(Hepatic Stellate Cells) in Diagnosis of Liver Fibrosis

Total Page:16

File Type:pdf, Size:1020Kb

(Hepatic Stellate Cells) in Diagnosis of Liver Fibrosis Gastroenterology & Hepatology: Open Access Research Article Open Access Ito stellate cells (hepatic stellate cells) in diagnosis of liver fibrosis Introduction Volume 10 Issue 4 - 2019 Adverse outcome of most chronic diffuse liver lesions of various etiologies including chronic hepatitis C (CHC) is liver fibrosis in the Vladimir Tsyrkunov,1 Viktor Andreev,2 Rimma development of which main participants are activated fibroblasts. Kravchuk,3 Iryna Kаndratovich1 Activated hepatic stellate cells (HSC) are the main source of activated 1 1,2 Department of Infectious Diseases, Grodno State Medical fibroblasts. University, Belarus 2 HSC, a synonym - stellate cells of liver, Ito cells, perisinusoidal Department of Histology, Grodno State Medical University, Belarus lipocytes, stellate cells. HSC were firstly described in 1876 and named 3Department of Science, Grodno State Medical University, by K. Kupffer stellate cells T. Ito, finding in them a drop of fat firstly Belarus marked them as lipophagic («shibo-sesshusaibo») but then finding that the fat elaborated by the cells from glycogen named them as Correspondence: Iryna Kаndratovich, Department of fat-storing cells or Ito sells («shibo-chozosaibo»).3 In 1971, K.Wake Infectious Diseases, Grodno State Medical University, Gorkogo str 80, Grodno 230009, Belarus, Tel +375152434286, Fax proved the identity of stellate cells of Kupffer and Ito cells and that +375152434286, Email these cells are “stored” vitamin A.4 Received: October 29, 2018 | Published: July 25, 2019 About 80% of vitamin A which is in the body accumulates in the liver and up to 80% of liver retinoids deposited in fat droplets of HSC. Ethers of retinol in formulation of chylomicrons entered to Methods hepatocytes, where they are converted to retinol and form of vitamin A complex with retinol binding protein (RBP), which is secreted in Lifetime liver biopsy obtained by performing aspiration biopsy perisinusoidal space where it deposited by cells.5 of the liver of patients with CHC (HCV ribonucleic acid+). Patients gave theirs written informed consent. For light microscopy semifine Established by K. Popper close relationship of HSC with the sections of liver biopsy samples of patients 0,5х2mm in size were hepatic fibrosis demonstrated theirs not static, but dynamic function. fixed by double fixation method: firstly by the Sato Taizan technique.8 It means the ability to be directly involved in the remodeling Then tissue samples for 1 hour additionaly fixed in 1% osmium of intralobular perihepatocellular matrix.6 The main method of fixative prepared with 0.1M phosphate buffer of Zerensen, pH 7.4. morphological study of liver conducted by assessing the changes For better identification of intracellular structures and interstitial in lifetime biopsy materials is light microscopy. This method in substance on semifine sections in 1% osmium tetroxide was added clinical practice allows establishing the stage of inflammation activity potassium dichromate (K2Sr2O7) or crystals of chromic anhydride and stage of chronization.7 The disadvantage of this method is low (1mg/ml). After dehydration of samples in series of alcoholic resolution which does not allow evaluating features of cell structure, solutions of increasing concentrations and acetone they were intracellular organelles, insertions, functional characteristics. Lifetime placed in the prepolymerized mixture of butyl methacrylate and electron-microscopic study of ultrastructural changes in the liver styrole and polymerizing at 55°C. Semifine sections (thickness of makes it possible to supplement the light microscopy data and raise 1 microeter) were sequentially stained with azure II-basic fuchsine. their diagnostic value. Microphotographies obtained with using of digital video camera In this regard the identification of the HSC, study of their (Leisa FC 320, Germany). phenotype during transdifferentiation and determining the intensity Electron-microscopic study was performed in samples of liver of their proliferation are the major contribution to the prediction biopsy materials 0,5х1,0mm in size fixed with 1% osmium tetroxide of outcomes of liver disease as well as in the patomorphology and on 0.1M buffer of Millonig, pH 7.4, at +4°C for 2 hours.9 After pathophysiology