The Many Mechanisms of Viral Membrane Fusion Proteins
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Phylogenetic Analysis Reveals an Ancient Gene Duplication As The
1 Phylogenetic analysis reveals an ancient gene duplication as 2 the origin of the MdtABC efflux pump. 3 4 Kamil Górecki1, Megan M. McEvoy1,2,3 5 1Institute for Society & Genetics, 2Department of MicroBiology, Immunology & Molecular 6 Genetics, and 3Molecular Biology Institute, University of California, Los Angeles, CA 90095, 7 United States of America 8 Corresponding author: [email protected] (M.M.M.) 9 1 10 Abstract 11 The efflux pumps from the Resistance-Nodulation-Division family, RND, are main 12 contributors to intrinsic antibiotic resistance in Gram-negative bacteria. Among this family, the 13 MdtABC pump is unusual by having two inner membrane components. The two components, 14 MdtB and MdtC are homologs, therefore it is evident that the two components arose by gene 15 duplication. In this paper, we describe the results obtained from a phylogenetic analysis of the 16 MdtBC pumps in the context of other RNDs. We show that the individual inner membrane 17 components (MdtB and MdtC) are conserved throughout the Proteobacterial species and that their 18 existence is a result of a single gene duplication. We argue that this gene duplication was an ancient 19 event which occurred before the split of Proteobacteria into Alpha-, Beta- and Gamma- classes. 20 Moreover, we find that the MdtABC pumps and the MexMN pump from Pseudomonas aeruginosa 21 share a close common ancestor, suggesting the MexMN pump arose by another gene duplication 22 event of the original Mdt ancestor. Taken together, these results shed light on the evolution of the 23 RND efflux pumps and demonstrate the ancient origin of the Mdt pumps and suggest that the core 24 bacterial efflux pump repertoires have been generally stable throughout the course of evolution. -
An Overview of Molecular Events Occurring in Human Trophoblast Fusion Pascale Gerbaud, Guillaume Pidoux
An overview of molecular events occurring in human trophoblast fusion Pascale Gerbaud, Guillaume Pidoux To cite this version: Pascale Gerbaud, Guillaume Pidoux. An overview of molecular events occurring in human trophoblast fusion. Placenta, Elsevier, 2015, 36 (Suppl1), pp.S35-42. 10.1016/j.placenta.2014.12.015. inserm- 02556112v2 HAL Id: inserm-02556112 https://www.hal.inserm.fr/inserm-02556112v2 Submitted on 28 Apr 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 An overview of molecular events occurring in human trophoblast fusion 2 3 Pascale Gerbaud1,2 & Guillaume Pidoux1,2,† 4 1INSERM, U1139, Paris, F-75006 France; 2Université Paris Descartes, Paris F-75006; France 5 6 Running title: Trophoblast cell fusion 7 Key words: Human trophoblast, Cell fusion, Syncytins, Connexin 43, Cadherin, ZO-1, 8 cAMP-PKA signaling 9 10 Word count: 4276 11 12 13 †Corresponding author: Guillaume Pidoux, PhD 14 Inserm UMR-S-1139 15 Université Paris Descartes 16 Faculté de Pharmacie 17 Cell-Fusion group 18 75006 Paris, France 19 Tel: +33 1 53 73 96 02 20 Fax: +33 1 44 07 39 92 21 E-mail: [email protected] 22 1 23 Abstract 24 During human placentation, mononuclear cytotrophoblasts fuse to form a multinucleated syncytia 25 ensuring hormonal production and nutrient exchanges between the maternal and fetal circulation. -
The Protein Import Machinery of Mitochondria-A Regulatory Hub In
Cell Metabolism Perspective The Protein Import Machinery of Mitochondria—A Regulatory Hub in Metabolism, Stress, and Disease Angelika B. Harbauer,1,2,3,4 Rene´ P. Zahedi,5 Albert Sickmann,5,6 Nikolaus Pfanner,1,4,* and Chris Meisinger1,4,* 1Institut fu¨ r Biochemie und Molekularbiologie, ZBMZ 2Trinationales Graduiertenkolleg 1478 3Faculty of Biology 4BIOSS Centre for Biological Signalling Studies Universita¨ t Freiburg, 79104 Freiburg, Germany 5Leibniz-Institute for Analytical Sciences–ISAS–e.V., 44139 Dortmund, Germany 6Medizinisches Proteom-Center, Ruhr-Universita¨ t Bochum, 44801 Bochum, Germany *Correspondence: [email protected] (N.P.), [email protected] (C.M.) http://dx.doi.org/10.1016/j.cmet.2014.01.010 Mitochondria fulfill central functions in bioenergetics, metabolism, and apoptosis. They import more than 1,000 different proteins from the cytosol. It had been assumed that the protein import machinery is constitu- tively active and not subject to detailed regulation. However, recent studies indicate that mitochondrial protein import is regulated at multiple levels connected to cellular metabolism, signaling, stress, and patho- genesis of diseases. Here, we discuss the molecular mechanisms of import regulation and their implications for mitochondrial homeostasis. The protein import activity can function as a sensor of mitochondrial fitness and provides a direct means of regulating biogenesis, composition, and turnover of the organelle. Introduction machinery is essential for the viability -
