Basic Structure of the Villous Trees

Total Page:16

File Type:pdf, Size:1020Kb

Basic Structure of the Villous Trees 6 Basic Structure of the Villous Trees M. Castellucci and P. Kaufmann Nearly the entire maternofetal and fetomaternal exchange Syncytiotrophoblast takes place in the placental villi. There is only a limited contribution to this exchange by the extraplacental mem- Syncytium or Multinucleated Giant Cells? branes. In addition, most metabolic and endocrine activi- The syncytiotrophoblast is a continuous, normally unin- ties of the placenta have been localized in the villi (for terrupted layer that extends over the surfaces of all villous review, see Gröschel-Stewart, 1981; Miller & Thiede, 1984; trees as well as over parts of the inner surfaces of chori- Knobil & Neill, 1993; Polin et al., 2004). onic and basal plates. It thus lines the intervillous Throughout placental development, different types of space. Systematic electron microscopic studies of the syn- villi emerge that have differing structural and functional cytial layer (e.g., Bargmann & Knoop, 1959; Schiebler & specializations. Despite this diversification, all villi exhibit Kaufmann, 1969; Boyd & Hamilton, 1970; Kaufmann the same basic structure (Fig. 6.1): & Stegner, 1972; Schweikhart & Kaufmann, 1977; Wang • They are covered by syncytiotrophoblast, an epithelial & Schneider, 1987) have revealed no evidence that the surface layer that separates the villous interior from syncytiotrophoblast is composed of separate units. Rather, the maternal blood, which flows around the villi. Unlike it is a single continuous structure for every placenta. Only other epithelia, the syncytiotrophoblast is not com- in later stages of pregnancy, as a consequence of focal posed of individual cells but represents a continuous, degeneration of syncytiotrophoblast, fibrinoid plaques uninterrupted, multinucleated surface layer without may isolate small islands of syncytiotrophoblast from the separating cell borders (Fig. 6.1C; see Fig.6.21, and surrounding syncytial continuum; this happens mainly at Chapter 7, Fig. 7.11). the surfaces of chorionic and basal plates. Therefore, • Beneath the syncytiotrophoblast is an interrupted layer terms such as syncytial cells and syncytiotrophoblasts, of cytotrophoblast, which consists of single or aggre- widely used in experimental disciplines, are inappropriate gated cells, the Langhans’ cells, which are the stem cells and should be avoided. Their use points to a basic of the syncytiotrophoblast; they support the growth misunderstanding of the real nature of the and regeneration of the latter. syncytiotrophoblast. • The trophoblastic basement membrane separates syn- Where the syncytiotrophoblast due to degenerative cytiotrophoblast and cytotrophoblast from the stromal processes is interrupted, the gap is filled by fibrin-type core of the villi. fibrinoid (see Chapter 9). A few reports (Tedde et al., • The stroma is composed of varying numbers and types 1988a,b) have pointed to the existence of vertical cell of connective tissue cells, connective tissue fibers, and membranes that seemingly subdivide the syncytium into ground substance. syncytial units. These extremely rare findings have an • Additionally, the stroma contains fetal vessels of various accidental rather than a real basis. They represent the kinds and calibers. In the larger stem villi, the vessels likely results of a syncytiotrophoblastic repair mechanism are mainly arteries and veins; in the peripheral branches, (Figs. 6.1, 6.2B, and 6.3). That is, after syncytial rupture, most fetal vessels are capillaries or sinusoids. apical and basal plasmalemmas fuse at either side of the 50 Syncytiotrophoblast 51 Figure 6.1. Basic morphology of human placental villi. A: diate villi, the surface of which is densely covered with grape- Simplified longitudinal section across the uterus, placenta, and like terminal villi (4). C: Highly simplified light microscopic membranes in the human. The chorionic sac, consisting of pla- section of two terminal villi, branching off a mature intermedi- centa (left half) and membranes (right half), is black. B: Periph- ate villus (right). D: Schematic electron microscopic section of eral ramifications of the mature villous tree, consisting of a stem the placental barrier, demonstrating its typical layers. (Source: villus (1), which continues in a bulbous immature intermediate Modified from Kaufmann, 1983, with