of fibrogenesis. The aim of research is to introduce dehydration in alcohols of increasing concentrations and acetone structural and functional description of HSC on the results of samples were embedded in Araldite.10,11 From these blocks on cytological identification of lifetime liver biopsies. ultramicrotome Leica EM VC7 (Germany) were prepared semifine sections (400 nm) and stained with methylene blue. Specimens Abbreviations: CD, cluster of differentiation; CHC, chronic viewed under the light microscope and the same type of site chosen hepatitis C; HCV, hepatitis C virus; HSC, hepatic stellate cells; ICAM, for further study of ultrastructural changes. Ultrathin sections (35 nm) intercellular adhesion molecule; MMPs, matrix metaloproteinases; contrasted with 2% solution of uranyl acetate per 50% of methanol12 PDGF, platelet-derived growth factor; RBP, retinol-binding protein; and lead citrate by E.S. Reynolds.13 Electron-microscopic spesimens RER, rough endoplasmic reticulum; TIMPs, tissue inhibitors of were studied in the electron microscope JEM-1011 (JEOL, Japan) matrix metaloproteinases with an increase of 10000–60000 at an accelerating voltage of 80 kW. Submit Manuscript | http://medcraveonline.com Gastroenterol Hepatol Open Access. 2019;10(4):213‒219. 213 © 2019 Tsyrkunov et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and build upon your work non-commercially. Copyright: Ito stellate cells (hepatic stellate cells) in diagnosis of liver fibrosis ©2019 Tsyrkunov et al. 214 For images was used a set of digital camera Olympus MegaViewIII The amount of lipid droplets in the inactive HSC is 30 or more. (Germany) and programs for processing of images iTEM (Olympus, They are similar in size and are adjacent to each other, pressing Germany). into the nucleus and pushing it aside periphery (Figure 2). Small Results and discussion inclusions can be placed between large droplets. The color of droplets depends on the fixator and staining of material. In one case, they are HSC located in perisinusoidal space (Disse) in recesses between bright (Figure 2A), in the other they are dark green (Figure 2B). hepatocytes and endotheliocytes and have long processes that penetrate deep between hepatocytes. In the majority of publications At electron microscopy on a background of the light lipidic 22 devoted to this population of HSC is a schematic representation of substrate more osmiophil marginal ring is formed (Figure 2C). Most them which allows only indication of “territorial” belonging of HSC of the “inactive” HSC along with large lipid inclusions small amount in the liver and in relation to others of their “neighbors” (Figure 1). of cytoplasmic matrix poor on mitochondria and rough endoplasmic reticulum (RER) is seen. However, compartments of moderately developed Golgi complex in the form of stacks of 3-4 flattened cisterns with slightly extended ends are clearly seen (Figure 2S). Figure 1 Diagram of HSC location in perisinusoidal space of Disse, an internete resource. HSC have close contact with endotheliocytes through the incomplete basement membrane components and interstitial collagen fibers. Nerve endings penetrate between HSC and parenchymatous cells, wherefore the space of Disse defines as the space between the plates of parenchymatous cells and HSC complex and endotheliocytes.14 It is supposed that HSC become from poorly differentiated 15 mesenchymal cells transverse septum of developing liver. The Figure 2 HSC which are in inactive condition. experiment revealed that in the formation of HSC hematopoietic stem cells participates, and that this process is not caused by cell fusion.16 (A) Hepatic stellate cells (HSC) of round shape with a high content of lipid droplets with a light color (white arrows), hepatocytes (Hep) with Sinusoidal cells, first of all HSC, play a leading role in all forms the devastated cytoplasm (black arrow); B, HSC with lipid droplets of dark of liver regeneration. Fibrotic liver regeneration occurs as a result of color (white arrows), in close contact with macrophage (M); A, B, Semifine the inhibition of HSC stem functions and stem cells of marrow.17 In sections, stained with azure II - basic fuchsine, microphotography, zoom 1000; human liver HSC constitute 5-15% being one of 4 types of sinusoidal C, HSC with plenty of lipid droplets (more then 30) having an irregular shape, cells with mesenchymal origin: Kupffer cells, endotheliocytes