Human Pluripotent Stem Cells As a Model of Trophoblast Differentiation in Both Normal Development and Disease

Total Page:16

File Type:pdf, Size:1020Kb

Human Pluripotent Stem Cells As a Model of Trophoblast Differentiation in Both Normal Development and Disease Human pluripotent stem cells as a model of trophoblast differentiation in both normal development and disease Mariko Horiia,b,1, Yingchun Lia,b,1, Anna K. Wakelanda,b,1, Donald P. Pizzoa, Katharine K. Nelsona,b, Karen Sabatinib,c, Louise Chang Laurentb,c, Ying Liud,e,f, and Mana M. Parasta,b,2 aDepartment of Pathology, University of California, San Diego, La Jolla, CA 92093; bSanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA 92093; cDepartment of Reproductive Medicine, University of California, San Diego, La Jolla, CA 92093; dDepartment of Neurosurgery, Center for Stem Cell and Regenerative Medicine, University of Texas Health Sciences Center, Houston, TX 77030; eThe Senator Lloyd and B. A. Bentsen Center for Stroke Research, University of Texas Health Sciences Center, Houston, TX 77030; and fThe Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Sciences Center, Houston, TX 77030 Edited by R. Michael Roberts, University of Missouri–Columbia, Columbia, MO, and approved May 25, 2016 (received for review March 24, 2016) Trophoblast is the primary epithelial cell type in the placenta, a Elf5 (Ets domain transcription factor) and Eomes (Eomeso- transient organ required for proper fetal growth and develop- dermin), also have been shown to be required for maintenance of ment. Different trophoblast subtypes are responsible for gas/nutrient the TSC fate in the mouse (8, 9). exchange (syncytiotrophoblasts, STBs) and invasion and maternal Significantly less is known about TE specification and the TSC vascular remodeling (extravillous trophoblasts, EVTs). Studies of niche in the human embryo (10, 11). Recent studies have pointed to early human placental development are severely hampered by the major differences in gene expression between mouse and human lack of a representative trophoblast stem cell (TSC) model with the preimplantation embryos (12, 13). One major distinction is the capacity for self-renewal and the ability to differentiate into both coexpression of CDX2 and POU5F1 (POU domain, class 5, ho- STBs and EVTs. Primary cytotrophoblasts (CTBs) isolated from meobox 1)/OCT4 (octamer-binding protein 4) in the early TE of early-gestation (6–8 wk) human placentas are bipotential, a phe- human embryos, whereas in the mouse embryo these two genes are notype that is lost with increasing gestational age. We have iden- expressed exclusively in the TE and ICM, respectively, each recip- tified a CDX2+/p63+ CTB subpopulation in the early postimplantation rocally regulating the expression of the other (6, 12, 13). Other human placenta that is significantly reduced later in gestation. We differences include the lack of EOMES and ELF5 expression in describe a reproducible protocol, using defined medium containing human TE (13). Based on these findings, the absence of a prolif- bone morphogenetic protein 4 by which human pluripotent stem erating trophoblast compartment in the early human embryo (1, 10), cells (hPSCs) can be differentiated into CDX2+/p63+ CTB stem-like and the inability to derive human TSCs from such preimplantation cells. These cells can be replated and further differentiated into embryos (14), it has been proposed that the human TSC niche may STB- and EVT-like cells, based on marker expression, hormone secre- in fact reside in the early postimplantation placenta. tion, and invasive ability. As in primary CTBs, differentiation of In the absence of a human TSC model, researchers have turned hPSC-derived CTBs in low oxygen leads to reduced human chorionic to human pluripotent stem cells (hPSCs). Since 2002, when Xu gonadotropin secretion and STB-associated gene expression, in- et al. (15) first published the finding that bone morphogenetic + stead promoting differentiation into HLA-G EVTs in an hypoxia- protein 4 (BMP4) induces the expression of trophoblast-related