permission.) villus (3); the slender side branches (2) are the mature interme- 52 6. Basic Structure of the Villous Trees Figure 6.2. Remains of cell membranes in the syncytiotropho- have largely lost their microvilli and now establish a smooth blast result from two mechanisms: fusion of neighboring villous intercellular cleft bridged by numerous desmosomes that verti- surfaces forming bridges and repair of disrupted syncytial sur- cally traverse the syncytiotrophoblast. (See the survey picture faces. A: As a first step of formation of syncytial bridges between in Figure 6.3.) ¥11,000. C: As the next step of repair, the newly adjacent villi, the opposing microvillous membranes interdigi- developed separating cell membranes show disintegration tate. The identical initial step occurs as a first step of wound (arrows) so that the newly formed intrasyncytial cleft becomes repair when the disrupted ends of syncytiotrophoblast become focally bridged by syncytioplasm. After complete disintegration covered by microvillous membranes, which subsequently come of membranes and desmosomes, the syncytial villous cover is into contact and interdigitate. ¥14,500. B: Follow-up stage of again continuous. ¥13,800. (Source: Cantle et al., 1987, with that depicted in part A. The interdigitating syncytial surfaces permission.) wound, thus avoiding further loss of syncytioplasm. After- by desmosomes. Later, fusion occurs by disintegration of ward, either a fibrinoid plug closes the wound, or the the separating membranes (Fig. 6.2). Transitory stages of disconnected parts of the syncytium again come into this process may be misinterpreted as borders of syncytial close contact to form a lateral intercellular cleft bridged units. Syncytiotrophoblast 53 Figure 6.3. Survey electron micrograph of the section shown space (IVS) with the connective tissue core (CO) of the villi. in Figure 6.2B demonstrates that in intermediate stages of syn- Such intrasyncytial membranes must not be misinterpreted as cytial repair the villous syncytial trophoblast can be traversed stable intercellular clefts subdividing the syncytium in smaller by vertical “intercellular” clefts connecting the intervillous syncytial units. ¥7000. Many authors have described remainders of intercellular junc- as occludin in the apical part of syncytiotrophoblast (Marzioni et al., tions within the syncytiotrophoblast (Carter, 1963, 1964; Boyd & 2001). The authors of the publications considered above hypothesized Hamilton, 1966; Burgos & Rodriguez, 1966; Metz et al., 1979; Reale that these junctions represent stages of several dynamic processes: for et al., 1980; Wang & Schneider, 1987). Some investigators have example, interpreted these junctions as vestiges of a former cellular state of the • remainders of cytotrophoblastic fusion with the overlying syncytium, syncytium or as proof of recent cytotrophoblastic contribution to the • establishment of intervillous contacts by partial or complete syncytio- syncytiotrophoblast (Carter, 1963, 1964; Boyd & Hamilton, 1966). In trophoblastic surface fusion, a systematic study of these junctions, Metz et al. (1979) as well as • repair of syncytial disruption, or Reale et al. (1980) have described zonulae and maculae occludentes • decomposition of temporary surface invagination of the that were mostly located in apical membrane infoldings, as well as syncytiotrophoblast. numerous isolated desmosomes, without contact to any surface mem- branes. The structural evidence has been supported by recent immuno- The syncytiotrophoblast must be seen as a highly dynamic layer that is histochemical data that show zonula occludens type 1 (ZO-1) as well qualified for ameboid movements. Disconnection with subsequent re- 54 6. Basic Structure of the Villous Trees fusion and the formation of invaginations and bridges seem to be et al., 1969, 1970; Rovasio & Monis, 1973; Liebhart, 1974; Martin regular phenomena. et al., 1974; Okudaira & Hayakawa, 1975; Nelson et al., 1976; We not only find the ultrastructural remains of this process but also Wada et al., 1977, 1979; Kelley et al., 1979; King, 1981; Wasser- can easily observe it in vitro; when we (1) carefully trypsinize villi from man et al., 1983a,b; Fisher et al., 1984; Parmley et al., 1984; full-term placentas, (2) remove mesenchymal cells by means of CD9- Maubert et al., 1997). Various lectin-binding sites have been described antibodies, (3) remove cytotrophoblast by