and zoom 6000 (Hep – hepatocyte); D, Ultrastructural components of HSC: lipid Pit-cells. Within pool of sinusoidal cells 20-25% of leukocytes are droplets (L), mitochondria (orange arrow), rough endoplasmic reticulum (green arrows), the Golgi complex (red arrow), zoom 15000; (C-D) Electron detected.18,19 diffraction patterns. There are lipid inclusions with retinol, triglycerides, phospholipids, Under certain conditions activating HSC obtain mixed or cholesterol, free fatty acids, a-actin and desmin in the cytoplasm transitional phenotype combining morphological characteristics of of HSC.20 To visualize HSC auric chloride staining is used. The lipid like and fibroblast-like cells Figure( 3).22 experiment found that differentiation marker of HSC from
Recommended publications
  • Classical Liver (Hepatic) Lobules It Is Formed of a Polygonal Mass of A- Capsule: Glisson’S Capsule
    LIVER & SPLEEN Color index: Slides.. Important ..Notes ..Extra.. Objectives: By the end of this lecture, the student should be able to describe: 1. The histological structure of liver with special emphasis on: . Classical hepatic (liver) lobule. Hepatocytes. Portal tract (portal area). Hepatic (liver) blood sinusoids. Space of Disse (perisinusoidal space of Disse) . Bile canalculi. 2. The histological structure of spleen with special emphasis on: . White pulp. Red Pulp. LIVER 1-Stroma; 2-Parenchyma; mainly C.T, but not in humans. Classical liver (hepatic) lobules It is formed of a polygonal mass of a- Capsule: Glisson’s Capsule. liver tissue, bounded by b- Septa (absent in human) interlobular septa with portal areas & Portal areas (Portal tracts) at the periphery & central Portal area: surrounded by (centrolobular) vein in the center. other structures. Central vein: surrounded by c- Network of reticular fibers. hepatocytes LIVER Contents of the Classic Liver Lobule: Borders of the Classical Liver Lobule the rows of hepatocytes should be next to each other; 1- Septa: C.T. septa (e.g. in pigs). remember canaliculi 2- Portal areas (Portal tracts): 1- Anastomosing plates of hepatocytes. Are located in the corners of the classical hepatic 2- Liver blood sinusoids (hepatic blood lobule (usually 3 in No.). sinusoids): between the plates. Contents of portal area: 3- Spaces of Disse (perisinusoidal spaces of a- C.T. b- Bile ducts (interlobular bile ducts). Disse) between the hepatocytes and sinusoids c- Venule (Branch of portal vein). 4- Central vein. d- Arteriole (Branch of hepatic artery). 5- Bile canaliculi. Hepatic artery: surrounded by smooth muscles while the bile duct is not.
    [Show full text]
  • Inhibitory Smads Suppress Pancreatic Stellate Cell Activation Through Negative Feedback in Chronic Pancreatitis
    384 Original Article Page 1 of 10 Inhibitory Smads suppress pancreatic stellate cell activation through negative feedback in chronic pancreatitis Hao Lin1,2#^, Beibei Dong3#, Liang Qi3, Yingxiang Wei4, Yusha Zhang5, Xiaotian Cai5, Qi Zhang5, Jia Li4, Ling Li2,3 1Department of Clinical Science and Research, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China; 2Institute of Pancreas, Southeast University, Nanjing, China; 3Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China; 4Department of Ultrasound, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China; 5School of Medicine, Southeast University, Nanjing, China Contributions: (I) Conception and design: H Lin, L Li; (II) Administrative support: H Lin, Y Zhang, X Cai, Q Zhang, J Li; (III) Provision of study materials or patients: H Lin, B Dong; (IV) Collection and assembly of data: H Lin, B Dong, L Qi, Y Wei; (V) Data analysis and interpretation: H Lin, B Dong; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors. #These authors contributed equally to this work. Correspondence to: Hao Lin. Department of Clinical Science and Research, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China. Email: [email protected]; Ling Li. Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China. Email: [email protected]. Background: Activation of pancreatic stellate cells (PSCs) is a key cause of chronic pancreatitis (CP), while inhibition of transforming growth factor-β (TGF-β) signaling renders PSCs inactive. Inhibitory Smads (I-Smads) impede TGF-β intracellular signaling and may provide a way to alleviate CP. Thus, we aimed to investigate the molecular mechanism of I-Smads in CP animals and freshly-isolated PSCs.