An Overview of Lipid Membrane Models for Biophysical Studies
biomimetics Review Mimicking the Mammalian Plasma Membrane: An Overview of Lipid Membrane Models for Biophysical Studies Alessandra Luchini 1 and Giuseppe Vitiello 2,3,* 1 Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark; [email protected] 2 Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale Tecchio 80, 80125 Naples, Italy 3 CSGI-Center for Colloid and Surface Science, via della Lastruccia 3, 50019 Sesto Fiorentino (Florence), Italy * Correspondence: [email protected] Abstract: Cell membranes are very complex biological systems including a large variety of lipids and proteins. Therefore, they are difficult to extract and directly investigate with biophysical methods. For many decades, the characterization of simpler biomimetic lipid membranes, which contain only a few lipid species, provided important physico-chemical information on the most abundant lipid species in cell membranes. These studies described physical and chemical properties that are most likely similar to those of real cell membranes. Indeed, biomimetic lipid membranes can be easily prepared in the lab and are compatible with multiple biophysical techniques. Lipid phase transitions, the bilayer structure, the impact of cholesterol on the structure and dynamics of lipid bilayers, and the selective recognition of target lipids by proteins, peptides, and drugs are all examples of the detailed information about cell membranes obtained by the investigation of biomimetic lipid membranes. This review focuses specifically on the advances that were achieved during the last decade in the field of biomimetic lipid membranes mimicking the mammalian plasma membrane. In particular, we provide a description of the most common types of lipid membrane models used for biophysical characterization, i.e., lipid membranes in solution and on surfaces, as well as recent examples of their Citation: Luchini, A.; Vitiello, G. -
CHAPTER 11 Lipid Acrobatics in the Membrane Fusion Arena
CHAPTER 11 Lipid Acrobatics in the Membrane Fusion Arena Albert J. Markvoort1 and Siewert J. Marrink2 1Institute for Complex Molecular Systems & Biomodeling and Bioinformatics Group, Eindhoven University of Technology, Eindhoven, The Netherlands 2Groningen Biomolecular Sciences and Biotechnology Institute & Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands I. Overview II. Introduction III. Historical Background IV. Fusion Pathways at the Molecular Level A. Symmetric Stalk Expansion Pathway B. Alternative Pathways C. Composition Dependence V. Energy Landscape Along the Fusion Pathway A. Stalk and Hemifusion Diaphragm Intermediates B. Lipid Splaying as First Step C. Many Barriers to Cross VI. Fission Pathways in Molecular Detail A. Budding/Neck Formation B. Fission not Just Fusion Reversed VII. Peptide Modulated Fusion A. The Role of Fusion Peptides B. Protein-Induced Fusion VIII. Outlook References I. OVERVIEW In this review, we describe the recent contribution of computer simulation approaches to unravel the molecular details of membrane fusion. Over the past decade, fusion between apposed membranes and vesicles has been studied using a large variety of simulation methods and systems. Despite the variety in techniques, some generic fusion pathways emerge that predict a more complex Current Topics in Membranes, Volume 68 0065-230X/10 $35.00 Copyright 2011, Elsevier Inc. All right reserved. DOI: 10.1016/B978-0-12-385891-7.00011-8 260 Markvoort and Marrink picture beyond the traditional stalk–pore pathway. Indeed the traditional path- way is confirmed in particle-based simulations, but in addition alternative path- ways are observed in which stalks expand linearly rather than radially, leading to inverted-micellar or asymmetric hemifusion intermediates. -
Interactions Between APOBEC3 and Murine Retroviruses: Mechanisms of Restriction and Drug Resistance