inducible, factor-dependent manner. To validate further the utility genes in hPSCs, multiple groups have used these cells as a model of hPSC-derived CTBs, we demonstrated that differentiation of tri- for studying trophoblast lineage specification (16–22). The ma- somy 21 (T21) hPSCs recapitulates the delayed CTB maturation and jority of these studies, including our own (21), have used BMP4 blunted STB differentiation seen in T21 placentae. Collectively, our data suggest that hPSCs are a valuable model of human placental Significance development, enabling us to recapitulate processes that result in both normal and diseased pregnancies. Human pluripotent stem cells (hPSCs) continue to be underap- preciated as a model for studying trophoblast differentiation. In human pluripotent stem cells | cytotrophoblast | extravillous trophoblast | this study, we provide a reproducible, two-step protocol by which syncytiotrophoblast | placenta hPSCs can be differentiated into bipotential cytotrophoblast (CTB) stem-like cells and subsequently into functional, terminally dif- rophoblast is the first lineage specified in the developing ferentiated trophoblasts. In addition, we provide evidence that Tembryo. Following blastocoel formation, cells segregate into the response of hPSC-derived CTBs to low oxygen is similar to that the inner cell mass (ICM), which gives rise to the epiblast and of primary CTBs. Finally, using trisomy 21-affected hPSCs, we embryo proper; the outer trophectoderm (TE) cells give rise to show, for the first time to our knowledge, that hPSCs can model a extraembryonic ectoderm, the epithelial portion of the placenta trophoblast differentiation defect. We propose that hPSCs are (1). Much of what we know about this first lineage specification superior to other currently available models for studying human comes from studies in mouse (2–4). In fact, the combination of trophoblast differentiation. abilities to derive trophoblast stem cells (TSCs) from mouse blastocysts and to evaluate the compartment-specific contribution Author contributions: M.M.P. designed research; M.H., Y. Li, A.K.W., D.P.P., K.K.N., and K.S. performed research; M.H., Y. Li, A.K.W., L.C.L., and Y. Liu contributed new reagents/ of specific genes during embryogenesis has resulted in the iden- analytic tools; M.H., Y. Li, A.K.W., K.S., L.C.L., and M.M.P. analyzed data; and M.H., Y. Li, tification of numerous transcription factors and signaling pathways A.K.W., and M.M.P. wrote the paper. involved in TE specification and placental development (2, 3, 5). The authors declare no conflict of interest. Results from such studies have led to identification of Cdx2 This article is a PNAS Direct Submission. (caudal type homeobox 2), a member of the caudal-related ho- 1M.H., Y. Li, and A.K.W. contributed equally to this work. meobox transcription factor gene family, the expression of which 2To whom correspondence should be addressed. Email: [email protected]. has been shown to be required for maintenance of TE and TSCs This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. in the mouse embryo (6, 7). Other transcription factors, including 1073/pnas.1604747113/-/DCSupplemental. E3882–E3891 | PNAS | Published online June 20, 2016 www.pnas.org/cgi/doi/10.1073/pnas.1604747113 Downloaded by guest on September 29, 2021 in the presence of feeder-conditioned medium (FCM), resulting proof-of-concept data for the ability of hPSCs to model a tro- PNAS PLUS in the expression of some mesoderm markers and therefore phoblast differentiation defect, using trisomy 21 (T21)-affected generating doubt about the true identity of these hPSC-derived hPSCs. cells (23). Nevertheless, follow-up studies using more defined culture conditions have confirmed the identity of these cells as Results trophoblasts (20). Identification of a CDX2-p63 Double-Positive CTB Population in the Most recently, Lee et al. (24) have proposed criteria for defining Early Human Placenta. The CTB, the trophoblast layer adjacent to trophoblasts based on expression of a set of markers, including the villous stroma, is the proliferative