Fusion of Cytothrophoblast with Syncytiotrophoblast in the Human Placenta: Factors Involved in Syncytialization Gauster M, Huppertz B J

Total Page:16

File Type:pdf, Size:1020Kb

Fusion of Cytothrophoblast with Syncytiotrophoblast in the Human Placenta: Factors Involved in Syncytialization Gauster M, Huppertz B J Journal für Reproduktionsmedizin und Endokrinologie – Journal of Reproductive Medicine and Endocrinology – Andrologie • Embryologie & Biologie • Endokrinologie • Ethik & Recht • Genetik Gynäkologie • Kontrazeption • Psychosomatik • Reproduktionsmedizin • Urologie Fusion of Cytothrophoblast with Syncytiotrophoblast in the Human Placenta: Factors Involved in Syncytialization Gauster M, Huppertz B J. Reproduktionsmed. Endokrinol 2008; 5 (2), 76-82 www.kup.at/repromedizin Online-Datenbank mit Autoren- und Stichwortsuche Offizielles Organ: AGRBM, BRZ, DVR, DGA, DGGEF, DGRM, D·I·R, EFA, OEGRM, SRBM/DGE Indexed in EMBASE/Excerpta Medica/Scopus Krause & Pachernegg GmbH, Verlag für Medizin und Wirtschaft, A-3003 Gablitz FERRING-Symposium digitaler DVR 2021 Mission possible – personalisierte Medizin in der Reproduktionsmedizin Was kann die personalisierte Kinderwunschbehandlung in der Praxis leisten? Freuen Sie sich auf eine spannende Diskussion auf Basis aktueller Studiendaten. SAVE THE DATE 02.10.2021 Programm 12.30 – 13.20Uhr Chair: Prof. Dr. med. univ. Georg Griesinger, M.Sc. 12:30 Begrüßung Prof. Dr. med. univ. Georg Griesinger, M.Sc. & Dr. Thomas Leiers 12:35 Sind Sie bereit für die nächste Generation rFSH? Im Gespräch Prof. Dr. med. univ. Georg Griesinger, Dr. med. David S. Sauer, Dr. med. Annette Bachmann 13:05 Die smarte Erfolgsformel: Value Based Healthcare Bianca Koens 13:15 Verleihung Frederik Paulsen Preis 2021 Wir freuen uns auf Sie! Fusion of Cytotrophoblast with Syncytiotrophoblast in the Human Placenta: Factors Involved in Syncytialization M. Gauster, B. Huppertz Human placental villi are covered by a characteristic epithelial-like layer. It consists of mononucleated cytotrophoblasts and an overlying syncytiotrophoblast layer both in contact to the trophoblastic basement membrane. The syncytiotrophoblast mostly lacks DNA replication and seems to transcribe only barely mRNA. Therefore, the syncytiotrophoblast depends on cell compounds delivered by fusing cytotrophoblasts. Delivery of fresh cytoplasmic contents into the syncytiotrophoblast is achieved by continuous fusion with cytotrophoblasts throughout gesta- tion. Fusion between cytotrophoblasts and the syncytiotrophoblast is driven by multiple factors, including environmental growth factors and cytokines, which turn on a specific cascade of fusogenic proteins in cytotrophoblasts destined for fusion. The cascade includes protein kinases and transcription factors, as well as induced expression of fusion-promoting proteins associated with the cell membrane. Additionally, specific proteases are activated, which cleave and remodel structural proteins to prepare the cell for fusion. However, not only fusogenic proteins, but also plasma membrane architecture and physicochemical factors such as calcium and oxygen affect intertrophoblastic fusion. Coordinated action of all factors involved is crucial for proper cytotrophoblast – syncytiotrophoblast fusion. Deregulation of a single factor might cause an inadequate fusion rate and could lead to pregnancy complications such as preeclampsia or even spontaneous abortion. J Reproduktionsmed Endokrinol 2008; 5 (2): 76–82. Key words: cytotrophoblast, syncytiotrophoblast, syncytialization, intertrophoblastic fusion Intercellular Fusion Human Trophoblast trophoblast derived nuclei and other in the Human organelles, proteins and RNA as well Arising from the trophoblast of the as cytoplasm and membranes are In human, the phenomenon of cell- blastocyst, two trophoblast popula- transferred into the syncytiotropho- cell fusion occurs in several different tions