26 April 2010 TE Prepublication Page 1 Nomina Generalia General Terms

Total Page:16

File Type:pdf, Size:1020Kb

26 April 2010 TE Prepublication Page 1 Nomina Generalia General Terms 26 April 2010 TE PrePublication Page 1 Nomina generalia General terms E1.0.0.0.0.0.1 Modus reproductionis Reproductive mode E1.0.0.0.0.0.2 Reproductio sexualis Sexual reproduction E1.0.0.0.0.0.3 Viviparitas Viviparity E1.0.0.0.0.0.4 Heterogamia Heterogamy E1.0.0.0.0.0.5 Endogamia Endogamy E1.0.0.0.0.0.6 Sequentia reproductionis Reproductive sequence E1.0.0.0.0.0.7 Ovulatio Ovulation E1.0.0.0.0.0.8 Erectio Erection E1.0.0.0.0.0.9 Coitus Coitus; Sexual intercourse E1.0.0.0.0.0.10 Ejaculatio1 Ejaculation E1.0.0.0.0.0.11 Emissio Emission E1.0.0.0.0.0.12 Ejaculatio vera Ejaculation proper E1.0.0.0.0.0.13 Semen Semen; Ejaculate E1.0.0.0.0.0.14 Inseminatio Insemination E1.0.0.0.0.0.15 Fertilisatio Fertilization E1.0.0.0.0.0.16 Fecundatio Fecundation; Impregnation E1.0.0.0.0.0.17 Superfecundatio Superfecundation E1.0.0.0.0.0.18 Superimpregnatio Superimpregnation E1.0.0.0.0.0.19 Superfetatio Superfetation E1.0.0.0.0.0.20 Ontogenesis Ontogeny E1.0.0.0.0.0.21 Ontogenesis praenatalis Prenatal ontogeny E1.0.0.0.0.0.22 Tempus praenatale; Tempus gestationis Prenatal period; Gestation period E1.0.0.0.0.0.23 Vita praenatalis Prenatal life E1.0.0.0.0.0.24 Vita intrauterina Intra-uterine life E1.0.0.0.0.0.25 Embryogenesis2 Embryogenesis; Embryogeny E1.0.0.0.0.0.26 Fetogenesis3 Fetogenesis E1.0.0.0.0.0.27 Tempus natale Birth period E1.0.0.0.0.0.28 Ontogenesis postnatalis Postnatal ontogeny E1.0.0.0.0.0.29 Vita postnatalis Postnatal life E1.0.1.0.0.0.1 Mensurae embryonicae et fetales4 Embryonic and fetal measurements E1.0.1.0.0.0.2 Aetas a fecundatione5 Fertilization age E1.0.1.0.0.0.3 Aetas ab ovulatione6 Ovulation age E1.0.1.0.0.0.4 Aetas ab inseminatione 7 Insemination age E1.0.1.0.0.0.5 Hebdomades post coitum8 Coital weeks E1.0.1.0.0.0.6 Hebdomades post menses ultimas9 Menstrual weeks 1 E1.0.0.0.0.0.10 Ejaculatio The reflex process of ejaculation occurs in two phases: in the first – emission – contraction of smooth muscle of glands and ducts delivers the various components of semen into the prostatic urethra; in the second – ejaculation proper – the striated muscles of the urogenital triangle (particularly the bulbospongiosus muscles) contract spasmodically and expel semen from the urethra. 2 E1.0.0.0.0.0.25 Embryogenesis Embryogenesis is the process of embryo formation. It entails the formation of the principal organs and systems and the acquisition of uniquely human surface features that are apparent with the unaided eye. The process begins at fertilization and ends, somewhat arbitrarily, 56 days later. It is divided into 23 internationally accepted Carnegie Stages (O'Rahilly R, Müller F. Developmental stages in human embryos. Washington DC: Carnegie Institution of Washington; 1987). Each Carnegie Stage is an arbitrarily defined cut through the time axis of the embryo but is based upon carefully-defined external and internal morphological criteria and not on either measured length or estimated age. Thus, an embryo of a particular length or age is not necessarily an embryo of a particular stage. It is important to note that, while the stages have not been redefined, the norm for the estimated age of certain stages has been revised in subsequent papers and textbooks by these authors on the basis of ultrasound investigations [see footnote31]. 