Characterization of the Dysferlin Protein and Its Binding Partners Reveals Rational Design for Therapeutic Strategies for the Treatment of Dysferlinopathies
Total Page:16
File Type:pdf, Size:1020Kb
Characterization of the dysferlin protein and its binding partners reveals rational design for therapeutic strategies for the treatment of dysferlinopathies Inauguraldissertation zur Erlangung der Würde eines Doktors der Philosophie vorgelegt der Philosophisch-Naturwissenschaftlichen Fakultät der Universität Basel von Sabrina Di Fulvio von Montreal (CAN) Basel, 2013 Genehmigt von der Philosophisch-Naturwissenschaftlichen Fakultät auf Antrag von Prof. Dr. Michael Sinnreich Prof. Dr. Martin Spiess Prof. Dr. Markus Rüegg Basel, den 17. SeptemBer 2013 ___________________________________ Prof. Dr. Jörg SchiBler Dekan Acknowledgements I would like to express my gratitude to Professor Michael Sinnreich for giving me the opportunity to work on this exciting project in his lab, for his continuous support and guidance, for sharing his enthusiasm for science and for many stimulating conversations. Many thanks to Professors Martin Spiess and Markus Rüegg for their critical feedback, guidance and helpful discussions. Special thanks go to Dr Bilal Azakir for his guidance and mentorship throughout this thesis, for providing his experience, advice and support. I would also like to express my gratitude towards past and present laB members for creating a stimulating and enjoyaBle work environment, for sharing their support, discussions, technical experiences and for many great laughs: Dr Jon Ashley, Dr Bilal Azakir, Marielle Brockhoff, Dr Perrine Castets, Beat Erne, Ruben Herrendorff, Frances Kern, Dr Jochen Kinter, Dr Maddalena Lino, Dr San Pun and Dr Tatiana Wiktorowitz. A special thank you to Dr Tatiana Wiktorowicz, Dr Perrine Castets, Katherine Starr and Professor Michael Sinnreich for their untiring help during the writing of this thesis. Many thanks to all the professors, researchers, students and employees of the Pharmazentrum and Biozentrum, notaBly those of the seventh floor, and of the DBM for their willingness to impart their knowledge, ideas and technical expertise. Many thanks to Dr Patrick Matthias and Gabriele Matthias at the FMI for their assistance with the HDAC6 project, as well as to Dr Eric ShouBridge, Tim Johns, Steven Salomon and Christian Therrien at McGill University, Montreal for their generous technical assistance. Special thanks to Beat Erne and Michael Abanto for sharing their confocal microscopy expertise with me. A huge thank you to my family and friends for their endless love, support and patience throughout my studies. I am especially grateful to my parents for their daily encouragement and unwavering confidence in me. i Summary Dysferlinopathies are incuraBle recessively inherited muscular dystrophies caused By loss of the dysferlin protein. Dysferlin is essential for the plasma membrane repair of skeletal muscle cells and is required for myotuBe formation. To design treatment strategies for dysferlinopathies, we studied dysferlin’s molecular Biology and characterized the functionality of dysferlin’s seven C2 domains, its degradation pathway and its interaction with a novel protein, histone deacetylase 6. The results indicate that dysferlin and histone deacetylase 6 form a triad interaction with alpha-tuBulin to modulate the acetylated alpha-tuBulin levels of muscle cells, which may play a regulatory role during myotuBe formation. Furthermore, the characterization of dysferlin’s C2 domains revealed that there is functional redundancy in their aBility to localize dysferlin to, and effect repair of, the plasma membrane. Taking these results into consideration, we designed shorter, functional dysferlin molecules for usage in gene therapy. To find a novel pharmacological therapy for patients with dysferlin deficiency, we investigated the inhibition of dysferlin’s degradation pathway. We demonstrated that when salvaged from proteasomal degradation, missense mutated dysferlin retained its Biological activities for plasmalemmal localization, plasmalemmal repair and myotuBe formation. Further studies using recombinant missense mutated dysferlin constructs showed that certain missense mutants are intrinsically Biologically active; whereas others lack functionality even when their levels are increased by transient transfection or By inhibiting their proteasomal degradation. Proteasomal inhiBition represents a novel potential pharmacological treatment strategy for patients with dysferlin deficiency. ii Table of Contents Acknowledgements ......................................................................................................................... i Summary ........................................................................................................................................... ii List of Abbreviations ...................................................................................................................... v List of Figures ................................................................................................................................. vi List of Tables .................................................................................................................................. vii Preface ............................................................................................................................................... 1 CHAPTER 1 ....................................................................................................................................... 5 1. Literature Review .................................................................................................................. 5 1.1 The Dystrophin-Glycoprotein Complex (DGC) .................................................................... 5 1.2 Muscular Dystrophies caused by defective muscle membrane integrity ................... 7 1.3 Limb Girdle Muscular Dystrophies caused by defective muscle membrane repair 10 1.4 Dysferlinopathies ....................................................................................................................... 10 1.4.1 Dysferlin discovery and phylogeny .................................................................................. 13 1.4.1 Mammalian Ferlin Proteins and Disease ........................................................................ 13 1.4.2 Dysferlin structure ................................................................................................................. 17 1.4.3 Dysferlin function ................................................................................................................... 19 1.5 Current treatments for dysferlinopathies ......................................................................... 20 1.5.1 Gene therapy strategies for dysferlinopathies ............................................................. 20 1.5.1.1 Full-length protein reconstitution ................................................................................. 20 1.5.1.2 Adeno-associated virus-mediated gene transfer ..................................................... 21 1.5.1.3 Exon skipping strategies ................................................................................................... 22 1.6 Objectives ...................................................................................................................................... 24 CHAPTER 2 ..................................................................................................................................... 25 2 Dysferlin interacts with histone deacetylase 6 and increases alpha-tubulin acetylation ............................................................................................................................................... 25 2.1 Preface ............................................................................................................................................ 26 2.2 Abstract .......................................................................................................................................... 27 2.3 Introduction ................................................................................................................................. 28 2.4 Results ............................................................................................................................................ 29 2.5 Discussion ..................................................................................................................................... 35 2.6 Experimental Procedures ........................................................................................................ 38 2.7 Acknowledgements .................................................................................................................... 41 2.8 Figures and Figure Legends .................................................................................................... 42 CHAPTER 3 ..................................................................................................................................... 57 3 Modular dispensability of dysferlin C2 domains reveals rational design for mini- dysferlin molecules .............................................................................................................................. 57 3.1 Preface ............................................................................................................................................ 58 3.2 Abstract .......................................................................................................................................... 59 3.3 Introduction ................................................................................................................................