicrobodyMicrobody:: oxidationoxidation enzymesenzymes inin it,it, HH2OO2→→HH2OO ++ OO2 Inclusion:Inclusion: glycogen,glycogen, lipidslipids andand pigmentpigment Three types of functional surface in hepatocyte * Perisinusoidal surface: face to perisinusoidal space * bile canalicular surface: face into the bile canaliculus *cell junction surface Interlobule A.&V. 2.2. HepaticHepatic SinusoidSinusoid betweenbetween hepatichepatic platesplates fenestratedfenestrated endotheliumendothelium macrophagesmacrophages largelarge granulesgranules cellscells 3.perisinusoidal space the fat-storing cells : 4.4. BileBile CanaliculusCanaliculus 22 hepatocyteshepatocytes abut,abut, theythey delimitdelimit aa tubulartubular spacespace betweenbetween themthem knownknown asas bilebile canaliculuscanaliculus inin whichwhich havehave aa smallsmall numbernumber ofof microvillimicrovilli.. TheThe cellcell membranesmembranes nearnear thesethese canaliculicanaliculi areare firmlyfirmly boundbound byby tighttight junction,junction, mesodesomesmesodesomes andand gapgap junction.junction. PortalPortal AreaArea interlobularinterlobular veinvein:: interlobularinterlobular artery:artery: interlobularinterlobular bilebile ductduct:: HepaticHepatic BloodBlood SupplySupply Portal V→ interlobular V →→ (75%) sinusoids Hepatic A→interlobular A →→ (25%) hepatic V sublobular V central V Inferior vena cava BiliaryBiliary PassagesPassages Bile canaliculi →periperal bile ductules ( Hering’s ) interlobular bile duct Left & right hepatic ducts Common hepatic duct Common bile duct Cystic duct Gall bladder Duodenum papilla serous acinar cells in EM Pancreas Islets 图15 小鼠肝细胞与肝巨噬细胞(台盼蓝注射).
Recommended publications
  • Classical Liver (Hepatic) Lobules It Is Formed of a Polygonal Mass of A- Capsule: Glisson’S Capsule
    LIVER & SPLEEN Color index: Slides.. Important ..Notes ..Extra.. Objectives: By the end of this lecture, the student should be able to describe: 1. The histological structure of liver with special emphasis on: . Classical hepatic (liver) lobule. Hepatocytes. Portal tract (portal area). Hepatic (liver) blood sinusoids. Space of Disse (perisinusoidal space of Disse) . Bile canalculi. 2. The histological structure of spleen with special emphasis on: . White pulp. Red Pulp. LIVER 1-Stroma; 2-Parenchyma; mainly C.T, but not in humans. Classical liver (hepatic) lobules It is formed of a polygonal mass of a- Capsule: Glisson’s Capsule. liver tissue, bounded by b- Septa (absent in human) interlobular septa with portal areas & Portal areas (Portal tracts) at the periphery & central Portal area: surrounded by (centrolobular) vein in the center. other structures. Central vein: surrounded by c- Network of reticular fibers. hepatocytes LIVER Contents of the Classic Liver Lobule: Borders of the Classical Liver Lobule the rows of hepatocytes should be next to each other; 1- Septa: C.T. septa (e.g. in pigs). remember canaliculi 2- Portal areas (Portal tracts): 1- Anastomosing plates of hepatocytes. Are located in the corners of the classical hepatic 2- Liver blood sinusoids (hepatic blood lobule (usually 3 in No.). sinusoids): between the plates. Contents of portal area: 3- Spaces of Disse (perisinusoidal spaces of a- C.T. b- Bile ducts (interlobular bile ducts). Disse) between the hepatocytes and sinusoids c- Venule (Branch of portal vein). 4- Central vein. d- Arteriole (Branch of hepatic artery). 5- Bile canaliculi. Hepatic artery: surrounded by smooth muscles while the bile duct is not.