3 E1.0.0.0.0.0.26 Fetogenesis Fetogenesis entails the growth and differentiation, particularly functional differentiation, of the conceptus after embryogenesis is completed. It thus begins on day 57, following the Stage 23 embryo that already has its principal organs, systems and distinctly human features, and ends at birth, when the fetus becomes a newborn infant or neonate. The time in which fetogenesis occurs may be divided into early, intermediate and late fetal periods, which correspond to the trimesters of pregnancy in which they occur. There is, however, no agreement on precisely which weeks are encompassed by the first trimester: here it is regarded as beginning at fertilization and as being occupied by embryogenesis and the early fetal period, the 9th to the 13th post fertilization week. 4 E1.0.1.0.0.0.1 Mensurae embryonicae et fetales The norms for measurements of lengths, diameters and circumferences in mm and of weights in grams are given for each postfertilization week in Table A-4 in O'Rahilly R, Müller F. Human Embryology & Teratology. 3rd ed. New York: Wiley-Liss; 2001. 5 E1.0.1.0.0.0.2 Aetas a fecundiatione Fertilization age begins at the time of fertilization with the sperm penetrating the oocyte and the formation of the zygote. It is the true age of the conceptus and the preferred measure. 6 E1.0.1.0.0.0.3 Aetas ab ovulatione Ovulation age begins on the day of the ovulation that preceded fertilization and the formation of the zygote: it is about 0.5 day longer than fertilization age. 7 E1.0.1.0.0.0.4 Aetas ab inseminatione Insemination age begins when the sperm and oocyte are introduced in artificial insemination or in vitro fertilization. 8 E1.0.1.0.0.0.5 Hebdomades post coitum Coital weeks begin from the time of the coitus that resulted in the pregnancy. Normally, fertilization occurs early in the first coital week. Since the embryo does not exist for the first part of the first coital week, the term coital age is inappropriate. 26 April 2010 TE PrePublication Page 2 Crown-heel length; CHL; Total length; E1.0.1.0.0.0.7 Longitudo corona calx Standing height E1.0.1.0.0.0.8 Longitudo maxima10 Greatest length; GL E1.0.1.0.0.0.9 Longitudo corona nates Crown-rump length; CRL; Sitting height E1.0.1.0.0.0.10 Longitudo cervix nates Neck-rump length E1.0.1.0.0.0.11 Longitudo femoris ossificati Length of ossified femur E1.0.1.0.0.0.12 Longitudo pedis Foot length; FL E1.0.1.0.0.0.13 Diameter biparietalis Biparietal diameter E1.0.1.0.0.0.14 Diameter cavitatis amnioticae Diameter of amniotic cavity E1.0.1.0.0.0.15 Diameter cavitatis chorionicae Diameter of chorionic cavity Diameter vesiculae umbilicalis; Diameter sacci Diameter of umbilical vesicle; Diameter of yolk E1.0.1.0.0.0.16 vitellini sac E1.0.1.0.0.0.17 Circumferentia abdominis Abdominal circumference E1.0.1.0.0.0.18 Circumferentia capitis Head circumference E1.0.1.0.0.0.19 Pondus corporis Body weight E1.0.1.0.0.0.20 Pondus encephali Brain weight E1.0.1.0.0.0.21 Pondus placentae Placental weight E1.0.2.0.0.0.1 Cycli genitales feminini Female reproductive cycles E1.0.2.1.0.0.1 PHASES OVARICAE OVARIAN PHASES E1.0.2.1.0.0.2 Phasis infantilis Infantile phase E1.0.2.1.0.0.3 Phasis praepubertalis Prepubertal phase E1.0.2.1.0.0.4 Phasis pubertalis Pubertal phase E1.0.2.1.0.0.5 Phasis matura Mature phase E1.0.2.1.0.0.6 Phasis involutionis Involution phase E1.0.2.2.0.0.1 CYCLUS OVARICUS OVARIAN CYCLE E1.0.2.2.0.0.2 Oogenesis Oogenesis E1.0.2.2.0.0.3 Phases cycli ovarici Phases of ovarian cycle E1.0.2.2.0.0.4 Phasis follicularis Follicular phase