means of a hepatocyte by Whyte (1980), Gabius et al. (1987), Hoyer and Kirkeby (1996), growth factor-activator-inhibitor (HAI-1) antibody (Pötgens et al., 2003), and Lang et al. (1994a,b). and (d) let the remaining isolated tissues adhere on culture dishes, we Cytochemical demonstration of membrane-bound enzymes obtain a nearly pure population of mononucleated fragments of syncy- studied in the transmission electron microscope (TEM) comprise alkaline tiotrophoblast. These small CD105-positive mononucleated trophoblast phosphatase (Hempel & Geyer, 1969; Borst et al., 1973; Hulstaert et elements, which result in large numbers during any attempt of tropho- al., 1973; Kameya et al., 1973; Jemmerson et al., 1985; Matsubara blast isolation, should not be misinterpreted as cytotrophoblast (Pötgens et al., 1987c),
Recommended publications
  • Molecular Mechanisms of Neuroimmune Crosstalk in the Pathogenesis of Stroke
    International Journal of Molecular Sciences Review Molecular Mechanisms of Neuroimmune Crosstalk in the Pathogenesis of Stroke Yun Hwa Choi 1, Collin Laaker 2, Martin Hsu 2, Peter Cismaru 3, Matyas Sandor 4 and Zsuzsanna Fabry 2,4,* 1 School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA; [email protected] 2 Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA; [email protected] (C.L.); [email protected] (M.H.) 3 Chemistry, University of Wisconsin-Madison, Madison, WI 53705, USA; [email protected] 4 Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; [email protected] * Correspondence: [email protected] Abstract: Stroke disrupts the homeostatic balance within the brain and is associated with a significant accumulation of necrotic cellular debris, fluid, and peripheral immune cells in the central nervous system (CNS). Additionally, cells, antigens, and other factors exit the brain into the periphery via damaged blood–brain barrier cells, glymphatic transport mechanisms, and lymphatic vessels, which dramatically influence the systemic immune response and lead to complex neuroimmune communi- cation. As a result, the immunological response after stroke is a highly dynamic event that involves communication between multiple organ systems and cell types, with significant consequences on not only the initial stroke tissue injury but long-term recovery in the CNS. In this review, we discuss the complex immunological and physiological interactions that occur after stroke with a focus on how the peripheral immune system and CNS communicate to regulate post-stroke brain homeostasis. First, Citation: Choi, Y.H.; Laaker, C.; Hsu, we discuss the post-stroke immune cascade across different contexts as well as homeostatic regulation M.; Cismaru, P.; Sandor, M.; Fabry, Z.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2008/0026032 A1 ZUBERY Et Al
    US 2008.0026.032A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2008/0026032 A1 ZUBERY et al. (43) Pub. Date: Jan. 31, 2008 (54) COMPOSITE IMPLANTS FOR PROMOTING Publication Classification BONE REGENERATION AND (51) Int. Cl. AUGMENTATION AND METHODS FOR A6F 2/00 (2006.01) THER PREPARATION AND USE A638/00 (2006.01) A6IP 9/00 (2006.01) (76) Inventors: Yuval ZUBERY, Cochav Yair (52) U.S. Cl. ............................................ 424/423: 514/2 (IL); Arie Goldlust, Ness Ziona (57) ABSTRACT (IL); Thomas Bayer, Tel-Aviv (IL); Eran Nir, Rehovot (IL) Collagen based matrices cross-linked by a reducing Sugar(s) are used for preparing composite matrices, implants and scaffolds. The composite matrices may have at least two Correspondence Address: layers including reducing Sugar cross-linked collagen matri DANEL, SWIRSKY ces of different densities. The composite matrices may be 55 REUVEN ST. used in bone regeneration and/or augmentation applications. BET SHEMESH 99.544 Scaffolds including glycated and/or reducing Sugar cross linked collagen exhibit improved support for cell prolifera (21) Appl. No.: 11/829,111 tion and/or growth and/or differentiation. The denser col lagen matrix of the composite matrices may have a dual effect initially functioning as a cell barrier and later func (22) Filed: Jul. 27, 2007 tioning as an ossification Supporting layer. The composite matrices, implants and scaffolds may be prepared using different collagen types and collagen mixtures and by cross Related U.S. Application Data linking the collagen(s) using a reducing Sugar or a mixture (60) Provisional application No. 60/833,476, filed on Jul.