    [Show full text]
  • Vocabulario De Morfoloxía, Anatomía E Citoloxía Veterinaria
    Vocabulario de Morfoloxía, anatomía e citoloxía veterinaria (galego-español-inglés) Servizo de Normalización Lingüística Universidade de Santiago de Compostela COLECCIÓN VOCABULARIOS TEMÁTICOS N.º 4 SERVIZO DE NORMALIZACIÓN LINGÜÍSTICA Vocabulario de Morfoloxía, anatomía e citoloxía veterinaria (galego-español-inglés) 2008 UNIVERSIDADE DE SANTIAGO DE COMPOSTELA VOCABULARIO de morfoloxía, anatomía e citoloxía veterinaria : (galego-español- inglés) / coordinador Xusto A. Rodríguez Río, Servizo de Normalización Lingüística ; autores Matilde Lombardero Fernández ... [et al.]. – Santiago de Compostela : Universidade de Santiago de Compostela, Servizo de Publicacións e Intercambio Científico, 2008. – 369 p. ; 21 cm. – (Vocabularios temáticos ; 4). - D.L. C 2458-2008. – ISBN 978-84-9887-018-3 1.Medicina �������������������������������������������������������������������������veterinaria-Diccionarios�������������������������������������������������. 2.Galego (Lingua)-Glosarios, vocabularios, etc. políglotas. I.Lombardero Fernández, Matilde. II.Rodríguez Rio, Xusto A. coord. III. Universidade de Santiago de Compostela. Servizo de Normalización Lingüística, coord. IV.Universidade de Santiago de Compostela. Servizo de Publicacións e Intercambio Científico, ed. V.Serie. 591.4(038)=699=60=20 Coordinador Xusto A. Rodríguez Río (Área de Terminoloxía. Servizo de Normalización Lingüística. Universidade de Santiago de Compostela) Autoras/res Matilde Lombardero Fernández (doutora en Veterinaria e profesora do Departamento de Anatomía e Produción Animal.
    [Show full text]
  • Liver • Gallbladder
    NORMAL BODY Microscopic Anatomy! Accessory Glands of the GI Tract,! lecture 2! ! • Liver • Gallbladder John Klingensmith [email protected] Objectives! By the end of this lecture, students will be able to: ! • trace the flow of blood and bile within the liver • describe the structure of the liver in regard to its functions • indicate the major cell types of the liver and their functions • distinguish the microanatomy of exocrine and endocrine function by the hepatocytes • explain the functional organization of the gallbladder at the cellular level (Lecture plan: overview of structure and function, then increasing resolution of microanatomy and cellular function) Liver and Gallbladder Liver October is “Liver Awareness Month” -- http://www.liverfoundation.org Liver • Encapsulated by CT sheath and mesothelium • Lobes largely composed of hepatocytes in parenchyma • Receives blood from small intestine and general circulation Major functions of the liver • Production and secretion of digestive fluids to small intestine (exocrine) • Production of plasma proteins and lipoproteins (endocrine) • Storage and control of blood glucose • Detoxification of absorbed compounds • Source of embyronic hematopoiesis The liver lobule • Functional unit of the parenchyma • Delimited by CT septa, invisible in humans (pig is shown) • Surrounds the central vein • Bordered by portal tracts Central vein, muralia and sinusoids Parenchyma: Muralia and sinusoids • Hepatocyte basolateral membrane faces sinusoidal lumen • Bile canaliculi occur between adjacent hepatocytes • Cords anastomose Vascularization of the liver • Receives veinous blood from small intestine via portal vein • Receives freshly oxygenated blood from hepatic artery • Discharges blood into vena cava via hepatic vein Blood flow in the liver lobes • flows in via the portal vein and hepatic artery • oozes through the liver lobules to central veins • flows out via the hepatic vein Portal Tract! (aka portal triad) • Portal venule • Hepatic arteriole • Bile duct • Lymph vessel • Nerves • Connective tissue Central vein! (a.k.a.