E1.0.0.0.0.0.7 Ovulatio Ovulation E1.0.2.2.0.0.5 Phasis corporis lutei Luteal phase; Corpus luteum phase E1.0.2.2.0.0.6 Phasis involutionis Involution phase E1.0.2.2.0.0.7 Typi ovulationis Types of ovulation E1.0.2.2.0.0.8 Ovulatio uniovularis Uni-ovular ovulation E1.0.2.2.0.0.9 Ovulatio multiovularis Multi-ovular ovulation E1.0.2.2.0.0.10 Ovulatio spontanea Spontaneous ovulation E1.0.2.2.0.0.11 Ovulatio superovularis; Superovulatio Superovulation E1.0.2.2.0.0.12 Superovulatio inducta Induced superovulation E1.0.2.3.0.0.1 CYCLUS MENSTRUALIS ENDOMETRII ENDOMETRIAL MENSTRUAL CYCLE E1.0.2.3.0.0.2 Amenorrhoea primaria Primary amenorrhoea▲ E1.0.2.3.0.0.3 Menarcha Menarche Proliferative phase; Follicular phase; E1.0.2.3.0.0.4 Phasis proliferativa; Phasis follicularis Oestrogenic phase▲ E1.0.2.3.0.0.5 Phasis ovulatoria Ovulatory phase Secretory phase; Luteal phase; Progesterone E1.0.2.3.0.0.6 Phasis secretoria; Phasis lutealis phase E1.0.2.3.0.0.7 Phasis gestatoria Gestatory phase E1.0.2.3.0.0.8 Phasis ischaemiae Ischaemic phase▲ E1.0.2.3.0.0.9 Phasis menstrualis; Phasis desquamativa Menstrual phase; Desquamation phase E1.0.2.3.0.0.10 Menses Menses E1.0.2.3.0.0.11 Phasis postmenstrualis Postmenstrual phase E1.0.2.3.0.0.12 Amenorrhoea secundaria Secondary amenorrhoea▲ E1.0.2.3.0.0.13 Climacter Climacteric 9 E1.0.1.0.0.0.6 Hebdomades post menses ultimas Menstrual ("gestational") weeks begin from the first day of the mother's last menstrual period [LMP] before becoming pregnant and are the usual measure in obstetric practice. Since the embryo does not usually come into being until the first two menstrual weeks have passed, the term menstrual “age” is inappropriate.
Recommended publications
  • Expression and Localization of Myosin VI in Developing Mouse Spermatids
    Histochem Cell Biol DOI 10.1007/s00418-017-1579-z ORIGINAL PAPER Expression and localization of myosin VI in developing mouse spermatids Przemysław Zakrzewski1 · Robert Lenartowski2 · Maria Jolanta Re˛dowicz3 · Kathryn G. Miller4 · Marta Lenartowska1 Accepted: 4 May 2017 © The Author(s) 2017. This article is an open access publication Abstract Myosin VI (MVI) is a versatile actin-based and Sertoli cell actin hoops. Since this is the frst report of motor protein that has been implicated in a variety of dif- MVI expression and localization during mouse spermio- ferent cellular processes, including endo- and exocytic genesis and MVI partners in developing sperm have not yet vesicle traffcking, Golgi morphology, and actin structure been identifed, we discuss some probable roles for MVI stabilization. A role for MVI in crucial actin-based pro- in this process. During early stages, MVI is hypothesized cesses involved in sperm maturation was demonstrated in to play a role in Golgi morphology and function as well Drosophila. Because of the prominence and importance of as in actin dynamics regulation important for attachment actin structures in mammalian spermiogenesis, we inves- of developing acrosome to the nuclear envelope. Next, tigated whether MVI was associated with actin-mediated the protein might also play anchoring roles to help gener- maturation events in mammals. Both immunofuorescence ate forces needed for spermatid head elongation. Moreo- and ultrastructural analyses using immunogold labeling ver, association of MVI with actin that accumulates in showed that MVI was strongly linked with key structures the Sertoli cell ectoplasmic specialization and other actin involved in sperm development and maturation.