    [Show full text]
  • From Trophoblast to Human Placenta
    From Trophoblast to Human Placenta (from The Encyclopedia of Reproduction) Harvey J. Kliman, M.D., Ph.D. Yale University School of Medicine I. Introduction II. Formation of the placenta III. Structure and function of the placenta IV. Complications of pregnancy related to trophoblasts and the placenta Glossary amnion the inner layer of the external membranes in direct contact with the amnionic fluid. chorion the outer layer of the external membranes composed of trophoblasts and extracellular matrix in direct contact with the uterus. chorionic plate the connective tissue that separates the amnionic fluid from the maternal blood on the fetal surface of the placenta. chorionic villous the final ramification of the fetal circulation within the placenta. cytotrophoblast a mononuclear cell which is the precursor cell of all other trophoblasts. decidua the transformed endometrium of pregnancy intervillous space the space in between the chorionic villi where the maternal blood circulates within the placenta invasive trophoblast the population of trophoblasts that leave the placenta, infiltrates the endo– and myometrium and penetrates the maternal spiral arteries, transforming them into low capacitance blood channels. Sunday, October 29, 2006 Page 1 of 19 From Trophoblasts to Human Placenta Harvey Kliman junctional trophoblast the specialized trophoblast that keep the placenta and external membranes attached to the uterus. spiral arteries the maternal arteries that travel through the myo– and endometrium which deliver blood to the placenta. syncytiotrophoblast the multinucleated trophoblast that forms the outer layer of the chorionic villi responsible for nutrient exchange and hormone production. I. Introduction The precursor cells of the human placenta—the trophoblasts—first appear four days after fertilization as the outer layer of cells of the blastocyst.
    [Show full text]
  • Human Embryologyembryology
    HUMANHUMAN EMBRYOLOGYEMBRYOLOGY Department of Histology and Embryology Jilin University ChapterChapter 22 GeneralGeneral EmbryologyEmbryology DevelopmentDevelopment inin FetalFetal PeriodPeriod 8.1 Characteristics of Fetal Period 210 days, from week 9 to delivery. characteristics: maturation of tissues and organs rapid growth of the body During 3-5 month, fetal growth in length is 5cm/M. In last 2 month, weight increases in 700g/M. relative slowdown in growth of the head compared with the rest of the body 8.2 Fetal AGE Fertilization age lasts 266 days, from the moment of fertilization to the day when the fetal is delivered. menstrual age last 280 days, from the first day of the last menstruation before pregnancy to the day when the fetal is delivered. The formula of expected date of delivery: year +1, month -3, day+7. ChapterChapter 22 GeneralGeneral EmbryologyEmbryology FetalFetal membranesmembranes andand placentaplacenta Villous chorion placenta Decidua basalis Umbilical cord Afterbirth/ secundines Fusion of amnion, smooth chorion, Fetal decidua capsularis, membrane decidua parietalis 9.1 Fetal Membranes TheThe fetalfetal membranemembrane includesincludes chorionchorion,, amnion,amnion, yolkyolk sac,sac, allantoisallantois andand umbilicalumbilical cord,cord, originatingoriginating fromfrom blastula.blastula. TheyThey havehave functionsfunctions ofof protection,protection, nutrition,nutrition, respiration,respiration, excretion,excretion, andand producingproducing hormonehormone toto maintainmaintain thethe pregnancy.pregnancy. delivery 1) Chorion: villous and smooth chorion Villus chorionic plate primary villus trophoblast secondary villus extraembryonic tertiary villus mesoderm stem villus Amnion free villus decidua parietalis Free/termin al villus Stem/ancho chorion ring villus Villous chorion Smooth chorion Amniotic cavity Extraembyonic cavity disappears gradually; Amnion is added into chorionic plate; Villous and smooth chorion is formed.