    [Show full text]
  • Nomina Histologica Veterinaria, First Edition
    NOMINA HISTOLOGICA VETERINARIA Submitted by the International Committee on Veterinary Histological Nomenclature (ICVHN) to the World Association of Veterinary Anatomists Published on the website of the World Association of Veterinary Anatomists www.wava-amav.org 2017 CONTENTS Introduction i Principles of term construction in N.H.V. iii Cytologia – Cytology 1 Textus epithelialis – Epithelial tissue 10 Textus connectivus – Connective tissue 13 Sanguis et Lympha – Blood and Lymph 17 Textus muscularis – Muscle tissue 19 Textus nervosus – Nerve tissue 20 Splanchnologia – Viscera 23 Systema digestorium – Digestive system 24 Systema respiratorium – Respiratory system 32 Systema urinarium – Urinary system 35 Organa genitalia masculina – Male genital system 38 Organa genitalia feminina – Female genital system 42 Systema endocrinum – Endocrine system 45 Systema cardiovasculare et lymphaticum [Angiologia] – Cardiovascular and lymphatic system 47 Systema nervosum – Nervous system 52 Receptores sensorii et Organa sensuum – Sensory receptors and Sense organs 58 Integumentum – Integument 64 INTRODUCTION The preparations leading to the publication of the present first edition of the Nomina Histologica Veterinaria has a long history spanning more than 50 years. Under the auspices of the World Association of Veterinary Anatomists (W.A.V.A.), the International Committee on Veterinary Anatomical Nomenclature (I.C.V.A.N.) appointed in Giessen, 1965, a Subcommittee on Histology and Embryology which started a working relation with the Subcommittee on Histology of the former International Anatomical Nomenclature Committee. In Mexico City, 1971, this Subcommittee presented a document entitled Nomina Histologica Veterinaria: A Working Draft as a basis for the continued work of the newly-appointed Subcommittee on Histological Nomenclature. This resulted in the editing of the Nomina Histologica Veterinaria: A Working Draft II (Toulouse, 1974), followed by preparations for publication of a Nomina Histologica Veterinaria.
    [Show full text]
  • Junction Between Kupffer Cells and Hepatic Sinusoidal Endothelium. a Review This Short Review Was Prepared on the Basis of Trans
    Okajimas Folia Anat. Jpn., 57(2-3) : 145-158, August 1980 Junction between Kupffer Cells and Hepatic Sinusoidal Endothelium. A Review By TOSHIO ITO, YUTAKA TANUMA and SUSUMU SHIBASAKI Department of Anatomy, Teikyo University School of Medicine, Tokyo 173 and Department of Anatomy, Gunma University School of Medicine, Maebashi 371, Japan -Received for Publication, January 24, 1980- Key Words : Kupffer-endothelial junction, Human and bat liver, TEM and SEM. Summary. In this review, the junctions between Kupffer and sinusoidal endothelial cells previously revealed by the present authors under the transmission electron microscope in both normal human and bat livers has been discussed and compared with stereo- images of the connections between the two cell types reported by other authors in scanning electron microscopic studies. It is concluded that Kupffer cells lie on the gap or opening of the endothelial lining of the sinusoid, that part of the perisinusoidal surface of the cell body which is applied to the opening directly faces the perisinusoidal space, and that the margin of this part of the perisinusoidal surface of the Kupffer cell and the margin of the endothelial opening are circularly bound by means of a peculiar close junctional area identical in structure and appearance with the so-called "junctional complex" (Wisse) between endothelial cells . The two junctional areas between the Kupffer cell and the endothelial sheet which are found in a pair in trans- mission electron microscopic preparations on two diametrical parts of the perisinusoidal surface of the Kupffer cell, should be derived from the perpendicular section of such a circular margin of the endothelial opening attached to the Kupffer cell body.
    [Show full text]
  • Title Bile Canalicular Abnormalities in the Early Phase of a Mouse
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Kyoto University Research Information Repository Bile canalicular abnormalities in the early phase of a mouse Title model of sclerosing cholangitis. Miyao, Masashi; Ozeki, Munetaka; Abiru, Hitoshi; Manabe, Author(s) Sho; Kotani, Hirokazu; Tsuruyama, Tatsuaki; Tamaki, Keiji Citation Digestive and liver disease (2013), 45(3): 216-225 Issue Date 2013-03 URL http://hdl.handle.net/2433/173350 © 2012 Editrice Gastroenterologica Italiana S.r.l. Published by Right Elsevier Ltd. Type Journal Article Textversion author Kyoto University 1 Bile canalicular abnormalities in the early phase of a mouse model of sclerosing cholangitis Masashi Miyao1M.D.; Munetaka Ozeki1Ph.D.; Hitoshi Abiru1B.S.; Sho Manabe1B.S.; Hirokazu Kotani1M.D.; Tatsuaki Tsuruyama2 M.D. and Keiji Tamaki1 M.D. 1Department of Forensic Medicine and Molecular Pathology, Kyoto University Graduate School of Medicine 2Center for Anatomical Studies, Kyoto University Graduate School of Medicine Corresponding author: Keiji Tamaki. Telephone: +81 75 753 4474. Fax: +81 75 761 9591. E-mail: [email protected]. Department of Forensic Medicine and Molecular Pathology, Kyoto University Graduate School of Medicine, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan Conflict of Interest: The authors declare no conflict of interest. Word count: 3484 words (excluding abstract, references, figures). 2 Abstract Background: The bile canaliculus is the smallest and first biliary channel and is formed by two or three adjacent hepatocytes. Previous studies of chronic cholangiopathies such as primary sclerosing cholangitis have focused on the bile ductules. However, little is known about the pathological alterations in bile canaliculi in the early phase of cholangiopathies.