trophoblast compartment ELF5. Although a laudable attempt at standardization, this study in the human placenta. The CTB layer is continuous in the first fails to account for differences in gene expression across gestational trimester and becomes discontinuous starting in the second tri- age and falls short of defining syncytiotrophoblasts (STBs) (24). mester (10, 11). We previously identified p63 as a pan-CTB To confirm the utility of hPSCs for modeling trophoblast dif- marker (25). We now have stained human placenta samples using ferentiation, we instead asked whether these cells can recapitu- an antibody to CDX2 and found that in early gestation (6 wk), late functional phenotypes of primary trophoblasts during both CDX2, along with p63, was found in the majority of CTBs (Fig. normal development and disease. We previously have identified 1A). However, unlike p63, which is maintained in the CTB until + p63, a member of the p53 family of nuclear proteins, as a marker term (25), the number of CDX2 CTBs diminished markedly as specific to proliferative cytotrophoblasts (CTBs) in the human the first trimester progressed (Fig. 1 B and C). By 9-wk gestation placenta (21, 25, 26). We now have identified a subpopulation of only ∼50% of CTBs were positive for CDX2, and by 20-wk ges- + CTBs in the early human placenta that are double-positive for tation no CDX2 CTBs remained (Fig. 1 B and C). p63 and CDX2; this CTB subpopulation is greatly reduced in the second trimester and is temporally associated with the loss of Generation of CTB Stem-Like Cells from hPSCs. The majority of bipotential differentiation of CTBs (27). In addition, we describe hPSC trophoblast differentiation protocols expose the cells to a completely defined culture condition, containing BMP4, by high concentrations of BMP4 (50 ng/mL or higher) in the pres- + + which CDX2 /p63 CTB stem-like cells can be efficiently and ence of FCM (Fig. 2A). One previous study developed a minimal reproducibly derived from hPSCs. Furthermore, we show that medium for trophoblast induction but also used high BMP4 hPSC-derived CTBs respond to low oxygen in a manner similar concentrations and focused on the evaluation of CDX2 as the to primary CTBs.
Recommended publications
  • 3 Embryology and Development
    BIOL 6505 − INTRODUCTION TO FETAL MEDICINE 3. EMBRYOLOGY AND DEVELOPMENT Arlet G. Kurkchubasche, M.D. INTRODUCTION Embryology – the field of study that pertains to the developing organism/human Basic embryology –usually taught in the chronologic sequence of events. These events are the basis for understanding the congenital anomalies that we encounter in the fetus, and help explain the relationships to other organ system concerns. Below is a synopsis of some of the critical steps in embryogenesis from the anatomic rather than molecular basis. These concepts will be more intuitive and evident in conjunction with diagrams and animated sequences. This text is a synopsis of material provided in Langman’s Medical Embryology, 9th ed. First week – ovulation to fertilization to implantation Fertilization restores 1) the diploid number of chromosomes, 2) determines the chromosomal sex and 3) initiates cleavage. Cleavage of the fertilized ovum results in mitotic divisions generating blastomeres that form a 16-cell morula. The dense morula develops a central cavity and now forms the blastocyst, which restructures into 2 components. The inner cell mass forms the embryoblast and outer cell mass the trophoblast. Consequences for fetal management: Variances in cleavage, i.e. splitting of the zygote at various stages/locations - leads to monozygotic twinning with various relationships of the fetal membranes. Cleavage at later weeks will lead to conjoined twinning. Second week: the week of twos – marked by bilaminar germ disc formation. Commences with blastocyst partially embedded in endometrial stroma Trophoblast forms – 1) cytotrophoblast – mitotic cells that coalesce to form 2) syncytiotrophoblast – erodes into maternal tissues, forms lacunae which are critical to development of the uteroplacental circulation.