    [Show full text]
  • Te2, Part Iii
    TERMINOLOGIA EMBRYOLOGICA Second Edition International Embryological Terminology FIPAT The Federative International Programme for Anatomical Terminology A programme of the International Federation of Associations of Anatomists (IFAA) TE2, PART III Contents Caput V: Organogenesis Chapter 5: Organogenesis (continued) Systema respiratorium Respiratory system Systema urinarium Urinary system Systemata genitalia Genital systems Coeloma Coelom Glandulae endocrinae Endocrine glands Systema cardiovasculare Cardiovascular system Systema lymphoideum Lymphoid system Bibliographic Reference Citation: FIPAT. Terminologia Embryologica. 2nd ed. FIPAT.library.dal.ca. Federative International Programme for Anatomical Terminology, February 2017 Published pending approval by the General Assembly at the next Congress of IFAA (2019) Creative Commons License: The publication of Terminologia Embryologica is under a Creative Commons Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0) license The individual terms in this terminology are within the public domain. Statements about terms being part of this international standard terminology should use the above bibliographic reference to cite this terminology. The unaltered PDF files of this terminology may be freely copied and distributed by users. IFAA member societies are authorized to publish translations of this terminology. Authors of other works that might be considered derivative should write to the Chair of FIPAT for permission to publish a derivative work. Caput V: ORGANOGENESIS Chapter 5: ORGANOGENESIS
    [Show full text]
  • Pfeiffer Syndrome Type II Discovered Perinatally
    Diagnostic and Interventional Imaging (2012) 93, 785—789 CORE Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector LETTER / Musculoskeletal imaging Pfeiffer syndrome type II discovered perinatally: Report of an observation and review of the literature a,∗ a a a H. Ben Hamouda , Y. Tlili , S. Ghanmi , H. Soua , b c b a S. Jerbi , M.M. Souissi , H. Hamza , M.T. Sfar a Unité de néonatologie, service de pédiatrie, CHU Tahar Sfar, 5111 Mahdia, Tunisia b Service de radiologie, CHU Tahar Sfar, 5111 Mahdia, Tunisia c Service de gynéco-obstétrique, CHU Tahar Sfar, 5111 Mahdia, Tunisia Pfeiffer syndrome, described for the first time by Pfeiffer in 1964, is a rare hereditary KEYWORDS condition combining osteochondrodysplasia with craniosynostosis [1]. This syndrome is Pfeiffer syndrome; also called acrocephalosyndactyly type 5, which is divided into three sub-types. Type I Cloverleaf skull; is the classic Pfeiffer syndrome, with autosomal dominant transmission, often associated Craniosynostosis; with normal intelligence. Types II and III occur as sporadic cases in individuals who have Syndactyly; craniosynostosis with broad thumbs, broad big toes, ankylosis of the elbows and visceral Prenatal diagnosis abnormalities [2]. We report a case of Pfeiffer syndrome type II, discovered perinatally, which is distinguished from type III by the skull appearing like a cloverleaf, and we shall discuss the clinical, radiological and evolutive features and the advantage of prenatal diagnosis of this syndrome with a review of the literature. Observation The case involved a male premature baby born at 36 weeks of amenorrhoea with multiple deformities at birth. The parents were not blood-related and in good health who had two other boys and a girl with normal morphology.