    [Show full text]
  • (Hepatic Stellate Cells) in Diagnosis of Liver Fibrosis
    Gastroenterology & Hepatology: Open Access Research Article Open Access Ito stellate cells (hepatic stellate cells) in diagnosis of liver fibrosis Introduction Volume 10 Issue 4 - 2019 Adverse outcome of most chronic diffuse liver lesions of various etiologies including chronic hepatitis C (CHC) is liver fibrosis in the Vladimir Tsyrkunov,1 Viktor Andreev,2 Rimma development of which main participants are activated fibroblasts. Kravchuk,3 Iryna Kаndratovich1 Activated hepatic stellate cells (HSC) are the main source of activated 1 1,2 Department of Infectious Diseases, Grodno State Medical fibroblasts. University, Belarus 2 HSC, a synonym - stellate cells of liver, Ito cells, perisinusoidal Department of Histology, Grodno State Medical University, Belarus lipocytes, stellate cells. HSC were firstly described in 1876 and named 3Department of Science, Grodno State Medical University, by K. Kupffer stellate cells T. Ito, finding in them a drop of fat firstly Belarus marked them as lipophagic («shibo-sesshusaibo») but then finding that the fat elaborated by the cells from glycogen named them as Correspondence: Iryna Kаndratovich, Department of fat-storing cells or Ito sells («shibo-chozosaibo»).3 In 1971, K.Wake Infectious Diseases, Grodno State Medical University, Gorkogo str 80, Grodno 230009, Belarus, Tel +375152434286, Fax proved the identity of stellate cells of Kupffer and Ito cells and that +375152434286, Email these cells are “stored” vitamin A.4 Received: October 29, 2018 | Published: July 25, 2019 About 80% of vitamin A which is in the body accumulates in the liver and up to 80% of liver retinoids deposited in fat droplets of HSC. Ethers of retinol in formulation of chylomicrons entered to Methods hepatocytes, where they are converted to retinol and form of vitamin A complex with retinol binding protein (RBP), which is secreted in Lifetime liver biopsy obtained by performing aspiration biopsy perisinusoidal space where it deposited by cells.5 of the liver of patients with CHC (HCV ribonucleic acid+).
    [Show full text]
  • 20.201 Mechanisms of Drug Action the Liver and Metabolism
    3/20/2007 Page 1 20.201 Mechanisms of Drug Action The Liver and Metabolism September 30, 2005 3/20/2007 Page 2 Distribution of Chemicals to Liver • Chemicals entering blood are distributed in the general circulation via the aorta • Chemicals enter various organs • Focus now on liver Epiglottis Mouth Grinds food and mixes it Flap that closes with saliva; where digestion windpipe during begins. • Liver anatomy swallowing. Salivary Glands ~ Largest organ and gland (1.5 kg) Trachea Make saliva, Windpipe (not part of start digestion of starch. ~ Structure: lobes (2 large - R and L; 2 small digestive system) Esophagus - caudate, quadrate) Hepatic Vein* Passes food from mouth to Vein that carries blood stomach by a process known ~ Blood supply: portal blood flow, 80%; away from liver. as peristalsis (contractions by walls of digestive tract that hepatic artery, 20%; outflow into vena cava Liver* move food forward). Stores food and makes ~ Bile duct/gall bladder: bile secreted into bile chemical changes in it. Stomach Holds and mixes food; duct/gall bladder; then into duodenum Gallbladder* glands in lining of upper two thirds produce Sheltered by the liver, digestive juice, which acts It stores bile. • Liver function on protein; lower third Duodenum serves as pump. ~ major metabolic organ in body First part of small intestine; bile from liver breaks up fat Pancreas ~ significant route of xenobiotic excretion and juice from pancreas digests Make enzymes that break all food types. down all types of food. ~ exocrine gland: albumin, clotting factors Portal Vein Carries blood from entire Small Intestine (prothrombin, fibrinogen, factors 7,9,10) digestive tract to liver.