    [Show full text]
  • Liver • Gallbladder
    NORMAL BODY Microscopic Anatomy! Accessory Glands of the GI Tract,! lecture 2! ! • Liver • Gallbladder John Klingensmith [email protected] Objectives! By the end of this lecture, students will be able to: ! • trace the flow of blood and bile within the liver • describe the structure of the liver in regard to its functions • indicate the major cell types of the liver and their functions • distinguish the microanatomy of exocrine and endocrine function by the hepatocytes • explain the functional organization of the gallbladder at the cellular level (Lecture plan: overview of structure and function, then increasing resolution of microanatomy and cellular function) Liver and Gallbladder Liver October is “Liver Awareness Month” -- http://www.liverfoundation.org Liver • Encapsulated by CT sheath and mesothelium • Lobes largely composed of hepatocytes in parenchyma • Receives blood from small intestine and general circulation Major functions of the liver • Production and secretion of digestive fluids to small intestine (exocrine) • Production of plasma proteins and lipoproteins (endocrine) • Storage and control of blood glucose • Detoxification of absorbed compounds • Source of embyronic hematopoiesis The liver lobule • Functional unit of the parenchyma • Delimited by CT septa, invisible in humans (pig is shown) • Surrounds the central vein • Bordered by portal tracts Central vein, muralia and sinusoids Parenchyma: Muralia and sinusoids • Hepatocyte basolateral membrane faces sinusoidal lumen • Bile canaliculi occur between adjacent hepatocytes • Cords anastomose Vascularization of the liver • Receives veinous blood from small intestine via portal vein • Receives freshly oxygenated blood from hepatic artery • Discharges blood into vena cava via hepatic vein Blood flow in the liver lobes • flows in via the portal vein and hepatic artery • oozes through the liver lobules to central veins • flows out via the hepatic vein Portal Tract! (aka portal triad) • Portal venule • Hepatic arteriole • Bile duct • Lymph vessel • Nerves • Connective tissue Central vein! (a.k.a.
    [Show full text]
  • Loss of Glp2r Signaling Activates Hepatic Stellate Cells and Exacerbates Diet-Induced Steatohepatitis in Mice
    Loss of Glp2r signaling activates hepatic stellate cells and exacerbates diet-induced steatohepatitis in mice Shai Fuchs, … , Dianne Matthews, Daniel J. Drucker JCI Insight. 2020;5(8):e136907. https://doi.org/10.1172/jci.insight.136907. Research Article Endocrinology Metabolism Graphical abstract Find the latest version: https://jci.me/136907/pdf RESEARCH ARTICLE Loss of Glp2r signaling activates hepatic stellate cells and exacerbates diet-induced steatohepatitis in mice Shai Fuchs,1,2 Bernardo Yusta,1 Laurie L. Baggio,1 Elodie M. Varin,1 Dianne Matthews,1 and Daniel J. Drucker1,3 1Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada. 2The Hospital for Sick Children and 3Department of Medicine, University of Toronto, Toronto, Ontario, Canada. A glucagon-like peptide-2 (GLP-2) analog is used in individuals with intestinal failure who are at risk for liver disease, yet the hepatic actions of GLP-2 are not understood. Treatment of high- fat diet–fed (HFD-fed) mice with GLP-2 did not modify the development of hepatosteatosis or hepatic inflammation. In contrast, Glp2r–/– mice exhibited increased hepatic lipid accumulation, deterioration in glucose tolerance, and upregulation of biomarkers of hepatic inflammation. Both mouse and human liver expressed the canonical GLP-2 receptor (GLP-2R), and hepatic Glp2r expression was upregulated in mice with hepatosteatosis. Cell fractionation localized the Glp2r to hepatic stellate cells (HSCs), and markers of HSC activation and fibrosis were increased in livers of Glp2r–/– mice. Moreover, GLP-2 directly modulated gene expression in isolated HSCs ex vivo. Taken together, these findings define an essential role for the GLP-2R in hepatic adaptation to nutrient excess and unveil a gut hormone-HSC axis, linking GLP-2R signaling to control of HSC activation.