    [Show full text]
  • Single-Cell Transcriptomics of the Human Placenta: Inferring the Cell Communication Network of the Maternal-Fetal Interface
    Downloaded from genome.cshlp.org on September 26, 2021 - Published by Cold Spring Harbor Laboratory Press Research Single-cell transcriptomics of the human placenta: inferring the cell communication network of the maternal-fetal interface Mihaela Pavličev,1,2 Günter P. Wagner,3,4,5,6 Arun Rajendra Chavan,3 Kathryn Owens,7 Jamie Maziarz,3 Caitlin Dunn-Fletcher,2 Suhas G. Kallapur,1,2 Louis Muglia,1,2 and Helen Jones7,8 1Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio 45229, USA; 2Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio 45229, USA; 3Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut 06511, USA; 4Yale Systems Biology Institute, Yale University, West Haven, Connecticut 06516, USA; 5Department of Obstetrics, Gynecology and Reproductive Sciences, Yale Medical School, Yale University, New Haven, Connecticut 06510, USA; 6Department of Obstetrics and Gynecology, Wayne State University, Detroit, Michigan 48201, USA; 7Center for Fetal Cellular and Molecular Therapy, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio 45229, USA; 8Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio 45229, USA Organismal function is, to a great extent, determined by interactions among their fundamental building blocks, the cells. In this work, we studied the cell-cell interactome of fetal placental trophoblast cells and maternal endometrial stromal cells, using single-cell transcriptomics. The placental interface mediates the interaction between two semiallogenic individuals, the mother and the fetus, and is thus the epitome of cell interactions. To study these, we inferred the cell-cell interactome by assessing the gene expression of receptor-ligand pairs across cell types.
    [Show full text]
  • [Thesis Title Goes Here]
    THE USE OF A TISSUE ENGINEERED MEDIA EQUIVALENT IN THE STUDY OF A NOVEL SMOOTH MUSCLE CELL PHENOTYPE A Dissertation Presented to The Academic Faculty by JoSette Leigh Briggs Broiles In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in Bioengineering Georgia Institute of Technology April 2008 COPYRIGHT 2008 BY JOSETTE LEIGH BRIGGS BROILES THE USE OF A TISSUE ENGINEERED MEDIA EQUIVALENT IN THE STUDY OF A NOVEL SMOOTH MUSCLE CELL PHENOTYPE Approved by: Dr. Robert M. Nerem, Advisor Dr. Thomas N. Wight School of Mechanical Engineering Hope Heart Program Georgia Institute of Technology Benaroya Research Institute at Virginia Mason Department of Pathology University of Washington Dr. Raymond P. Vito Dr. Elliot Chaikof School of Mechanical Engineering Department of Biomedical Engineering Georgia Institute of Technology Georgia Institute of Technology and Emory University Dr. W. Robert Taylor Department of Biomedical Engineering Georgia Institute of Technology and Emory University Date Approved: December 18, 2007 to Yvette Louise Briggs, the perfect example of a wife-mother-student ACKNOWLEDGEMENTS Before I proceed with my long list of thank-you’s, I must praise God for blessing me with the opportunity to pursue a Ph.D. and surrounding me with wonderful people that have encouraged me throughout this process. My tenure at Georgia Tech has been quite a challenging voyage. This was the first time I experienced repeated failures, was not at the top of the class, and not in complete control of my fortune. I’ve often said that in high school I learned how to navigate social pressures and in undergrad I discovered the meaning of true friendship.