    [Show full text]
  • EQUINE CONCEPTUS DEVELOPMENT – a MINI REVIEW Maria Gaivão 1, Tom Stout
    Gaivão & Stout Equine conceptus development – a mini review EQUINE CONCEPTUS DEVELOPMENT – A MINI REVIEW DESENVOLVIMENTO DO CONCEPTO DE EQUINO – MINI REVISÃO Maria Gaivão 1, Tom Stout 2 1 - CICV – Faculdade de Medicina Veterinária; ULHT – Universidade Lusófona de Humanidades e Tecnologias; [email protected] 2 - Utrecht University, Department of Equine Sciences, Section of Reproduction, The Netherlands. Abstract: Many aspects of early embryonic development in the horse are unusual or unique; this is of scientific interest and, in some cases, considerable practical significance. During early development the number of different cell types increases rapidly and the organization of these increasingly differentiated cells becomes increasingly intricate as a result of various inter-related processes that occur step-wise or simultaneously in different parts of the conceptus (i.e., the embryo proper and its associated membranes and fluid). Equine conceptus development is of practical interest for many reasons. Most significantly, following a high rate of successful fertilization (71-96%) (Ball, 1988), as many as 30-40% of developing embryos fail to survive beyond the first two weeks of gestation (Ball, 1988), the time at which gastrulation begins. Indeed, despite considerable progress in the development of treatments for common causes of sub-fertility and of assisted reproductive techniques to enhance reproductive efficiency, the need to monitor and rebreed mares that lose a pregnancy or the failure to produce a foal, remain sources of considerable economic loss to the equine breeding industry. Of course, the potential causes of early embryonic death are numerous and varied (e.g. persistent mating induced endometritis, endometrial gland insufficiency, cervical incompetence, corpus luteum (CL) failure, chromosomal, genetic and other unknown factors (LeBlanc, 2004).
    [Show full text]
  • 2020 WSES Guidelines for the Detection and Management of Bile
    Edinburgh Research Explorer 2020 WSES guidelines for the detection and management of bile duct injury during cholecystectomy Citation for published version: De’angelis, N, Catena, F, Memeo, R, Coccolini, F, Martínez-pérez, A, Romeo, OM, De Simone, B, Di Saverio, S, Brustia, R, Rhaiem, R, Piardi, T, Conticchio, M, Marchegiani, F, Beghdadi, N, Abu-zidan, FM, Alikhanov, R, Allard, M, Allievi, N, Amaddeo, G, Ansaloni, L, Andersson, R, Andolfi, E, Azfar, M, Bala, M, Benkabbou, A, Ben-ishay, O, Bianchi, G, Biffl, WL, Brunetti, F, Carra, MC, Casanova, D, Celentano, V, Ceresoli, M, Chiara, O, Cimbanassi, S, Bini, R, Coimbra, R, Luigi De’angelis, G, Decembrino, F, De Palma, A, De Reuver, PR, Domingo, C, Cotsoglou, C, Ferrero, A, Fraga, GP, Gaiani, F, Gheza, F, Gurrado, A, Harrison, E, Henriquez, A, Hofmeyr, S, Iadarola, R, Kashuk, JL, Kianmanesh, R, Kirkpatrick, AW, Kluger, Y, Landi, F, Langella, S, Lapointe, R, Le Roy, B, Luciani, A, Machado, F, Maggi, U, Maier, RV, Mefire, AC, Hiramatsu, K, Ordoñez, C, Patrizi, F, Planells, M, Peitzman, AB, Pekolj, J, Perdigao, F, Pereira, BM, Pessaux, P, Pisano, M, Puyana, JC, Rizoli, S, Portigliotti, L, Romito, R, Sakakushev, B, Sanei, B, Scatton, O, Serradilla-martin, M, Schneck, A, Sissoko, ML, Sobhani, I, Ten Broek, RP, Testini, M, Valinas, R, Veloudis, G, Vitali, GC, Weber, D, Zorcolo, L, Giuliante, F, Gavriilidis, P, Fuks, D & Sommacale, D 2021, '2020 WSES guidelines for the detection and management of bile duct injury during cholecystectomy', World Journal of Emergency Surgery, vol. 16, no. 1, 30. https://doi.org/10.1186/s13017-021-00369-w
    [Show full text]
  • Vocabulario De Morfoloxía, Anatomía E Citoloxía Veterinaria
    Vocabulario de Morfoloxía, anatomía e citoloxía veterinaria (galego-español-inglés) Servizo de Normalización Lingüística Universidade de Santiago de Compostela COLECCIÓN VOCABULARIOS TEMÁTICOS N.º 4 SERVIZO DE NORMALIZACIÓN LINGÜÍSTICA Vocabulario de Morfoloxía, anatomía e citoloxía veterinaria (galego-español-inglés) 2008 UNIVERSIDADE DE SANTIAGO DE COMPOSTELA VOCABULARIO de morfoloxía, anatomía e citoloxía veterinaria : (galego-español- inglés) / coordinador Xusto A. Rodríguez Río, Servizo de Normalización Lingüística ; autores Matilde Lombardero Fernández ... [et al.]