    [Show full text]
  • Human Hepatic Stellate Cell Line (LX-2) Exhibits Characteristics of Bone Marrow-Derived Mesenchymal Stem Cells
    Experimental and Molecular Pathology 91 (2011) 664–672 Contents lists available at SciVerse ScienceDirect Experimental and Molecular Pathology journal homepage: www.elsevier.com/locate/yexmp Human hepatic stellate cell line (LX-2) exhibits characteristics of bone marrow-derived mesenchymal stem cells Andrielle Castilho-Fernandes a,b,⁎, Danilo Candido de Almeida a,b, Aparecida Maria Fontes a,b, Fernanda Ursoli Ferreira Melo b, Virgínia Picanço-Castro b, Marcela Cristina Freitas a,b, Maristela D. Orellana a,b, Patricia V.B. Palma b, Perry B. Hackett c, Scott L. Friedman d, Dimas Tadeu Covas a,b a Faculty of Medicine of Ribeirão Preto, Department of Clinical Medicine, University of São Paulo, Av. Bandeirantes, 3900 (6° andar do HC) Ribeirão Preto 14048-900, Brazil b Center for Cell Therapy and Regional Blood Center of Ribeirão Preto, National Institute of Science and Technology in Stem Cell and Cell Therapy, Rua Tenente Catão Roxo, 2501, Ribeirão Preto 14051-140, Brazil c Department of Genetics, Cell Biology, and Development, University of Minnesota, 6-160 Jackson Hall, 321 Church St. SE, Minneapolis 55455, USA d Mount Sinai School of Medicine, Icahn Medical Institute, 11th Floor, Room 11-70C, 1425 Madison Avenue, NY 10029, USA article info abstract Article history: The LX-2 cell line has characteristics of hepatic stellate cells (HSCs), which are considered pericytes of the hepatic Received 15 March 2011 microcirculatory system. Recent studies have suggested that HSCs might have mesenchymal origin. We have and in revised form 2 September 2011 performed an extensive characterization of the LX-2 cells and have compared their features with those of mes- Available online 9 September 2011 enchymal cells.
    [Show full text]
  • Regulation of Liver Fibrosis Via Alteration of Hepatic
    REGULATION OF LIVER FIBROSIS VIA ALTERATION OF HEPATIC STELLATE CELL ACTIVATION DURING LIVER REPAIR A Dissertation by KELLY MARIE MCDANIEL Submitted to the Office of Graduate and Professional Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Chair of Committee, Gianfranco Alpini Committee Members, Fanyin Meng Shannon Glaser Cynthia Meininger Head of Program, Warren Zimmer August 2017 Major Subject: Medical Sciences Copyright 2017. Kelly Marie McDaniel ABSTRACT Cholestatic liver diseases including primary biliary cholangitis (PBC), primary sclerosing cholangitis (PSC) and alcoholic-induced hepatobiliary damage are growing problems in the United States as well as worldwide. There are no successful treatments for these diseases that ultimately develop into cirrhosis and end stage liver diseases with no treatment but liver transplantation. We used the cholestatic bile-duct ligated (BDL) mouse liver to examine treatment with small or large cholangiocytes, a mouse model that mimics some features of PSC to study treatment with stem cell-derived extracellular vesicles and a mouse model of alcoholic liver disease to show the important role of let-7. After treatment, liver tissues/cells were analyzed for fibrosis, inflammation, endodermal markers and hepatic stellate cell activation. Mechanisms of action were evaluated further in vitro through the use of hepatic cell lines. We showed that small cholangiocyte treatment reduced fibrosis, biliary mass and stellate cell activation through enhanced expression of FoxA2. We additionally showed that treatment of cultured human stellate cell lines with cholangiocyte supernatants from small cholangiocyte- treated BDL mice showed increased senescence and decreased fibrosis and inflammation.