University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations 2013 Interactions Between APOBEC3 and Murine Retroviruses: Mechanisms of Restriction and Drug Resistance Alyssa Lea MacMillan University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Virology Commons Recommended Citation MacMillan, Alyssa Lea, "Interactions Between APOBEC3 and Murine Retroviruses: Mechanisms of Restriction and Drug Resistance" (2013). Publicly Accessible Penn Dissertations. 894. https://repository.upenn.edu/edissertations/894 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/894 For more information, please contact [email protected]. Interactions Between APOBEC3 and Murine Retroviruses: Mechanisms of Restriction and Drug Resistance Abstract APOBEC3 proteins are important for antiretroviral defense in mammals. The activity of these factors has been well characterized in vitro, identifying cytidine deamination as an active source of viral restriction leading to hypermutation of viral DNA synthesized during reverse transcription. These mutations can result in viral lethality via disruption of critical genes, but in some cases is insufficiento t completely obstruct viral replication. This sublethal level of mutagenesis could aid in viral evolution. A cytidine deaminase-independent mechanism of restriction has also been identified, as catalytically inactive proteins are still able to inhibit infection in vitro. Murine retroviruses do not exhibit characteristics of hypermutation by mouse APOBEC3 in vivo. However, human APOBEC3G protein expressed in transgenic mice maintains antiviral restriction and actively deaminates viral genomes. The mechanism by which endogenous APOBEC3 proteins function is unclear. The mouse provides a system amenable to studying the interaction of APOBEC3 and retroviral targets in vivo. -
Characterization of the Dysferlin Protein and Its Binding Partners Reveals Rational Design for Therapeutic Strategies for the Treatment of Dysferlinopathies
Characterization of the dysferlin protein and its binding partners reveals rational design for therapeutic strategies for the treatment of dysferlinopathies Inauguraldissertation zur Erlangung der Würde eines Doktors der Philosophie vorgelegt der Philosophisch-Naturwissenschaftlichen Fakultät der Universität Basel von Sabrina Di Fulvio von Montreal (CAN) Basel, 2013 Genehmigt von der Philosophisch-Naturwissenschaftlichen Fakultät auf Antrag von Prof. Dr. Michael Sinnreich Prof. Dr. Martin Spiess Prof. Dr. Markus Rüegg Basel, den 17. SeptemBer 2013 ___________________________________ Prof. Dr. Jörg SchiBler Dekan Acknowledgements I would like to express my gratitude to Professor Michael Sinnreich for giving me the opportunity to work on this exciting project in his lab, for his continuous support and guidance, for sharing his enthusiasm for science and for many stimulating conversations. Many thanks to Professors Martin Spiess and Markus Rüegg for their critical feedback, guidance and helpful discussions. Special thanks go to Dr Bilal Azakir for his guidance and mentorship throughout this thesis, for providing his experience, advice and support. I would also like to express my gratitude towards past and present laB members for creating a stimulating and enjoyaBle work environment, for sharing their support, discussions, technical experiences and for many great laughs: Dr Jon Ashley, Dr Bilal Azakir, Marielle Brockhoff, Dr Perrine Castets, Beat Erne, Ruben Herrendorff, Frances Kern, Dr Jochen Kinter, Dr Maddalena Lino, Dr San Pun and Dr Tatiana Wiktorowitz. A special thank you to Dr Tatiana Wiktorowicz, Dr Perrine Castets, Katherine Starr and Professor Michael Sinnreich for their untiring help during the writing of this thesis. Many thanks to all the professors, researchers, students and employees of the Pharmazentrum and Biozentrum, notaBly those of the seventh floor, and of the DBM for their willingness to impart their knowledge, ideas and technical expertise. -
Meningitic Escherichia Coli Α-Hemolysin Aggravates Blood