. – Santiago de Compostela : Universidade de Santiago de Compostela, Servizo de Publicacións e Intercambio Científico, 2008. – 369 p. ; 21 cm. – (Vocabularios temáticos ; 4). - D.L. C 2458-2008. – ISBN 978-84-9887-018-3 1.Medicina �������������������������������������������������������������������������veterinaria-Diccionarios�������������������������������������������������. 2.Galego (Lingua)-Glosarios, vocabularios, etc. políglotas. I.Lombardero Fernández, Matilde. II.Rodríguez Rio, Xusto A. coord. III. Universidade de Santiago de Compostela. Servizo de Normalización Lingüística, coord. IV.Universidade de Santiago de Compostela. Servizo de Publicacións e Intercambio Científico, ed. V.Serie. 591.4(038)=699=60=20 Coordinador Xusto A. Rodríguez Río (Área de Terminoloxía. Servizo de Normalización Lingüística. Universidade de Santiago de Compostela) Autoras/res Matilde Lombardero Fernández (doutora en Veterinaria e profesora do Departamento de Anatomía e Produción Animal.
    [Show full text]
  • Human Pluripotent Stem Cells As a Model of Trophoblast Differentiation in Both Normal Development and Disease
    Human pluripotent stem cells as a model of trophoblast differentiation in both normal development and disease Mariko Horiia,b,1, Yingchun Lia,b,1, Anna K. Wakelanda,b,1, Donald P. Pizzoa, Katharine K. Nelsona,b, Karen Sabatinib,c, Louise Chang Laurentb,c, Ying Liud,e,f, and Mana M. Parasta,b,2 aDepartment of Pathology, University of California, San Diego, La Jolla, CA 92093; bSanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA 92093; cDepartment of Reproductive Medicine, University of California, San Diego, La Jolla, CA 92093; dDepartment of Neurosurgery, Center for Stem Cell and Regenerative Medicine, University of Texas Health Sciences Center, Houston, TX 77030; eThe Senator Lloyd and B. A. Bentsen Center for Stroke Research, University of Texas Health Sciences Center, Houston, TX 77030; and fThe Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Sciences Center, Houston, TX 77030 Edited by R. Michael Roberts, University of Missouri–Columbia, Columbia, MO, and approved May 25, 2016 (received for review March 24, 2016) Trophoblast is the primary epithelial cell type in the placenta, a Elf5 (Ets domain transcription factor) and Eomes (Eomeso- transient organ required for proper fetal growth and develop- dermin), also have been shown to be required for maintenance of ment. Different trophoblast subtypes are responsible for gas/nutrient the TSC fate in the mouse (8, 9). exchange (syncytiotrophoblasts, STBs) and invasion and maternal Significantly less is known about TE specification and the TSC vascular remodeling (extravillous trophoblasts, EVTs). Studies of niche in the human embryo (10, 11).
    [Show full text]
  • Download PDF File
    Folia Morphol. Vol. 77, No. 2, pp. 386–392 DOI: 10.5603/FM.a2017.0080 O R I G I N A L A R T I C L E Copyright © 2018 Via Medica ISSN 0015–5659 www.fm.viamedica.pl Incidental imaging findings of congenital rib abnormalities: a case series and review of developmental concepts A.M. Aignătoaei1, C.E. Moldoveanu2, I.-D. Căruntu3, S.E. Giuşcă3, S. Partene Vicoleanu3, A.H. Nedelcu3 1Department of Pathology, “Sf. Spiridon” Clinic Hospital, 1, Independenţei Square, Iaşi, Romania 2Department of Radiology, Pneumology Clinic Hospital, 30, dr. Iosif Cihac Street, Iaşi, Romania 3Department of Morphofunctional Sciences, “Grigore T. Popa” University, 16, University Street, Iaşi, Romania [Received: 12 June 2017; Accepted: 24 July 2017] Background: Congenital rib abnormalities are found in approximately 2% of the general population. Usually, they occur in isolation and are rarely symptomatic, but they can also be associated with other malformations. Materials and methods: We reviewed imaging examinations performed over a period of 2 years (2014–2015), enabling us to identify isolated rib abnormalities in 6 adult patients. Results: The case series consisted in 3 cases with bilateral cervical ribs and 1 case each with bifid rib, costal fusion and rib pseudarthrosis. In all patients, the costal anomalies were discovered incidentally. All rib malformations were detected at thoracic radiography, except for the rib pseudarthrosis, which was identified at computed tomography (CT) scan. Differential diagnosis was made between cer- vical ribs and abnormalities of the C7 transverse process and of the first rib, while the other costal malformations were distinguished from tumoural, traumatic or inflammatory lesions of the chest wall, lung and pleura.