differentiate early during gesta- blast. cell types. During fertilization, after tion. Extravillous trophoblasts leave penetration of the zona pellucida the basal membrane of anchoring Experiments using 3H-thymidine in- and entry of the sperm into the egg’s villi and invade the tissues of the ma- corporation revealed that DNA syn- perivitelline space, fusion of the egg ternal decidua basalis to attach the thesis does not occur in syncytio- and sperm cell membranes takes placenta to the uterus and to re- trophoblast, implying that syncytial place [1]. Macrophages can differen- model maternal spiral arteries. nuclei are unable to replicate [3]. In tiate and fuse to form multinucleated addition, 3H-uridine incorporation chondroclasts and osteoclasts [2], The second population is the villous experiments showed that the syncy- which are important for cartilage and cytotrophoblast, which upon specific tiotrophoblast is mostly lacking RNA bone development and remodelling. stimulation differentiate and fuse synthesis [4]. Taking in consideration Macrophages are also able to fuse with the covering syncytiotropho- that the syncytiotrophoblast does not into giant cells important in immune blast. The multinucleated syncytio- replicate and shows only little tran- defense. During embryonic develop- trophoblast in concert with the un- scriptional activity, the mechanism ment of skeletal muscle, mononu- derlying mononucleated cytotropho- of fusion with cytotrophoblasts be- cleated myoblasts fuse to form multi- blasts are located on a basement comes highly important. The integ- nucleated myotubes. Even in the membrane and constitute the villous rity of the syncytiotrophoblast de- adult skeletal muscle satellite cells trophoblast, the epithelial-like layer pends on continuous fusion and de- fuse with skeletal muscle fibers. In of the placental villous tree. Some of livery of cytotrophoblast derived cy- the human placenta, villous tropho- the cytotrophoblasts are trophoblast toplasmic contents throughout preg- blasts fuse to generate the character- progenitor cells and divide in an nancy. istic multinucleated syncytial layer, asymmetric way. While one daughter the syncytiotrophoblast. Extravillous cell retains its progenitor character, At the same time acquisition of fresh trophoblasts differentiate and fuse to the other is destined for differentia- cellular material requires deposition generate the trophoblastic giant cells tion. The final differentiation stage of of aged cytosolic content to keep characteristic for the decidua basalis a cytotrophoblast is fusion with the the biological balance of the syncy- during pregnancy. syncytiotrophoblast. This way, cyto- tium. Apoptotic material is packed in Received: February 6, 2008; accepted after revision: May 14, 2008. From the Institute of Cell Biology, Histology and Embryology, Center of Molecular Medicine, Medical University of Graz Correspondence: Martin Gauster, PhD, Institute of Cell Biology, Histology and Embryology, Center of Molecular Medicine, Medical University of Graz, A-8010 Graz, Harrachgasse 21/VII, Austria; e-mail: [email protected] 76 J. REPRODUKTIONSMED. ENDOKRINOL. 2/2008 For personal use only. Not to be reproduced without permission of Krause & Pachernegg GmbH. tor (GM-CSF) have also been demon- strated to trigger syncytialization and hCG synthesis [7]. Moreover, trans- forming growth factor (TGF)-α and leukemia-inhibitory factor (LIF) have been suggested to promote syn- cytialization and production of hCG [8]. Interestingly, hCG itself, pro- duced by the syncytiotrophoblast can act as inducer of cytotrophoblast differentiation [8, 9]. In contrast, transforming growth factor (TGF)-β inhibits syncytial formation as well as secretion of hCG and hPL [10]. Also tumor necrosis factor (TNF)-α impairs syncytium formation of pri- Figure 1. Schematic representation of trophoblast differentiation within the villous trophoblast. mary