    [Show full text]
  • Recently Discovered Interstitial Cell Population of Telocytes: Distinguishing Facts from Fiction Regarding Their Role in The
    medicina Review Recently Discovered Interstitial Cell Population of Telocytes: Distinguishing Facts from Fiction Regarding Their Role in the Pathogenesis of Diverse Diseases Called “Telocytopathies” Ivan Varga 1,*, Štefan Polák 1,Ján Kyseloviˇc 2, David Kachlík 3 , L’ubošDanišoviˇc 4 and Martin Klein 1 1 Institute of Histology and Embryology, Faculty of Medicine, Comenius University in Bratislava, 813 72 Bratislava, Slovakia; [email protected] (Š.P.); [email protected] (M.K.) 2 Fifth Department of Internal Medicine, Faculty of Medicine, Comenius University in Bratislava, 813 72 Bratislava, Slovakia; [email protected] 3 Institute of Anatomy, Second Faculty of Medicine, Charles University, 128 00 Prague, Czech Republic; [email protected] 4 Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, 813 72 Bratislava, Slovakia; [email protected] * Correspondence: [email protected]; Tel.: +421-90119-547 Received: 4 December 2018; Accepted: 11 February 2019; Published: 18 February 2019 Abstract: In recent years, the interstitial cells telocytes, formerly known as interstitial Cajal-like cells, have been described in almost all organs of the human body. Although telocytes were previously thought to be localized predominantly in the organs of the digestive system, as of 2018 they have also been described in the lymphoid tissue, skin, respiratory system, urinary system, meninges and the organs of the male and female genital tracts. Since the time of eminent German pathologist Rudolf Virchow, we have known that many pathological processes originate directly from cellular changes. Even though telocytes are not widely accepted by all scientists as an individual and morphologically and functionally distinct cell population, several articles regarding telocytes have already been published in such prestigious journals as Nature and Annals of the New York Academy of Sciences.
    [Show full text]
  • Nomina Histologica Veterinaria, First Edition
    NOMINA HISTOLOGICA VETERINARIA Submitted by the International Committee on Veterinary Histological Nomenclature (ICVHN) to the World Association of Veterinary Anatomists Published on the website of the World Association of Veterinary Anatomists www.wava-amav.org 2017 CONTENTS Introduction i Principles of term construction in N.H.V. iii Cytologia – Cytology 1 Textus epithelialis – Epithelial tissue 10 Textus connectivus – Connective tissue 13 Sanguis et Lympha – Blood and Lymph 17 Textus muscularis – Muscle tissue 19 Textus nervosus – Nerve tissue 20 Splanchnologia – Viscera 23 Systema digestorium – Digestive system 24 Systema respiratorium – Respiratory system 32 Systema urinarium – Urinary system 35 Organa genitalia masculina – Male genital system 38 Organa genitalia feminina – Female genital system 42 Systema endocrinum – Endocrine system 45 Systema cardiovasculare et lymphaticum [Angiologia] – Cardiovascular and lymphatic system 47 Systema nervosum – Nervous system 52 Receptores sensorii et Organa sensuum – Sensory receptors and Sense organs 58 Integumentum – Integument 64 INTRODUCTION The preparations leading to the publication of the present first edition of the Nomina Histologica Veterinaria has a long history spanning more than 50 years. Under the auspices of the World Association of Veterinary Anatomists (W.A.V.A.), the International Committee on Veterinary Anatomical Nomenclature (I.C.V.A.N.) appointed in Giessen, 1965, a Subcommittee on Histology and Embryology which started a working relation with the Subcommittee on Histology of the former International Anatomical Nomenclature Committee. In Mexico City, 1971, this Subcommittee presented a document entitled Nomina Histologica Veterinaria: A Working Draft as a basis for the continued work of the newly-appointed Subcommittee on Histological Nomenclature. This resulted in the editing of the Nomina Histologica Veterinaria: A Working Draft II (Toulouse, 1974), followed by preparations for publication of a Nomina Histologica Veterinaria.