    [Show full text]
  • Epithelium 2 : Glandular Epithelium Histology Laboratory -­‐ Year 1, Fall Term Dr
    Epithelium 2 : Glandular Epithelium Histology Laboratory -­‐ Year 1, Fall Term Dr. Heather Yule ([email protected]) October 21, 2014 Slides for study: 75 (Salivary Gland), 355 (Pancreas Tail), 48 (Atrophic Mammary Gland), 49 (Active Mammary Gland) and 50 (Resting Mammary Gland) Electron micrographs for : study EM: Serous acinus in parotid gland EM: Mucous acinus in mixed salivary gland EM: Pancreatic acinar cell Main Objective: Understand key histological features of glandular epithelium and relate structure to function. Specific Objectives: 1. Describe key histological differences between endocrine and exocrine glands including their development. 2. Compare three modes of secretion in glands; holocrine, apocrine and merocrine. 3. Explain the functional significance of polarization of glandular epithelial cells. 4. Define the terms parenchyma, stroma, mucous acinus, serous acinus and serous a demilune and be able to them identify in glandular tissue. 5. Distinguish exocrine and endocrine pancreas. 6. Compare the histology of resting, lactating and postmenopausal mammary glands. Keywords: endocrine gland, exocrine gland, holocrine, apocrine, merocrine, polarity, parenchyma, stroma, acinus, myoepithelial cell, mucous gland, serous gland, mixed or seromucous gland, serous demilune, exocrine pancreas, endocrine pancreas (pancreatic islets), resting mammary gland, lactating mammary gland, postmenopausal mammary gland “This copy is made solely for your personal use for research, private study, education, parody, satire, criticism, or review
    [Show full text]
  • Liver • Gallbladder
    NORMAL BODY Microscopic Anatomy! Accessory Glands of the GI Tract,! lecture 2! ! • Liver • Gallbladder John Klingensmith [email protected] Objectives! By the end of this lecture, students will be able to: ! • trace the flow of blood and bile within the liver • describe the structure of the liver in regard to its functions • indicate the major cell types of the liver and their functions • distinguish the microanatomy of exocrine and endocrine function by the hepatocytes • explain the functional organization of the gallbladder at the cellular level (Lecture plan: overview of structure and function, then increasing resolution of microanatomy and cellular function) Liver and Gallbladder Liver October is “Liver Awareness Month” -- http://www.liverfoundation.org Liver • Encapsulated by CT sheath and mesothelium • Lobes largely composed of hepatocytes in parenchyma • Receives blood from small intestine and general circulation Major functions of the liver • Production and secretion of digestive fluids to small intestine (exocrine) • Production of plasma proteins and lipoproteins (endocrine) • Storage and control of blood glucose • Detoxification of absorbed compounds • Source of embyronic hematopoiesis The liver lobule • Functional unit of the parenchyma • Delimited by CT septa, invisible in humans (pig is shown) • Surrounds the central vein • Bordered by portal tracts Central vein, muralia and sinusoids Parenchyma: Muralia and sinusoids • Hepatocyte basolateral membrane faces sinusoidal lumen • Bile canaliculi occur between adjacent hepatocytes • Cords anastomose Vascularization of the liver • Receives veinous blood from small intestine via portal vein • Receives freshly oxygenated blood from hepatic artery • Discharges blood into vena cava via hepatic vein Blood flow in the liver lobes • flows in via the portal vein and hepatic artery • oozes through the liver lobules to central veins • flows out via the hepatic vein Portal Tract! (aka portal triad) • Portal venule • Hepatic arteriole • Bile duct • Lymph vessel • Nerves • Connective tissue Central vein! (a.k.a.