term trophoblasts in vitro and Derived from trophoblast progenitor cells daughter cells start to differentiate and finally fuse represses hCG synthesis by down- with the overlying syncytiotrophoblast. Nuclei that have become an integrative part of the syn- regulation of β-hCG subunit expres- cytiotrophoblast change their morphology and display chromatin condensation. Finally late apoptotic syncytial nuclei are packed into syncytial knots and are released into the maternal sion [11]. blood stream. The arrows follow the route of cell types and nuclear changes during trophoblast differentiation. When environmental factors bind to their receptors on target tropho- membrane sealed vesicles – the so staining these cells with membrane blasts, mitogen-activated protein called syncytial knots – and is re- associated proteins such as desmo- kinases (MAPKs) may be activated leased from the apical cytoplasmic plakin or E-cadherin (Fig. 2). which in turn regulate complex pro- membrane of the syncytiotropho- grams of cell differentiation. Two blast into the maternal circulation. classical MAPKs, the extracellular Hence, the turnover of villous tro- Regulation of Trophoblast signal-regulated kinase1/2 (ERK1/2) phoblast in a placental villus is simi- Differentiation and p38, are implicated to play sig- lar to the turnover in stratified epithe- nificant roles in initiation of tropho- lia and includes proliferation, differ- Since cytotrophoblasts can either ac- blast differentiation and fusion. Stud- entiation, fusion and controlled re- quire the extravillous (invasive path- ies employing specific ERK1/2 and/ lease of apoptotic material (Fig. 1). way) or the villous (syncytial path- or p38 inhibitors to primary tropho- way) phenotype, it is apparent that blast cultures revealed impaired To study the fusion process between differentiation has to be strictly regu- differentiation and syncytialization trophoblasts in greater detail in vitro lated. Factors that are involved in [12]. the BeWo cell model has attracted a governing
Recommended publications
  • 3 Embryology and Development
    BIOL 6505 − INTRODUCTION TO FETAL MEDICINE 3. EMBRYOLOGY AND DEVELOPMENT Arlet G. Kurkchubasche, M.D. INTRODUCTION Embryology – the field of study that pertains to the developing organism/human Basic embryology –usually taught in the chronologic sequence of events. These events are the basis for understanding the congenital anomalies that we encounter in the fetus, and help explain the relationships to other organ system concerns. Below is a synopsis of some of the critical steps in embryogenesis from the anatomic rather than molecular basis. These concepts will be more intuitive and evident in conjunction with diagrams and animated sequences. This text is a synopsis of material provided in Langman’s Medical Embryology, 9th ed. First week – ovulation to fertilization to implantation Fertilization restores 1) the diploid number of chromosomes, 2) determines the chromosomal sex and 3) initiates cleavage. Cleavage of the fertilized ovum results in mitotic divisions generating blastomeres that form a 16-cell morula. The dense morula develops a central cavity and now forms the blastocyst, which restructures into 2 components. The inner cell mass forms the embryoblast and outer cell mass the trophoblast. Consequences for fetal management: Variances in cleavage, i.e. splitting of the zygote at various stages/locations - leads to monozygotic twinning with various relationships of the fetal membranes. Cleavage at later weeks will lead to conjoined twinning. Second week: the week of twos – marked by bilaminar germ disc formation. Commences with blastocyst partially embedded in endometrial stroma Trophoblast forms – 1) cytotrophoblast – mitotic cells that coalesce to form 2) syncytiotrophoblast – erodes into maternal tissues, forms lacunae which are critical to development of the uteroplacental circulation.