Fu et al. Mol Brain (2021) 14:116 https://doi.org/10.1186/s13041-021-00826-2 RESEARCH Open Access Meningitic Escherichia coli α-hemolysin aggravates blood–brain barrier disruption via targeting TGFβ1-triggered hedgehog signaling Jiyang Fu1,2, Liang Li1,2, Dong Huo1,2, Ruicheng Yang1,2, Bo Yang1,2, Bojie Xu1,2, Xiaopei Yang5, Menghong Dai1,2, Chen Tan1,2,3,4, Huanchun Chen1,2,3,4 and Xiangru Wang1,2,3,4* Abstract Bacterial meningitis is a life-threatening infectious disease with severe neurological sequelae and a high mortality rate, in which Escherichia coli is one of the primary Gram-negative etiological bacteria. Meningitic E. coli infection is often accompanied by an elevated blood–brain barrier (BBB) permeability. BBB is the structural and functional barrier com- posed of brain microvascular endothelial cells (BMECs), astrocytes, and pericytes, and we have previously shown that astrocytes-derived TGFβ1 physiologically maintained the BBB permeability by triggering a non-canonical hedgehog signaling in brain microvascular endothelial cells (BMECs). Here, we subsequently demonstrated that meningitic E. coli infection could subvert this intercellular communication within BBB by attenuating TGFBRII/Gli2-mediated such signaling. By high-throughput screening, we identifed E. coli α-hemolysin as the critical determinant responsible for 2 this attenuation through Sp1-dependent TGFBRII reduction and triggering Ca + infux and protein kinase A activation, thus leading to Gli2 suppression. Additionally, the exogenous hedgehog agonist SAG exhibited promising protection against the infection-caused BBB dysfunction. Our work revealed a hedgehog-targeted pathogenic mechanism dur- ing meningitic E. coli-caused BBB disruption and suggested that activating hedgehog signaling within BBB could be a potential protective strategy for future therapy of bacterial meningitis. -
Mechanism of Membrane Fusion Induced by Vesicular Stomatitis Virus G Protein
Mechanism of membrane fusion induced by vesicular stomatitis virus G protein Irene S. Kima,1, Simon Jennia, Megan L. Staniferb,2, Eatai Rothc, Sean P. J. Whelanb, Antoine M. van Oijena,3, and Stephen C. Harrisona,d,4 aDepartment of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115; bDepartment of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115; cDepartment of Biology, University of Washington, Seattle, WA 98195; and dHoward Hughes Medical Institute, Harvard Medical School and Boston Children’s Hospital, Boston, MA 02115 Contributed by Stephen C. Harrison, November 17, 2016 (sent for review October 10, 2016; reviewed by Axel T. Brunger and Frederick M. Hughson) The glycoproteins (G proteins) of vesicular stomatitis virus (VSV) genic conformational changes deviate from the canonical and related rhabdoviruses (e.g., rabies virus) mediate both cell sequence outlined in the preceding paragraph by the absence of attachment and membrane fusion. The reversibility of their fuso- an irreversible priming step and hence the absence of a meta- genic conformational transitions differentiates them from many stable prefusion state. The transition from prefusion conforma- other low-pH-induced viral fusion proteins. We report single-virion tion to extended intermediate is reversible (9, 10). Nonetheless, fusion experiments, using methods developed in previous publica- structures of G in its pre- and postfusion trimeric conformations tions to probe fusion of influenza and West Nile viruses. We show suggest that most of the fusion reaction follows a familiar pat- that a three-stage model fits VSV single-particle fusion kinetics: tern, as illustrated in Fig. 1 (3, 11–13). -
Large-Scale Informatic Analysis to Algorithmically Identify Blood Biomarkers of Neurological Damage
Large-scale informatic analysis to algorithmically identify blood biomarkers of neurological damage Grant C. O’Connella,1, Megan L. Aldera, Christine G. Smothersa, and Julia H. C. Changa aSchool of Nursing, Case Western Reserve University, Cleveland, OH 44106 Edited by Vincent T. Marchesi, Yale University School of Medicine, New Haven, CT, and approved July 9, 2020 (received for review April 23, 2020) The identification of precision blood biomarkers which can accurately From a logical perspective, candidate proteins most ideally suited indicate damage to brain tissue could yield molecular diagnostics to serve as such biomarkers are those which display three pre- with the potential to improve how we detect and treat neurological dominant properties. First, they should exhibit highly enriched pathologies. However, a majority of candidate blood biomarkers for expression in brain tissue relative to other tissues, ensuring spec- neurological damage that are studied today are proteins which were ificity. Second, they should