    [Show full text]
  • Neonate Germinal Stage Blastocyst Embryonic Disk Trophoblast Umbilical Cord Placenta Embryonic Stage Cephalocaudal Proximodistal
    neonate umbilical cord Chapter 3 Chapter 3 germinal stage placenta Chapter 3 Chapter 3 blastocyst embryonic stage Chapter 3 Chapter 3 embryonic disk cephalocaudal Chapter 3 Chapter 3 trophoblast proximodistal Chapter 3 Chapter 3 A tube that connects the fetus to the placenta. A newborn baby. Chapter 3 Chapter 3 An organ connected to the uterine wall and to the fetus by the umbilical cord. The placenta The period of development between conception serves as a filter between mother and fetus for and the implantation of the embryo. the exchange of nutrients and wastes. Chapter 3 Chapter 3 The stage of prenatal development that lasts A stage within the germinal period of prenatal from implantation through the eighth week of development in which the zygote has the form pregnancy; it is characterized by the of a sphere of cells surrounding a cavity of fluid. development of the major organ systems. Chapter 3 Chapter 3 The platelike inner part of the blastocyst that From head to tail. differentiates into the ectoderm, mesoderm, and endoderm of the embryo. Chapter 3 Chapter 3 The outer part of the blastocyst from which the From the inner part (or axis) of the body amniotic sac, placenta, and umbilical cord outward. develop. Chapter 3 Chapter 3 ectoderm amniotic sac Chapter 3 Chapter 3 neural tube amniotic fluid Chapter 3 Chapter 3 endoderm fetal stage Chapter 3 Chapter 3 mesoderm stillbirth Chapter 3 Chapter 3 androgens teratogens Chapter 3 Chapter 3 The outermost cell layer of the newly formed The sac containing the fetus. embryo from which the skin and nervous system develop.
    [Show full text]
  • Messages from the Placentae Across Multiple Species a 50 Years
    Placenta 84 (2019) 14–27 Contents lists available at ScienceDirect Placenta journal homepage: www.elsevier.com/locate/placenta Messages from the placentae across multiple species: A 50 years exploration T Hiroaki Soma Saitama Medical University, Japan ARTICLE INFO ABSTRACT Keywords: This review explores eight aspects of placentation in multiple mammalian. Gestational trophoblastic disease 1) Specialities of gestational trophoblastic disease. SUA(Single umbilical artery) 2) Clinical significance of single umbilical artery (SUA) syndrome. DIC(Disseminated intravascular coagulation) in 3) Pulmonary trophoblast embolism in pregnant chinchillas and DIC in pregnant giant panda. giant panda 4) Genetics status and placental behaviors during Japanese serow and related antelopes. Placentation in Japanese serow 5) Specific living style and placentation of the Sloth and Proboscis monkey. Hydatidiform mole in chimpanzee Placentation in different living elephant 6) Similarities of placental structures between human and great apes. Manatee and hyrax 7) Similarities of placental forms in elephants, manatees and rock hyrax with different living styles. Specific placental findings of Himalayan people 8) Specialities of placental pathology in Himalayan mountain people. Conclusions: It was taught that every mammalian species held on placental forms applied to different environ- mental life for their infants, even though their gestational lengths were different. 1. Introduction of effective chemotherapeutic agents. In 1959, I was fortunate tore- ceive an invitation from Prof. Kurt Benirschke at the Boston Lying-in Last October, Scientific American published a special issue about a Hospital. Before that, I had written to Prof. Arthur T. Hertig, Chairman baby's first organ, the placenta [1]. It is full of surprises and amazing of Pathology, Harvard Medical School, asking to study human tropho- science.