    [Show full text]
  • An Overview of Molecular Events Occurring in Human Trophoblast Fusion Pascale Gerbaud, Guillaume Pidoux
    An overview of molecular events occurring in human trophoblast fusion Pascale Gerbaud, Guillaume Pidoux To cite this version: Pascale Gerbaud, Guillaume Pidoux. An overview of molecular events occurring in human trophoblast fusion. Placenta, Elsevier, 2015, 36 (Suppl1), pp.S35-42. 10.1016/j.placenta.2014.12.015. inserm- 02556112v2 HAL Id: inserm-02556112 https://www.hal.inserm.fr/inserm-02556112v2 Submitted on 28 Apr 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 An overview of molecular events occurring in human trophoblast fusion 2 3 Pascale Gerbaud1,2 & Guillaume Pidoux1,2,† 4 1INSERM, U1139, Paris, F-75006 France; 2Université Paris Descartes, Paris F-75006; France 5 6 Running title: Trophoblast cell fusion 7 Key words: Human trophoblast, Cell fusion, Syncytins, Connexin 43, Cadherin, ZO-1, 8 cAMP-PKA signaling 9 10 Word count: 4276 11 12 13 †Corresponding author: Guillaume Pidoux, PhD 14 Inserm UMR-S-1139 15 Université Paris Descartes 16 Faculté de Pharmacie 17 Cell-Fusion group 18 75006 Paris, France 19 Tel: +33 1 53 73 96 02 20 Fax: +33 1 44 07 39 92 21 E-mail: [email protected] 22 1 23 Abstract 24 During human placentation, mononuclear cytotrophoblasts fuse to form a multinucleated syncytia 25 ensuring hormonal production and nutrient exchanges between the maternal and fetal circulation.
    [Show full text]
  • Human Pluripotent Stem Cells As a Model of Trophoblast Differentiation in Both Normal Development and Disease
    Human pluripotent stem cells as a model of trophoblast differentiation in both normal development and disease Mariko Horiia,b,1, Yingchun Lia,b,1, Anna K. Wakelanda,b,1, Donald P. Pizzoa, Katharine K. Nelsona,b, Karen Sabatinib,c, Louise Chang Laurentb,c, Ying Liud,e,f, and Mana M. Parasta,b,2 aDepartment of Pathology, University of California, San Diego, La Jolla, CA 92093; bSanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA 92093; cDepartment of Reproductive Medicine, University of California, San Diego, La Jolla, CA 92093; dDepartment of Neurosurgery, Center for Stem Cell and Regenerative Medicine, University of Texas Health Sciences Center, Houston, TX 77030; eThe Senator Lloyd and B. A. Bentsen Center for Stroke Research, University of Texas Health Sciences Center, Houston, TX 77030; and fThe Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Sciences Center, Houston, TX 77030 Edited by R. Michael Roberts, University of Missouri–Columbia, Columbia, MO, and approved May 25, 2016 (received for review March 24, 2016) Trophoblast is the primary epithelial cell type in the placenta, a Elf5 (Ets domain transcription factor) and Eomes (Eomeso- transient organ required for proper fetal growth and develop- dermin), also have been shown to be required for maintenance of ment. Different trophoblast subtypes are responsible for gas/nutrient the TSC fate in the mouse (8, 9). exchange (syncytiotrophoblasts, STBs) and invasion and maternal Significantly less is known about TE specification and the TSC vascular remodeling (extravillous trophoblasts, EVTs). Studies of niche in the human embryo (10, 11).