    [Show full text]
  • Motility of Bile Canaliculi in the Living Animal: Implications for Bile Flow Norihito Watanabe, Nobuhiro Tsukada, Charles R
    Motility of Bile Canaliculi in the Living Animal: Implications for Bile Flow Norihito Watanabe, Nobuhiro Tsukada, Charles R. Smith, and M. James Phillips Research Institute and Departments of Pathology and Pediatrics, The Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada M5G 1X8 Abstract. Modem fluorescence microscopic techniques direction towards the portal bile ducts. Contractions were used to image the bile canalicular, system in the were not seen in the network of canaliculi on the sur- intact rat liver, in vivo. By combining the use of sodi- face of the liver. Cytochalasin B administration resulted um fluorescein secretion into bile, with digitally en- in reduced canalicular motility, progressive dilation of hanced fluorescence microscopy and time-lapse video, zone 1 canaliculi, and impairment of bile flow. Cana- it was possible to capture and record the canalicular licular dilations invariably involved the branch points motility events that accompany the secretion of bile in of the canalicular network. The findings add substan- life. Active bile canalicular contractions were found tively to previous in vitro studies using couplets, and predominantly in zone 1 (periportal) hepatocytes of suggest that canalicular contractions contribute physio- the liver. The contractile movements were repetitive, logically to bile flow in the liver. forceful, and appeared unidirectional moving bile in a TIN, myosin and associated proteins involved in con- tile collapses of canaliculi resulting from secretory pressure tractile movements have been found in smooth muscle with rupture of canaliculi (9, 11, 30, 35). In this report, we and nonmuscle cells (1, 16, 18, 24, 42, 43, 56, 61, have taken advantage of the biliary secretion of sodium 65).
    [Show full text]
  • Dystroglycan Expression in Hepatic Stellate Cells: Role in Liver Fibrosis
    0023-6837/02/8208-1053$03.00/0 LABORATORY INVESTIGATION Vol. 82, No. 8, p. 1053, 2002 Copyright © 2002 by The United States and Canadian Academy of Pathology, Inc. Printed in U.S.A. Dystroglycan Expression in Hepatic Stellate Cells: Role in Liver Fibrosis Pierre Bedossa, Sophie Ferlicot, Valérie Paradis, Delphine Dargère, Frank Bonvoust, and Michel Vidaud Service d’Anatomie Pathologique (PB, SF, VP), Hôpital de Bicêtre, Université Paris Sud, UPRESA CNRS-8O67 (PB, VP, DD, FB), Faculté des Sciences Pharmaceutiques, Université Paris VI, and JE DRED 351 (MV), Laboratoire de Génétique Moléculaire, Faculté de Pharmacie, Paris, France SUMMARY: Dystroglycan is a membrane component of the dystrophin-glycoprotein transmembrane complex. Its expression is required for the spatial organization of laminin on the cell surface and for basement membrane assembly. In view of the constitution of a perisinusoidal basement membrane during liver fibrosis, we studied dystroglycan expression in liver fibrosis. Dystroglycan mRNA and protein expression were investigated by immunofluorescence, Western blot, and quantitative RT-PCR (TaqMan) in normal human and rat liver and in isolated rat hepatic stellate cells. On Western blot, a 43-kd band corresponding to ␤-dystroglycan was observed in protein extracted from normal and fibrotic human and rat livers. The specific 43-kd protein was also detected in lysates from rat hepatic stellate cells but not from hepatocytes. By immunofluorescence, patchy deposits of ␤-dystroglycan were detected on membrane of hepatic stellate cells in culture. On Western blot and quantitative RT-PCR, an up-regulation of ␤-dystroglycan was shown during spontaneous activation of hepatic stellate cells in culture. Direct evidence for the role of dystroglycan in laminin-hepatic stellate cell interaction was shown because specific antibody directed against ␣-dystroglycan inhibited partially hepatic stellate cell adhesion on laminin-coated plates.