    [Show full text]
  • Self-Organized Amniogenesis by Human Pluripotent Stem Cells in a Biomimetic Implantation-Like Niche
    LETTERS PUBLISHED ONLINE: 12 DECEMBER 2016 | DOI: 10.1038/NMAT4829 Self-organized amniogenesis by human pluripotent stem cells in a biomimetic implantation-like niche Yue Shao1†, Kenichiro Taniguchi2†, Katherine Gurdziel3, Ryan F. Townshend2, Xufeng Xue1, Koh Meng Aw Yong1, Jianming Sang1, Jason R. Spence2, Deborah L. Gumucio2* and Jianping Fu1,2,4* Amniogenesis—the development of amnion—is a critical factors seen in the in vivo amniogenic niche: a three-dimensional developmental milestone for early human embryogenesis (3D) extracellular matrix (ECM) that is provided by the basement and successful pregnancy1,2. However, human amniogenesis membrane surrounding the epiblast during implantation11; and a is poorly understood due to limited accessibility to peri- soft tissue bed provided by the uterine wall and trophoblast to implantation embryos and a lack of in vitro models. Here support the developing amnion (Fig. 1a,b). Since amniogenesis ini- we report an ecient biomaterial system to generate human tiates from the expanding pluripotent epiblast, we utilized mTeSR1 amnion-like tissue in vitro through self-organized development medium and basement membrane matrix (Geltrex) to render the of human pluripotent stem cells (hPSCs) in a bioengineered culture permissive for pluripotency maintenance. niche mimicking the in vivo implantation environment. We In this culture system, H9 human embryonic stem cells (hESCs) show that biophysical niche factors act as a switch to toggle were plated as single cells at 30,000 cells cm−2 onto a thick, hPSC self-renewal versus amniogenesis under self-renewal- soft gel bed of Geltrex (with thickness ≥100 µm, bulk Young's permissive biochemical conditions. We identify a unique modulus ∼900 Pa, coated on a glass coverslip), in mTeSR1 medium molecular signature of hPSC-derived amnion-like cells and supplemented with the ROCK inhibitor Y27632 (Fig.
    [Show full text]
  • The Science of Amnioexcite™ Three Layer Placental Membrane Allograft
    The Science of AmnioExcite™ Three Layer Placental Membrane Allograft REV. 10-2020 The Science of AmnioExcite™ Placental Membrane Allograft AmnioExcite™ is a full-thickness decellularized placental membrane. AmnioExcite™ is a lyophilized, full-thickness placental membrane allograft decellularized with LifeNet Health’s proprietary Matracell® process and patent pending technology and intended for homologous use as a barrier membrane.(1) Inclusion of the intact amniotic and chorionic membranes, as well as the trophoblast layer, makes it thicker than most available amniotic-only or amniotic-chorionic allografts, and provides a robust protective covering while also delivering superior handling. AmnioExcite™ retains the placental membrane’s naturally occurring growth factors, cytokines, protease inhibitors, and extracellular matrix components, such as proteoglycans, collagen and fibronectin(2) In vitro studies have shown that these endogenous factors are capable of inducing cellular proliferation and migration, mitigating inflammation, and inhibiting protein degradation(3-5) STRUCTURE OF THE THREE LAYER PLACENTAL MEMBRANE AMNIOTIC MEMBRANE CHORIONIC MEMBRANE TROPHOBLAST LAYER The placental membrane is comprised of the amnion and chorion (6). The amnion, also called amniotic membrane (AM) has five layers, including the epithelium, basement membrane, compact layer, fibroblast layer, and the spongy layer(6), which provide important extracellular membrane components, as well as a wide variety of growth factors, cytokines, and other proteins.(7) While these characteristics are important, the AM by itself lacks substantial structure for providing a protective covering and contains only a small portion of the biological factors found in the full-thickness placental membrane. AM-only grafts can also be difficult to apply and may migrate away from the intended site of application.(8) The chorion is comprised of four layers, including the cellular layer, reticular layer, the pseudobasement membrane and the trophoblast layer (TL) (6).