    [Show full text]
  • An Overview of Lipid Membrane Models for Biophysical Studies
    biomimetics Review Mimicking the Mammalian Plasma Membrane: An Overview of Lipid Membrane Models for Biophysical Studies Alessandra Luchini 1 and Giuseppe Vitiello 2,3,* 1 Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark; [email protected] 2 Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale Tecchio 80, 80125 Naples, Italy 3 CSGI-Center for Colloid and Surface Science, via della Lastruccia 3, 50019 Sesto Fiorentino (Florence), Italy * Correspondence: [email protected] Abstract: Cell membranes are very complex biological systems including a large variety of lipids and proteins. Therefore, they are difficult to extract and directly investigate with biophysical methods. For many decades, the characterization of simpler biomimetic lipid membranes, which contain only a few lipid species, provided important physico-chemical information on the most abundant lipid species in cell membranes. These studies described physical and chemical properties that are most likely similar to those of real cell membranes. Indeed, biomimetic lipid membranes can be easily prepared in the lab and are compatible with multiple biophysical techniques. Lipid phase transitions, the bilayer structure, the impact of cholesterol on the structure and dynamics of lipid bilayers, and the selective recognition of target lipids by proteins, peptides, and drugs are all examples of the detailed information about cell membranes obtained by the investigation of biomimetic lipid membranes. This review focuses specifically on the advances that were achieved during the last decade in the field of biomimetic lipid membranes mimicking the mammalian plasma membrane. In particular, we provide a description of the most common types of lipid membrane models used for biophysical characterization, i.e., lipid membranes in solution and on surfaces, as well as recent examples of their Citation: Luchini, A.; Vitiello, G.
    [Show full text]
  • Adhesive and Degradative Properties of Human Placental Cytotrophoblast Cells in Vitro Susan J
    Adhesive and Degradative Properties of Human Placental Cytotrophoblast Cells In Vitro Susan J. Fisher, Tian-yi Cui, Li Zhang, Lynn Hartman, Kim Grahl, Zhang Guo-Yang, John Tarpey, and Caroline H. Damsky Departments of Stomatology, Anatomy, and Pharmaceutical Chemistry, University of California at San Francisco, San Francisco, California 94143 Abstract. Human fetal development depends on the ponents into the medium. No similar degradative ac- embryo rapidly gaining access to the maternal circula- tivity was observed when second or third trimester tion. The trophoblast cells that form the fetal portion cytotrophoblast cells, first trimester human placental of the human placenta have solved this problem by fibroblasts, or the human choriocarcinoma cell lines transiently exhibiting certain tumor-like properties. BeWo and JAR were cultured on radiolabeled matrices. Thus, during early pregnancy fetal cytotrophoblast To begin to understand the biochemical basis of this cells invade the uterus and its arterial network. This degradative behavior, the substrate gel technique was process peaks during the twelfth week of pregnancy used to analyze the cell-associated and secreted pro- and declines rapidly thereafter, suggesting that the teinase activities expressed by early, mid, and late highly specialized, invasive behavior of the cytotropho- gestation cytotrophoblasts. Several gelatin-degrading blast cells is closely regulated. Since little is known proteinases were uniquely expressed by early gesta- about the actual mechanisms involved, we developed tion, invasive cytotrophoblasts, and all these activities an isolation procedure for cytotrophoblasts from could be abolished by inhibitors of metalloproteinases. placentas of different gestational ages to study their By early second trimester, the time when cytotropho- adhesive and invasive properties in vitro.