    [Show full text]
  • Liver, Gallbladder, and Pancreas
    Digestive system III: Liver, Gallbladder, And Pancreas Liver Introduction - The embryology , gross morphology , and histology of the normal human liver ”the single largest organ in the human body ”are described in this chapter . - In many instances, immunohistologic studies of liver tissue have the potential to yield more information than electron microscopy. Embryology - The liver arises as the hepatic diverticulum from the endodermal lining of the most distal portion of the foregut during the 3 to 5 week of gestation. - In embryos 4 to 5 mm in length. - The hepatic diverticulum differentiates cranially into proliferating hepatic cords and caudally into the gallbladder and extrahepatic bile ducts. - The anastomosing cords of hepatic epithelial cells grow into the mesenchyme of the septum transversum. - As the hepatic cords extend outward during the 5 week of gestation, they are interpenetrated by the inwardly growing capillary plexus, which arises from the vitelline veins in the outer margins of the septum transversum and forms the primitive hepatic sinusoids. - Scattered mesenchymal cells lie between the endothelial wall of the sinusoids and the hepatic cords and form the hepatic stroma, as well as the capsule. - Hematopoietic tissue and Kupffer cells also derive from splanchnic mesenchyme, begins during the 6 week. - By 9 weeks' gestation accounts for approximately 10% of the total weight of the embryo. - The bile canaliculi appear in the 10-mm embryo (9weeks) as intercellular spaces between immature hepatocytes (hepatoblasts). - The epithelium of the intrahepatic bile ducts arises from the proximal part of the primitive hepatic cords. - the epithelial layer in direct contact with the mesenchyme around the portal vein transforms into bile duct “type cells.
    [Show full text]
  • 26 April 2010 TE Prepublication Page 1 Nomina Generalia General Terms
    26 April 2010 TE PrePublication Page 1 Nomina generalia General terms E1.0.0.0.0.0.1 Modus reproductionis Reproductive mode E1.0.0.0.0.0.2 Reproductio sexualis Sexual reproduction E1.0.0.0.0.0.3 Viviparitas Viviparity E1.0.0.0.0.0.4 Heterogamia Heterogamy E1.0.0.0.0.0.5 Endogamia Endogamy E1.0.0.0.0.0.6 Sequentia reproductionis Reproductive sequence E1.0.0.0.0.0.7 Ovulatio Ovulation E1.0.0.0.0.0.8 Erectio Erection E1.0.0.0.0.0.9 Coitus Coitus; Sexual intercourse E1.0.0.0.0.0.10 Ejaculatio1 Ejaculation E1.0.0.0.0.0.11 Emissio Emission E1.0.0.0.0.0.12 Ejaculatio vera Ejaculation proper E1.0.0.0.0.0.13 Semen Semen; Ejaculate E1.0.0.0.0.0.14 Inseminatio Insemination E1.0.0.0.0.0.15 Fertilisatio Fertilization E1.0.0.0.0.0.16 Fecundatio Fecundation; Impregnation E1.0.0.0.0.0.17 Superfecundatio Superfecundation E1.0.0.0.0.0.18 Superimpregnatio Superimpregnation E1.0.0.0.0.0.19 Superfetatio Superfetation E1.0.0.0.0.0.20 Ontogenesis Ontogeny E1.0.0.0.0.0.21 Ontogenesis praenatalis Prenatal ontogeny E1.0.0.0.0.0.22 Tempus praenatale; Tempus gestationis Prenatal period; Gestation period E1.0.0.0.0.0.23 Vita praenatalis Prenatal life E1.0.0.0.0.0.24 Vita intrauterina Intra-uterine life E1.0.0.0.0.0.25 Embryogenesis2 Embryogenesis; Embryogeny E1.0.0.0.0.0.26 Fetogenesis3 Fetogenesis E1.0.0.0.0.0.27 Tempus natale Birth period E1.0.0.0.0.0.28 Ontogenesis postnatalis Postnatal ontogeny E1.0.0.0.0.0.29 Vita postnatalis Postnatal life E1.0.1.0.0.0.1 Mensurae embryonicae et fetales4 Embryonic and fetal measurements E1.0.1.0.0.0.2 Aetas a fecundatione5 Fertilization
    [Show full text]