    [Show full text]
  • Adhesive and Degradative Properties of Human Placental Cytotrophoblast Cells in Vitro Susan J
    Adhesive and Degradative Properties of Human Placental Cytotrophoblast Cells In Vitro Susan J. Fisher, Tian-yi Cui, Li Zhang, Lynn Hartman, Kim Grahl, Zhang Guo-Yang, John Tarpey, and Caroline H. Damsky Departments of Stomatology, Anatomy, and Pharmaceutical Chemistry, University of California at San Francisco, San Francisco, California 94143 Abstract. Human fetal development depends on the ponents into the medium. No similar degradative ac- embryo rapidly gaining access to the maternal circula- tivity was observed when second or third trimester tion. The trophoblast cells that form the fetal portion cytotrophoblast cells, first trimester human placental of the human placenta have solved this problem by fibroblasts, or the human choriocarcinoma cell lines transiently exhibiting certain tumor-like properties. BeWo and JAR were cultured on radiolabeled matrices. Thus, during early pregnancy fetal cytotrophoblast To begin to understand the biochemical basis of this cells invade the uterus and its arterial network. This degradative behavior, the substrate gel technique was process peaks during the twelfth week of pregnancy used to analyze the cell-associated and secreted pro- and declines rapidly thereafter, suggesting that the teinase activities expressed by early, mid, and late highly specialized, invasive behavior of the cytotropho- gestation cytotrophoblasts. Several gelatin-degrading blast cells is closely regulated. Since little is known proteinases were uniquely expressed by early gesta- about the actual mechanisms involved, we developed tion, invasive cytotrophoblasts, and all these activities an isolation procedure for cytotrophoblasts from could be abolished by inhibitors of metalloproteinases. placentas of different gestational ages to study their By early second trimester, the time when cytotropho- adhesive and invasive properties in vitro.
    [Show full text]
  • What Is the Role of the Placenta—Does It Protect Against Or Is It a Target for Insult?
    Teratology Primer, 3rd Edition www.teratology.org/primer What Is the Role of the Placenta—Does It Protect Against or Is It a Target for Insult? Richard K. Miller University of Rochester School of Medicine & Dentistry Rochester, New York The placenta is not just a barrier but has many functions that are vital to the health of the embryo/fetus. The placenta is the anchor, the conduit, and the controller of pregnancy—and it can also be a target for toxicant action. The placenta encompasses not only the chorioallantoic placenta but all of its extraembryonic membranes (chorion/amnion) and the yolk sac. (Figure 1). The placenta and its membranes secure the embryo and fetus to the decidua (uterine lining) and release a variety of steroid and protein hormones that characterize the physiology of the pregnant female. Figure 1. Placental Structure in the Mouse. Figures depict early development of the mouse conceptus at embryonic days (E3.5, E7.5, E12.5). In the fetus, the visceral yolk sac (vYS) inverts and remains active throughout the entire gestation providing for transfer of selective large molecules, e.g., immunoglobulins IgG and vitamin B12. Abbreviations: Al, allantois; Am, amnion; Ch, chorion; Dec, decidua; Emb, embryo; Epc, ectoplacental cone; ICM, inner cell mass; Lab, Labyrinth; pYS, parietal yolk sac; SpT, spongiotrophoblast; TCG, trophoblast giant cell; Umb Cord, umbilical cord; vYS, visceral yolk sac; C-TGC, maternal blood canal trophoblast giant cell; P-TGC, parietal trophoblast giant cell; S-TGC, sinusoidal trophoblast giant cell; SpA-TGC, Spiral artery-associated trophoblast giant cell; Cyan-trophectoderm and trophoblast lineage, Black- inner cell mass and embryonic ectoderm; Gray -endoderm, Red-maternal vasculature, Purple-mesoderm, Yellow- decidua, Pink-fetal blood vessels in labyrinth.