be highly abundant within brain tissue, arbitrarily proposed several decades before the advent of high- as lowly expressed proteins may not be released into circulation at throughput omic techniques, and it is unclear whether they repre- high enough levels to enable detection. Third, they should exhibit sent the best possible targets relative to the remainder of the human ubiquitous expression across all brain regions, reducing the risk of proteome. Here, we leveraged mRNA expression data generated false negative diagnosis in the case of focal damage. from nearly 12,000 human specimens to algorithmically evaluate A large number of existing candidate blood biomarkers of neu- over 17,000 protein-coding genes in terms of their potential to pro- rological damage studied today are proteins which were arbitrarily duce blood biomarkers for neurological damage based on their ex- labeled as being brain specific decades ago (12–19); however, in pression profiles both across the body and within the brain. -
Two Disease-Causing SNAP-25B Mutations Selectively Impair SNARE
1 Two Disease-Causing SNAP-25B Mutations Selectively Impair SNARE 2 C-terminal Assembly 3 4 Aleksander A. Rebanea,b,c, Bigeng Wanga,1, Lu Maa, Sarah M. Auclaira, Hong Qua, Jeff 5 Colemana, Shyam Krishnakumara, James E. Rothmana,*, and Yongli Zhanga,* 6 7 aDepartment of Cell Biology, Yale School of Medicine, New Haven, CT 06511, USA 8 bIntegrated Graduate Program in Physical and Engineering Biology 9 cDepartment of Physics, Yale University, New Haven, CT 06511, USA 10 1Current address: Department of Physics, Columbia University, New York, NY 10027, USA 11 *Correspondence: [email protected], [email protected] 12 13 KEYWORDS 14 Optical tweezers, SNARE assembly, membrane fusion, protein folding, neuropathy 1 15 ABSRACT 16 Synaptic exocytosis relies on assembly of three soluble N-ethylmaleimide-sensitive factor 17 attachment protein receptor (SNARE) proteins into a parallel four-helix bundle to drive 18 membrane fusion. SNARE assembly occurs by step-wise zippering of the vesicle-associated 19 SNARE (v-SNARE) onto a binary SNARE complex on the target plasma membrane (t-SNARE). 20 Zippering begins with slow N-terminal association followed by rapid C-terminal zippering, 21 which serves as a power stroke to drive membrane fusion. SNARE mutations have been 22 associated with numerous diseases, including neurological disorders. It remains unclear how 23 these mutations affect SNARE zippering, partly due to difficulties to quantify the energetics and 24 kinetics of SNARE assembly. Here, we used single-molecule optical tweezers to measure the 25 assembly energy and kinetics of SNARE complexes containing single mutations I67T/N in 26 neuronal SNARE synaptosomal-associated protein of 25 kDa (SNAP-25B), which disrupt 27 neurotransmitter release and have been implicated in neurological disorders. -
UC Merced UC Merced Electronic Theses and Dissertations
UC Merced UC Merced Electronic Theses and Dissertations Title Characterizing the P2X4 receptor as a contributor to cell membrane fusion and C. trachomatis L2 vacuole fusion Permalink https://escholarship.org/uc/item/102048cs Author Ahrens-Braunstein, Ashley K. Publication Date 2014 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA, MERCED Characterizing the P2X4 receptor as a contributor to cell membrane fusion and C. trachomatis L2 vacuole fusion In Quantitative and Systems Biology by Ashley Ahrens-Braunstein Committee in charge: Professor Masashi Kitazawa, Chair Professor David M. Ojcius Professor Linda S. Hirst 2014 © 2014 Ashley Ahrens-Braunstein All rights reserved. ii The Thesis of Ashley Ahrens-Braunstein is approved, and it is acceptable in quality and form for publication on microfilm and electronically: _______________________________________________ Dr. David M. Ojcius ________________________________________________ Dr. Linda S. Hirst ________________________________________________ Dr. Masashi Kitazawa University of California, Merced 2014 iii DEDICATION I dedicate this thesis to my brothers and sister, Axel Ahrens, Grant Koblis, Christopher Ahrens and Cassandra Koblis for their support and continued understanding throughout my program. Being the oldest, they have looked up to me but it is their accomplishments that have inspired me to continue to persist in my goals. Throughout my years at UC Merced, they have been completely understanding