    [Show full text]
  • Trophectoderm Differentiation to Invasive Syncytiotrophoblast Is Induced by Endometrial Epithelial Cells During Human Embryo Implantation
    bioRxiv preprint doi: https://doi.org/10.1101/2020.10.02.323659; this version posted October 2, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Trophectoderm differentiation to invasive syncytiotrophoblast is induced by endometrial epithelial cells during human embryo implantation 1 Peter T Ruane1, 2, Terence Garner1, 2, Lydia Parsons1, 2, Phoebe A Babbington3, Susan J 2 Kimber4, Adam Stevens1, 2, Melissa Westwood1, 2, Daniel R Brison1, 2, 3 and John D Aplin1, 2 3 1Maternal and Fetal Health Research Centre, Division of Developmental Biology and 4 Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of 5 Manchester, Manchester Academic Health Sciences Centre, Saint Mary’s Hospital, 6 Manchester, M13 9WL 7 2Maternal and Fetal Health Research Centre, Saint Mary’s Hospital, Manchester University 8 NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, M13 9 9WL 10 3Department of Reproductive Medicine, Old Saint Mary’s Hospital, Manchester University 11 NHS Foundation Trust, Manchester Academic Health Science Centre, Oxford Road, 12 Manchester M13 9WL 13 4Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, 14 Faculty of Biology Medicine and Health, University of Manchester, Michael Smith Building, 15 Manchester, M13 9PT 16 Abstract 17 At implantation, trophoblast derived from the trophectoderm of the blastocyst-stage embryo 18 invades the endometrium to establish pregnancy. To understand how embryos breach the 19 endometrial epithelium, we modelled human implantation using blastocysts or trophoblast 20 stem cell spheroids cultured with endometrial epithelial cells (EEC).
    [Show full text]
  • Dynamics of Trophoblast Differentiation in Peri-Implantation–Stage Human
    Dynamics of trophoblast differentiation in peri- implantation–stage human embryos Rachel C. Westa,1, Hao Mingb,1, Deirdre M. Logsdona,1, Jiangwen Sunc, Sandeep K. Rajputa, Rebecca A. Kilea, William B. Schoolcrafta, R. Michael Robertsd,e,2, Rebecca L. Krishera, Zongliang Jiangb,2, and Ye Yuana,2 aColorado Center for Reproductive Medicine, Lone Tree, CO 80124; bSchool of Animal Science, AgCenter, Louisiana State University, Baton Rouge, LA 70803; cDepartment of Computer Science, College of Science, Old Dominion University, Norfolk, VA 23529; dBond Life Sciences Center, University of Missouri, Columbia, MO 65201; and eDivision of Animal Sciences, University of Missouri, Columbia, MO 65201 Contributed by R. Michael Roberts, September 12, 2019 (sent for review July 3, 2019; reviewed by Graham J. Burton, Susan J. Fisher, and Hongmei Wang) Single-cell RNA sequencing of cells from cultured human blasto- remains unclear. All these events occur prior to the time that a new cysts has enabled us to define the transcriptomic landscape of menstrual cycle would normally begin in a nonpregnant woman. placental trophoblast (TB) that surrounds the epiblast and associ- The above histological studies have only provided a glimpse of ated embryonic tissues during the enigmatic day 8 (D8) to D12 events that occur during the second week of pregnancy and have peri-implantation period before the villous placenta forms. We been unable to provide insights into the dynamic process of analyzed the transcriptomes of 3 early placental cell types, cytoTB implantation and what can go wrong. Some models for under- (CTB), syncytioTB (STB), and migratoryTB (MTB), picked manually standing placental trophoblast emergence have shown promise.