    [Show full text]
  • CHAPTER 11 Lipid Acrobatics in the Membrane Fusion Arena
    CHAPTER 11 Lipid Acrobatics in the Membrane Fusion Arena Albert J. Markvoort1 and Siewert J. Marrink2 1Institute for Complex Molecular Systems & Biomodeling and Bioinformatics Group, Eindhoven University of Technology, Eindhoven, The Netherlands 2Groningen Biomolecular Sciences and Biotechnology Institute & Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands I. Overview II. Introduction III. Historical Background IV. Fusion Pathways at the Molecular Level A. Symmetric Stalk Expansion Pathway B. Alternative Pathways C. Composition Dependence V. Energy Landscape Along the Fusion Pathway A. Stalk and Hemifusion Diaphragm Intermediates B. Lipid Splaying as First Step C. Many Barriers to Cross VI. Fission Pathways in Molecular Detail A. Budding/Neck Formation B. Fission not Just Fusion Reversed VII. Peptide Modulated Fusion A. The Role of Fusion Peptides B. Protein-Induced Fusion VIII. Outlook References I. OVERVIEW In this review, we describe the recent contribution of computer simulation approaches to unravel the molecular details of membrane fusion. Over the past decade, fusion between apposed membranes and vesicles has been studied using a large variety of simulation methods and systems. Despite the variety in techniques, some generic fusion pathways emerge that predict a more complex Current Topics in Membranes, Volume 68 0065-230X/10 $35.00 Copyright 2011, Elsevier Inc. All right reserved. DOI: 10.1016/B978-0-12-385891-7.00011-8 260 Markvoort and Marrink picture beyond the traditional stalk–pore pathway. Indeed the traditional path- way is confirmed in particle-based simulations, but in addition alternative path- ways are observed in which stalks expand linearly rather than radially, leading to inverted-micellar or asymmetric hemifusion intermediates.
    [Show full text]
  • What Is the Role of the Placenta—Does It Protect Against Or Is It a Target for Insult?
    Teratology Primer, 3rd Edition www.teratology.org/primer What Is the Role of the Placenta—Does It Protect Against or Is It a Target for Insult? Richard K. Miller University of Rochester School of Medicine & Dentistry Rochester, New York The placenta is not just a barrier but has many functions that are vital to the health of the embryo/fetus. The placenta is the anchor, the conduit, and the controller of pregnancy—and it can also be a target for toxicant action. The placenta encompasses not only the chorioallantoic placenta but all of its extraembryonic membranes (chorion/amnion) and the yolk sac. (Figure 1). The placenta and its membranes secure the embryo and fetus to the decidua (uterine lining) and release a variety of steroid and protein hormones that characterize the physiology of the pregnant female. Figure 1. Placental Structure in the Mouse. Figures depict early development of the mouse conceptus at embryonic days (E3.5, E7.5, E12.5). In the fetus, the visceral yolk sac (vYS) inverts and remains active throughout the entire gestation providing for transfer of selective large molecules, e.g., immunoglobulins IgG and vitamin B12. Abbreviations: Al, allantois; Am, amnion; Ch, chorion; Dec, decidua; Emb, embryo; Epc, ectoplacental cone; ICM, inner cell mass; Lab, Labyrinth; pYS, parietal yolk sac; SpT, spongiotrophoblast; TCG, trophoblast giant cell; Umb Cord, umbilical cord; vYS, visceral yolk sac; C-TGC, maternal blood canal trophoblast giant cell; P-TGC, parietal trophoblast giant cell; S-TGC, sinusoidal trophoblast giant cell; SpA-TGC, Spiral artery-associated trophoblast giant cell; Cyan-trophectoderm and trophoblast lineage, Black- inner cell mass and embryonic ectoderm; Gray -endoderm, Red-maternal vasculature, Purple-mesoderm, Yellow- decidua, Pink-fetal blood vessels in labyrinth.