    [Show full text]
  • Junction Between Kupffer Cells and Hepatic Sinusoidal Endothelium. a Review This Short Review Was Prepared on the Basis of Trans
    Okajimas Folia Anat. Jpn., 57(2-3) : 145-158, August 1980 Junction between Kupffer Cells and Hepatic Sinusoidal Endothelium. A Review By TOSHIO ITO, YUTAKA TANUMA and SUSUMU SHIBASAKI Department of Anatomy, Teikyo University School of Medicine, Tokyo 173 and Department of Anatomy, Gunma University School of Medicine, Maebashi 371, Japan -Received for Publication, January 24, 1980- Key Words : Kupffer-endothelial junction, Human and bat liver, TEM and SEM. Summary. In this review, the junctions between Kupffer and sinusoidal endothelial cells previously revealed by the present authors under the transmission electron microscope in both normal human and bat livers has been discussed and compared with stereo- images of the connections between the two cell types reported by other authors in scanning electron microscopic studies. It is concluded that Kupffer cells lie on the gap or opening of the endothelial lining of the sinusoid, that part of the perisinusoidal surface of the cell body which is applied to the opening directly faces the perisinusoidal space, and that the margin of this part of the perisinusoidal surface of the Kupffer cell and the margin of the endothelial opening are circularly bound by means of a peculiar close junctional area identical in structure and appearance with the so-called "junctional complex" (Wisse) between endothelial cells . The two junctional areas between the Kupffer cell and the endothelial sheet which are found in a pair in trans- mission electron microscopic preparations on two diametrical parts of the perisinusoidal surface of the Kupffer cell, should be derived from the perpendicular section of such a circular margin of the endothelial opening attached to the Kupffer cell body.
    [Show full text]
  • University of Southampton Research Repository Eprints Soton
    University of Southampton Research Repository ePrints Soton Copyright © and Moral Rights for this thesis are retained by the author and/or other copyright owners. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the copyright holder/s. The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the copyright holders. When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given e.g. AUTHOR (year of submission) "Full thesis title", University of Southampton, name of the University School or Department, PhD Thesis, pagination http://eprints.soton.ac.uk University of Southampton Faculty of Medicine, Health and Biological Sciences Pancreatic Research Group An investigation into soluble growth factors of TIMP-1, IGF-1 and Insulin on Pancreatic stellate cell survival Dr Manish Patel DM Thesis February 2014 University of Southampton An investigation into soluble growth factors of TIMP-1, IGF-1 and Insulin on Pancreatic stellate cell survival Faculty of Medicine, Health and Biological Sciences During pancreatic injury, the pancreatic stellate cell(PSC) become activated to a myofibroblast-like phenotype, proliferate and are known to be the major source of matrix which characterise pancreatic fibrosis in chronic pancreatitis and pancreatic cancer. Activated PSC also express matrix degrading metalloproteinases(MMPs) and their tissue inhibitors(TIMPs). Previous work has demonstrated that during spontaneous recovery from experimental liver fibrosis after 4 weeks of carbon tetrachloride injections, there is a fall in the expression of TIMP-1, a loss of the hepatic stellate cells (HSCs) by apoptosis, and an increase in liver collagenolytic activity with the return of the liver to a near normal histology.