    [Show full text]
  • Fusion of Cytothrophoblast with Syncytiotrophoblast in the Human Placenta: Factors Involved in Syncytialization Gauster M, Huppertz B J
    Journal für Reproduktionsmedizin und Endokrinologie – Journal of Reproductive Medicine and Endocrinology – Andrologie • Embryologie & Biologie • Endokrinologie • Ethik & Recht • Genetik Gynäkologie • Kontrazeption • Psychosomatik • Reproduktionsmedizin • Urologie Fusion of Cytothrophoblast with Syncytiotrophoblast in the Human Placenta: Factors Involved in Syncytialization Gauster M, Huppertz B J. Reproduktionsmed. Endokrinol 2008; 5 (2), 76-82 www.kup.at/repromedizin Online-Datenbank mit Autoren- und Stichwortsuche Offizielles Organ: AGRBM, BRZ, DVR, DGA, DGGEF, DGRM, D·I·R, EFA, OEGRM, SRBM/DGE Indexed in EMBASE/Excerpta Medica/Scopus Krause & Pachernegg GmbH, Verlag für Medizin und Wirtschaft, A-3003 Gablitz FERRING-Symposium digitaler DVR 2021 Mission possible – personalisierte Medizin in der Reproduktionsmedizin Was kann die personalisierte Kinderwunschbehandlung in der Praxis leisten? Freuen Sie sich auf eine spannende Diskussion auf Basis aktueller Studiendaten. SAVE THE DATE 02.10.2021 Programm 12.30 – 13.20Uhr Chair: Prof. Dr. med. univ. Georg Griesinger, M.Sc. 12:30 Begrüßung Prof. Dr. med. univ. Georg Griesinger, M.Sc. & Dr. Thomas Leiers 12:35 Sind Sie bereit für die nächste Generation rFSH? Im Gespräch Prof. Dr. med. univ. Georg Griesinger, Dr. med. David S. Sauer, Dr. med. Annette Bachmann 13:05 Die smarte Erfolgsformel: Value Based Healthcare Bianca Koens 13:15 Verleihung Frederik Paulsen Preis 2021 Wir freuen uns auf Sie! Fusion of Cytotrophoblast with Syncytiotrophoblast in the Human Placenta: Factors Involved in Syncytialization M. Gauster, B. Huppertz Human placental villi are covered by a characteristic epithelial-like layer. It consists of mononucleated cytotrophoblasts and an overlying syncytiotrophoblast layer both in contact to the trophoblastic basement membrane. The syncytiotrophoblast mostly lacks DNA replication and seems to transcribe only barely mRNA.
    [Show full text]
  • Tamm-Horsfall Glycoprotein Enhances PMN Phagocytosis by Binding to Cell Surface-Expressed Lactoferrin and Cathepsin G That Activates MAP Kinase Pathway
    Molecules 2011, 16, 2119-2134; doi:10.3390/molecules16032119 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Article Tamm-Horsfall Glycoprotein Enhances PMN Phagocytosis by Binding to Cell Surface-Expressed Lactoferrin and Cathepsin G That Activates MAP Kinase Pathway Syue-Cian Siao 1, Ko-Jen Li 2, Song-Chou Hsieh 2, Cheng-Han Wu 2, Ming-Chi Lu 3, Chang-Youh Tsai 4 and Chia-Li Yu 1,2,* 1 Institute of Molecular Medicine, National Taiwan University College of Medicine, No. 7 Chung-Shan South Road, Taipei 100, Taiwan 2 Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, No. 7 Chung-Shan South Road, Taipei 100, Taiwan 3 Division of Allergy, Immunology and Rheumatology, Buddhist Dalin Tzu-Chi General Hospital, No. 2 Ming-Shen Road, Dalin, Chia-Yi, Taiwan 4 Section of Allergy, Immunology and Rheumatology, Taipei-Veterans General Hospital, No. 201 Section 2, Shih-Pai Road, Taipei 11217, Taiwan * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +886-2-23123456 Ext.65011; Fax: +886-2-23957801. Received: 7 December 2010; in revised form: 15 February 2011 / Accepted: 28 February 2011 / Published: 3 March 2011 Abstract: The molecular basis of polymorphonuclear neutrophil (PMN) phagocytosis-enhancing activity (PEA) by human purified urinary Tamm-Horsfall glyco- protein (THP) has not been elucidated. In this study, we found human THP bound to lactoferrin (LF) and cathepsin G (CG) expressed on the surface of PMN, identified by a proteomic study with MALDI-TOF- LC/LC/mass spectrometric analysis.