    [Show full text]
  • From Trophoblast to Human Placenta
    From Trophoblast to Human Placenta (from The Encyclopedia of Reproduction) Harvey J. Kliman, M.D., Ph.D. Yale University School of Medicine I. Introduction II. Formation of the placenta III. Structure and function of the placenta IV. Complications of pregnancy related to trophoblasts and the placenta Glossary amnion the inner layer of the external membranes in direct contact with the amnionic fluid. chorion the outer layer of the external membranes composed of trophoblasts and extracellular matrix in direct contact with the uterus. chorionic plate the connective tissue that separates the amnionic fluid from the maternal blood on the fetal surface of the placenta. chorionic villous the final ramification of the fetal circulation within the placenta. cytotrophoblast a mononuclear cell which is the precursor cell of all other trophoblasts. decidua the transformed endometrium of pregnancy intervillous space the space in between the chorionic villi where the maternal blood circulates within the placenta invasive trophoblast the population of trophoblasts that leave the placenta, infiltrates the endo– and myometrium and penetrates the maternal spiral arteries, transforming them into low capacitance blood channels. Sunday, October 29, 2006 Page 1 of 19 From Trophoblasts to Human Placenta Harvey Kliman junctional trophoblast the specialized trophoblast that keep the placenta and external membranes attached to the uterus. spiral arteries the maternal arteries that travel through the myo– and endometrium which deliver blood to the placenta. syncytiotrophoblast the multinucleated trophoblast that forms the outer layer of the chorionic villi responsible for nutrient exchange and hormone production. I. Introduction The precursor cells of the human placenta—the trophoblasts—first appear four days after fertilization as the outer layer of cells of the blastocyst.
    [Show full text]
  • Basic Structure of the Villous Trees
    6 Basic Structure of the Villous Trees M. Castellucci and P. Kaufmann Nearly the entire maternofetal and fetomaternal exchange Syncytiotrophoblast takes place in the placental villi. There is only a limited contribution to this exchange by the extraplacental mem- Syncytium or Multinucleated Giant Cells? branes. In addition, most metabolic and endocrine activi- The syncytiotrophoblast is a continuous, normally unin- ties of the placenta have been localized in the villi (for terrupted layer that extends over the surfaces of all villous review, see Gröschel-Stewart, 1981; Miller & Thiede, 1984; trees as well as over parts of the inner surfaces of chori- Knobil & Neill, 1993; Polin et al., 2004). onic and basal plates. It thus lines the intervillous Throughout placental development, different types of space. Systematic electron microscopic studies of the syn- villi emerge that have differing structural and functional cytial layer (e.g., Bargmann & Knoop, 1959; Schiebler & specializations. Despite this diversification, all villi exhibit Kaufmann, 1969; Boyd & Hamilton, 1970; Kaufmann the same basic structure (Fig. 6.1): & Stegner, 1972; Schweikhart & Kaufmann, 1977; Wang • They are covered by syncytiotrophoblast, an epithelial & Schneider, 1987) have revealed no evidence that the surface layer that separates the villous interior from syncytiotrophoblast is composed of separate units. Rather, the maternal blood, which flows around the villi. Unlike it is a single continuous structure for every placenta. Only other epithelia, the syncytiotrophoblast is not com- in later stages of pregnancy, as a consequence of focal posed of individual cells but represents a continuous, degeneration of syncytiotrophoblast, fibrinoid plaques uninterrupted, multinucleated surface layer without may isolate small islands of syncytiotrophoblast from the separating cell borders (Fig.
    [Show full text]
  • UC Merced UC Merced Electronic Theses and Dissertations