    [Show full text]
  • NUMB and Syncytiotrophoblast Development and Function: Investigation Using Bewo Choriocarcinoma Cells by Julie Carey This Thesis
    NUMB and Syncytiotrophoblast Development and Function: Investigation Using BeWo Choriocarcinoma Cells By Julie Carey This thesis is submitted as a partial fulfillment of the M.Sc. program in Cellular and Molecular Medicine Faculty of Medicine, University of Ottawa May, 2012 © Julie Carey, Ottawa, Canada, 2012 ABSTRACT The role of NUMB, a protein important for cellular differentiation and endocytosis in non-placental cells, was investigated in syncytiotrophoblast development and function in the human placenta. The BeWo choriocarcinoma cell line was used as a model for villous cytotrophoblast cells and syncytiotrophoblast to investigate NUMB’s involvement in differentiation and epidermal growth factor receptor (EGFR) endocytosis. NUMB isoforms 1 and 3 were found to be the predominant isoforms and were upregulated following forskolin-induced differentiation. Overexpression of NUMB isoforms 1 and 3 did not mediate differentiation or EGFR signaling. Immunofluorescence analysis revealed that NUMB colocalized with EGFR at perinuclear late endosomes and lysosomes following EGF stimulation. We have demonstrated for the first time that NUMB isoforms 1 and 3 are expressed in BeWo cells, are upregulated in forskolin- differentiated BeWo cells and are involved in ligand-dependent EGFR endocytosis in BeWo cells. ii TABLE OF CONTENTS ABSTRACT …………………………………………………………………………….. ii LIST OF TABLES ……………………………………………………………………... v LIST OF FIGURES ………………………………………………………………...…. vi LIST OF ABBREVIATIONS ………………………………………………...……… vii ACKNOWLEDGEMENTS ……………………………………………...…..……….
    [Show full text]
  • From Trophoblast to Human Placenta
    From Trophoblast to Human Placenta (from The Encyclopedia of Reproduction) Harvey J. Kliman, M.D., Ph.D. Yale University School of Medicine I. Introduction II. Formation of the placenta III. Structure and function of the placenta IV. Complications of pregnancy related to trophoblasts and the placenta Glossary amnion the inner layer of the external membranes in direct contact with the amnionic fluid. chorion the outer layer of the external membranes composed of trophoblasts and extracellular matrix in direct contact with the uterus. chorionic plate the connective tissue that separates the amnionic fluid from the maternal blood on the fetal surface of the placenta. chorionic villous the final ramification of the fetal circulation within the placenta. cytotrophoblast a mononuclear cell which is the precursor cell of all other trophoblasts. decidua the transformed endometrium of pregnancy intervillous space the space in between the chorionic villi where the maternal blood circulates within the placenta invasive trophoblast the population of trophoblasts that leave the placenta, infiltrates the endo– and myometrium and penetrates the maternal spiral arteries, transforming them into low capacitance blood channels. Sunday, October 29, 2006 Page 1 of 19 From Trophoblasts to Human Placenta Harvey Kliman junctional trophoblast the specialized trophoblast that keep the placenta and external membranes attached to the uterus. spiral arteries the maternal arteries that travel through the myo– and endometrium which deliver blood to the placenta. syncytiotrophoblast the multinucleated trophoblast that forms the outer layer of the chorionic villi responsible for nutrient exchange and hormone production. I. Introduction The precursor cells of the human placenta—the trophoblasts—first appear four days after fertilization as the outer layer of cells of the blastocyst.
    [Show full text]
  • The Placenta: Transcriptional, Epigenetic, and Physiological Integration During Development
    The placenta: transcriptional, epigenetic, and physiological integration during development Emin Maltepe, … , Anna I. Bakardjiev, Susan J. Fisher J Clin Invest. 2010;120(4):1016-1025. https://doi.org/10.1172/JCI41211. Review Series The placenta provides critical transport functions between the maternal and fetal circulations during intrauterine development. Formation of this interface relies on coordinated interactions among transcriptional, epigenetic, and environmental factors. Here we describe these mechanisms in the context of the differentiation of placental cells (trophoblasts) and synthesize current knowledge about how they interact to generate a functional placenta. Developing an understanding of these pathways contributes to an improvement of our models for studying trophoblast biology and sheds light on the etiology of pregnancy complications and the in utero programming of adult diseases. Find the latest version: https://jci.me/41211/pdf Review series The placenta: transcriptional, epigenetic, and physiological integration during development Emin Maltepe,1,2,3,4 Anna I. Bakardjiev,1,2,5 and Susan J. Fisher2,3,4,6,7 1Department of Pediatrics, 2Biomedical Sciences Program, 3Center for Reproductive Sciences and the Department of Obstetrics, Gynecology and Reproductive Sciences, 4Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, 5Program in Microbial Pathogenesis and Host Defense, 6Department of Anatomy, and 7Human Embryonic Stem Cell Program, University of California, San Francisco. The placenta provides critical transport functions between the maternal and fetal circulations during intrauterine development. Formation of this interface relies on coordinated interactions among transcriptional, epigenetic, and environmental factors. Here we describe these mechanisms in the context of the differentiation of placental cells (tro- phoblasts) and synthesize current knowledge about how they interact to generate a functional placenta.