    [Show full text]
  • Dynamic Changes in Gene Expression During Human Trophoblast Differentiation
    Dynamic Changes in Gene Expression During Human Trophoblast Differentiation STUART HANDWERGER AND BRUCE ARONOW Departments of Endocrinology and Molecular and Developmental Biology, Children’s Hospital Research Foundation, and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio 45229 ABSTRACT The genetic program that directs human placental differentiation is poorly understood. In a recent study, we used DNA microarray analyses to determine genes that are dynamically regulated during human placental development in an in vitro model system in which highly purified cytotro- phoblast cells aggregate spontaneously and fuse to form a multinucleated syncytium that expresses placental lactogen, human chorionic gonadotropin, and other proteins normally expressed by fully differentiated syncytiotrophoblast cells. Of the 6918 genes present on the Incyte Human GEM V microarray that we analyzed over a 9-day period, 141 were induced and 256 were downregulated by more than 2-fold. The dynamically regulated genes fell into nine distinct kinetic patterns of induction or repression, as detected by the K-means algorithm. Classifying the genes according to functional characteristics, the regulated genes could be divided into six overall categories: cell and tissue structural dynamics, cell cycle and apoptosis, intercellular communication, metabolism, regulation of gene expression, and expressed sequence tags and function unknown. Gene expression changes within key functional categories were tightly coupled to the morphological changes that occurred during trophoblast differentiation. Within several key gene categories (e.g., cell and tissue structure), many genes were strongly activated, while others with related function were strongly repressed. These findings suggest that trophoblast differentiation is augmented by “categorical reprogramming” in which the ability of induced genes to function is enhanced by diminished synthesis of other genes within the same category.
    [Show full text]
  • RNA-Seq Reveals Conservation of Function Among the Yolk Sacs Of
    RNA-seq reveals conservation of function among the PNAS PLUS yolk sacs of human, mouse, and chicken Tereza Cindrova-Daviesa, Eric Jauniauxb, Michael G. Elliota,c, Sungsam Gongd,e, Graham J. Burtona,1, and D. Stephen Charnock-Jonesa,d,e,1,2 aCentre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, United Kingdom; bElizabeth Garret Anderson Institute for Women’s Health, Faculty of Population Health Sciences, University College London, London, WC1E 6BT, United Kingdom; cSt. John’s College, University of Cambridge, Cambridge, CB2 1TP, United Kingdom; dDepartment of Obstetrics and Gynaecology, University of Cambridge, Cambridge, CB2 0SW, United Kingdom; and eNational Institute for Health Research, Cambridge Comprehensive Biomedical Research Centre, Cambridge, CB2 0QQ, United Kingdom Edited by R. Michael Roberts, University of Missouri-Columbia, Columbia, MO, and approved May 5, 2017 (received for review February 14, 2017) The yolk sac is phylogenetically the oldest of the extraembryonic yolk sac plays a critical role during organogenesis (3–5, 8–10), membranes. The human embryo retains a yolk sac, which goes there are limited data to support this claim. Obtaining experi- through primary and secondary phases of development, but its mental data for the human is impossible for ethical reasons, and importance is controversial. Although it is known to synthesize thus we adopted an alternative strategy. Here, we report RNA proteins, its transport functions are widely considered vestigial. sequencing (RNA-seq) data derived from human and murine yolk Here, we report RNA-sequencing (RNA-seq) data for the human sacs and compare them with published data from the yolk sac of and murine yolk sacs and compare those data with data for the the chicken.
    [Show full text]