    [Show full text]
  • Modeling Congenital Disease and Inborn Errors of Development in Drosophila Melanogaster Matthew J
    © 2016. Published by The Company of Biologists Ltd | Disease Models & Mechanisms (2016) 9, 253-269 doi:10.1242/dmm.023564 REVIEW SUBJECT COLLECTION: TRANSLATIONAL IMPACT OF DROSOPHILA Modeling congenital disease and inborn errors of development in Drosophila melanogaster Matthew J. Moulton and Anthea Letsou* ABSTRACT particularly difficult to manage clinically {e.g. CHARGE syndrome Fly models that faithfully recapitulate various aspects of human manifesting coloboma [emboldened words and phrases are defined disease and human health-related biology are being used for in the glossary (see Box 1)], heart defects, choanal atresia, growth research into disease diagnosis and prevention. Established and retardation, genitourinary malformation and ear abnormalities new genetic strategies in Drosophila have yielded numerous (Hsu et al., 2014), and velocardiofacial or Shprinstzens syndrome substantial successes in modeling congenital disorders or inborn manifesting cardiac anomaly, velopharyngeal insufficiency, errors of human development, as well as neurodegenerative disease aberrant calcium metabolism and immune dysfunction (Chinnadurai and cancer. Moreover, although our ability to generate sequence and Goudy, 2012)}. Estimates suggest that the cause of at least 50% of datasets continues to outpace our ability to analyze these datasets, congenital abnormalities remains unknown (Lobo and Zhaurova, the development of high-throughput analysis platforms in Drosophila 2008). It is vital that we understand the etiology of congenital has provided access through the bottleneck in the identification of anomalies because this knowledge provides a foundation for improved disease gene candidates. In this Review, we describe both the diagnostics as well as the design of preventatives and therapeutics that traditional and newer methods that are facilitating the incorporation of can effectively alleviate or abolish the effects of disease.
    [Show full text]
  • Ultrastrucure of Germ Cells During Spermatogenesis
    Korean J. Malacol. 26(1): 33-43, 2010 Ultrastrucure of Germ Cells during Spermatogenesis and Some Characteristics of Sperm Morphology in Male Mytilus coruscus (Bivalvia: Mytilidae) on the West Coast of Korea Jin Hee Kim1, Ee-Yung Chung2, Ki-Ho Choi3, Kwan Ha Park4, and Sung-Woo Park4 1Korea Inter-University Unstitute of Ocean Science, Pukyong National University, Busan 608-737, Korea 2Korea Marine Environment & Ecosystem Institute, Dive Korea, Bucheon 420-857, Korea 3West Sea Fisheries Research Institute, National Fisheries Research and Development Institute, Incheon 400-420, Korea 4Department of Aquatic Life Medicine, Kunsan National University, Kunsan 573-701, Korea ABSTRACT The ultrastructure of germ cells during spermatogenesis and some characteristics of sperm morphology in male Mytilus coruscus, which was collected on the coastal waters of Gyeokpo in western Korea, were investigated by transmission electron microscope observations. The morphology of the spermatozoon has a primitive type and is similar to those of other bivalves in that it contains a short midpiece with five mitochondria surrounding the centrioles. The morphologies of the sperm nucleus type and the acrosome shape of this species have an oval and modified cone shape, respectively. In particular, the axial rod is observed between the nucleus and acrosome of the sperm. The spermatozoon is approximately 45-50 μm in length including a sperm nucleus (about 1.46 μm in length), an acrosome (about 3.94 μm in length) and tail flagellum (approximately 40-45 μm). The axoneme of the sperm tail flagellum consists of nine pairs of microtubules at the periphery and a pair at the center.
    [Show full text]