    [Show full text]
  • Mechanisms of Human Embryo Development: from Cell Fate to Tissue Shape and Back Marta N
    © 2020. Published by The Company of Biologists Ltd | Development (2020) 147, dev190629. doi:10.1242/dev.190629 REVIEW Mechanisms of human embryo development: from cell fate to tissue shape and back Marta N. Shahbazi* ABSTRACT activated ion channels (Coste et al., 2010), mechanosensitive Gene regulatory networks and tissue morphogenetic events drive the transcription factors (Dupont et al., 2011) or directly by the nucleus emergence of shape and function: the pillars of embryo development. (Kirby and Lammerding, 2018). Once sensed, mechanical cues – Although model systems offer a window into the molecular biology of are transduced into biochemical signals a process known as cell fate and tissue shape, mechanistic studies of our own mechanotransduction (Chan et al., 2017). The conversion of development have so far been technically and ethically challenging. mechanical cues into biochemical signals leads to changes in However, recent technical developments provide the tools to gene expression and protein activity that control cell behaviour, cell describe, manipulate and mimic human embryos in a dish, thus fate specification and tissue patterning. opening a new avenue to exploring human development. Here, I Current consensus focuses on two main ideas to explain the discuss the evidence that supports a role for the crosstalk between emergence of tissue patterns in response to morphogen (see Glossary, ‘ ’ cell fate and tissue shape during early human embryogenesis. This is Box1)signals.Inthe positional information model (Wolpert, a critical developmental period, when the body plan is laid out and 1969), the concentration of a morphogen serves as a coordinate of the many pregnancies fail. Dissecting the basic mechanisms that position of a cell within a tissue.
    [Show full text]
  • Revisedental.Com Implantation
    Embryology Sumamry This lesson will cover fertilisation, implantation, gastrulation and neurulation. The first 4 weeks of embryology. Pregnancy is split into three trimesters. Semesters one and two contribute to the embryonic period and semester three becomes the fetal period. The first of these trimesters is a critical time period, because this is when all the main organ systems begin to develop. The second trimester is when we start to look more human and our organ systems are near complete ready to move into the third trimester, which shows rapid fetal growth and organ function. This process takes between 38-40 weeks, which is when birth occurs. Week 1: Key Words: Fertilisation Zygote Cleavage Blastomere Morula Blastocyst Trophoblast EmbryoblastsReviseDental.com Implantation Cell actions: Proliferate, Migrate and Differentiate. Fertilisation: The optimum time for fertilisation to occur is between 12-24hrs after ovulation (when the secondary oocyst leaves the ovary). However, due to the ability of sperm being able to remain viable for 48hrs, there is a 3 day window around the time of ovulation for fertilisation to take place. Sperm and ova are haploid cells. This means they have half the amount of chromosomes of a human cell. Therefore, on fusion (syngamy) a diploid cell is created, now known as a zygote. The Zygote now has the correct number of chromosomes: 46. Diagram schematicReviseDental.com of a sperm and ova The sperm cells are specially equipped to enter the ova, having acrosome enzymes to penetrate the cell wall and a powerful flagella (tail) for motility. On entrance, to prevent polyspermy (multiple sperm entering), the ova cell wall depolarises alongside deactivation of cell receptor, making the ova's zona pellucida impenetrable.
    [Show full text]