    [Show full text]
  • Orai1 Channel Regulates Human-Activated Pancreatic Stellate Cell Proliferation and Tgfβ1 Secretion Through the AKT Signaling Pathway
    cancers Article Orai1 Channel Regulates Human-Activated Pancreatic Stellate Cell Proliferation and TGFβ1 Secretion through the AKT Signaling Pathway Silviya Radoslavova 1,2, Antoine Folcher 2 , Thibaut Lefebvre 1, Kateryna Kondratska 2, Stéphanie Guénin 3, Isabelle Dhennin-Duthille 1 , Mathieu Gautier 1 , Natalia Prevarskaya 2,† and Halima Ouadid-Ahidouch 1,*,† 1 Laboratory of Cellular and Molecular Physiology, UR-UPJV 4667, University of Picardie Jules Verne, 80039 Amiens, France; [email protected] (S.R.); [email protected] (T.L.); [email protected] (I.D.-D.); [email protected] (M.G.) 2 University of Lille, Inserm U1003–PHYCEL–Cellular Physiology, 59000 Lille, France; [email protected] (A.F.); [email protected] (K.K.); [email protected] (N.P.) 3 Centre de Ressources Régionales en Biologie Moléculaire, UFR des Sciences, 80039 Amiens, France; [email protected] * Correspondence: [email protected]; Tel.: +33-3-22-82-7646; Fax: +33-3-2282-7550 † These authors contributed equally to this work. Simple Summary: Activated pancreatic stellate cells (aPSCs), the main source of cancer-associated fibroblasts in pancreatic ductal adenocarcinoma (PDAC), are well known as the key actor of the Citation: Radoslavova, S.; Folcher, abundant fibrotic stroma development surrounding the tumor cells. In permanent communication A.; Lefebvre, T.; Kondratska, K.; with the tumor cells, they enhance PDAC early spreading and limit the drug delivery. However, Guénin, S.; Dhennin-Duthille, I.; the understanding of PSC activation mechanisms and the associated signaling pathways is still Gautier, M.; Prevarskaya, N.; incomplete. In this study, we aimed to evaluate the role of Ca2+, and Orai1 Ca2+ channels, in two Ouadid-Ahidouch, H.
    [Show full text]
  • Liver, Stellate Cell – Hyperplasia
    Liver, Stellate cell – Hyperplasia Figure Legend: Figure 1 Stellate cell hyperplasia–arrow indicates spindloid morphology in a female B6C3F1 mouse from a chronic study. Figure 2 Stellate cell hyperplasia–arrow indicates stellate cells with a spindloid morphology in a female B6C3F1 mouse from a chronic study. Comment: Hepatic stellate cell (Ito cell or perisinusoidal cell) hyperplasia is rare in mice and has not been documented in NTP rat studies. It consists of a diffuse or multifocal proliferation of stellate cells (fat-storing cells, as opposed to macrovesicular fat within hepatocytes) without prominent compression of surrounding parenchyma. Stellate cells store retinoid compounds and when activated may convert to a spindloid morphology (Figure 1 and Figure 2, arrow) and produce extracellular matrix proteins and collagen (scar tissue) in response to hepatic injury. Distinction from stellate cell tumors is based on the latter being more discrete and causing compression of surrounding hepatic parenchyma. Recommendation: Proliferations of stellate cells should be documented and given a severity grade. If stellate cell tumors are present in the same study, it should be mentioned in the pathology narrative. 1 Liver, Stellate cell – Hyperplasia References: Dixon D, Yoshitomi K, Boorman GA, Maronpot RR. 1994. “Lipomatous” lesions of unknown cellular origin in the liver of B6C3F1 mice. Vet Pathol 31:173–182. Abstract: http://www.ncbi.nlm.nih.gov/pubmed/8203079 Harada T, Enomoto A, Boorman GA, Maronpot RR. 1999. Liver and gallbladder. In: Pathology of the Mouse: Reference and Atlas (Maronpot RR, Boorman GA, Gaul BW, eds). Cache River Press, Vienna, IL, 119–183. Abstract: http://www.cacheriverpress.com/books/pathmouse.htm National Toxicology Program.
    [Show full text]