    UC Merced UC Merced Electronic Theses and Dissertations Title Characterizing the P2X4 receptor as a contributor to cell membrane fusion and C. trachomatis L2 vacuole fusion Permalink https://escholarship.org/uc/item/102048cs Author Ahrens-Braunstein, Ashley K. Publication Date 2014 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA, MERCED Characterizing the P2X4 receptor as a contributor to cell membrane fusion and C. trachomatis L2 vacuole fusion In Quantitative and Systems Biology by Ashley Ahrens-Braunstein Committee in charge: Professor Masashi Kitazawa, Chair Professor David M. Ojcius Professor Linda S. Hirst 2014 © 2014 Ashley Ahrens-Braunstein All rights reserved. ii The Thesis of Ashley Ahrens-Braunstein is approved, and it is acceptable in quality and form for publication on microfilm and electronically: _______________________________________________ Dr. David M. Ojcius ________________________________________________ Dr. Linda S. Hirst ________________________________________________ Dr. Masashi Kitazawa University of California, Merced 2014 iii DEDICATION I dedicate this thesis to my brothers and sister, Axel Ahrens, Grant Koblis, Christopher Ahrens and Cassandra Koblis for their support and continued understanding throughout my program. Being the oldest, they have looked up to me but it is their accomplishments that have inspired me to continue to persist in my goals. Throughout my years at UC Merced, they have been completely understanding
    [Show full text]
  • Human Embryologyembryology
    HUMANHUMAN EMBRYOLOGYEMBRYOLOGY Department of Histology and Embryology Jilin University ChapterChapter 22 GeneralGeneral EmbryologyEmbryology DevelopmentDevelopment inin FetalFetal PeriodPeriod 8.1 Characteristics of Fetal Period 210 days, from week 9 to delivery. characteristics: maturation of tissues and organs rapid growth of the body During 3-5 month, fetal growth in length is 5cm/M. In last 2 month, weight increases in 700g/M. relative slowdown in growth of the head compared with the rest of the body 8.2 Fetal AGE Fertilization age lasts 266 days, from the moment of fertilization to the day when the fetal is delivered. menstrual age last 280 days, from the first day of the last menstruation before pregnancy to the day when the fetal is delivered. The formula of expected date of delivery: year +1, month -3, day+7. ChapterChapter 22 GeneralGeneral EmbryologyEmbryology FetalFetal membranesmembranes andand placentaplacenta Villous chorion placenta Decidua basalis Umbilical cord Afterbirth/ secundines Fusion of amnion, smooth chorion, Fetal decidua capsularis, membrane decidua parietalis 9.1 Fetal Membranes TheThe fetalfetal membranemembrane includesincludes chorionchorion,, amnion,amnion, yolkyolk sac,sac, allantoisallantois andand umbilicalumbilical cord,cord, originatingoriginating fromfrom blastula.blastula. TheyThey havehave functionsfunctions ofof protection,protection, nutrition,nutrition, respiration,respiration, excretion,excretion, andand producingproducing hormonehormone toto maintainmaintain thethe pregnancy.pregnancy. delivery 1) Chorion: villous and smooth chorion Villus chorionic plate primary villus trophoblast secondary villus extraembryonic tertiary villus mesoderm stem villus Amnion free villus decidua parietalis Free/termin al villus Stem/ancho chorion ring villus Villous chorion Smooth chorion Amniotic cavity Extraembyonic cavity disappears gradually; Amnion is added into chorionic plate; Villous and smooth chorion is formed.
    [Show full text]
  • Coupling Between Refolding of the Influenza Hemagglutinin and Lipid Rearrangements
    1384 Biophysical Journal Volume 75 September 1998 1384–1396 A Mechanism of Protein-Mediated Fusion: Coupling between Refolding of the Influenza Hemagglutinin and Lipid Rearrangements Michael M. Kozlov* and Leonid V. Chernomordik# *Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel, and #The Laboratory of Cellular and Molecular Biophysics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892 USA ABSTRACT Although membrane fusion mediated by influenza virus hemagglutinin (HA) is the best characterized example of ubiquitous protein-mediated fusion, it is still not known how the low-pH-induced refolding of HA trimers causes fusion. This refolding involves 1) repositioning of the hydrophobic N-terminal sequence of the HA2 subunit of HA (“fusion peptide”), and 2) the recruitment of additional residues to the a-helical coiled coil of a rigid central rod of the trimer. We propose here a mechanism by which these conformational changes can cause local bending of the viral membrane, priming it for fusion. In this model fusion is triggered by incorporation of fusion peptides into viral membrane. Refolding of a central rod exerts forces that pull the fusion peptides, tending to bend the membrane around HA trimer into a saddle-like shape. Elastic energy drives self-assembly of these HA-containing membrane elements in the plane of the membrane into a ring-like cluster. Bulging of the viral membrane within such cluster yields a dimple growing toward the bound target membrane. Bending stresses in the lipidic top of the dimple facilitate membrane fusion.
    [Show full text]