Supplementary File 2A Revised

Total Page:16

File Type:pdf, Size:1020Kb

Supplementary File 2A Revised Supplementary file 2A. Differentially expressed genes in aldosteronomas compared to all other samples, ranked according to statistical significance. Missing values were not allowed in aldosteronomas, but to a maximum of five in the other samples. Acc UGCluster Name Symbol log Fold Change P - Value Adj. P-Value B R99527 Hs.8162 Hypothetical protein MGC39372 MGC39372 2,17 6,3E-09 5,1E-05 10,2 AA398335 Hs.10414 Kelch domain containing 8A KLHDC8A 2,26 1,2E-08 5,1E-05 9,56 AA441933 Hs.519075 Leiomodin 1 (smooth muscle) LMOD1 2,33 1,3E-08 5,1E-05 9,54 AA630120 Hs.78781 Vascular endothelial growth factor B VEGFB 1,24 1,1E-07 2,9E-04 7,59 R07846 Data not found 3,71 1,2E-07 2,9E-04 7,49 W92795 Hs.434386 Hypothetical protein LOC201229 LOC201229 1,55 2,0E-07 4,0E-04 7,03 AA454564 Hs.323396 Family with sequence similarity 54, member B FAM54B 1,25 3,0E-07 5,2E-04 6,65 AA775249 Hs.513633 G protein-coupled receptor 56 GPR56 -1,63 4,3E-07 6,4E-04 6,33 AA012822 Hs.713814 Oxysterol bining protein OSBP 1,35 5,3E-07 7,1E-04 6,14 R45592 Hs.655271 Regulating synaptic membrane exocytosis 2 RIMS2 2,51 5,9E-07 7,1E-04 6,04 AA282936 Hs.240 M-phase phosphoprotein 1 MPHOSPH -1,40 8,1E-07 8,9E-04 5,74 N34945 Hs.234898 Acetyl-Coenzyme A carboxylase beta ACACB 0,87 9,7E-07 9,8E-04 5,58 R07322 Hs.464137 Acyl-Coenzyme A oxidase 1, palmitoyl ACOX1 0,82 1,3E-06 1,2E-03 5,35 R77144 Hs.488835 Transmembrane protein 120A TMEM120A 1,55 1,7E-06 1,4E-03 5,07 H68542 Hs.420009 Transcribed locus 1,07 1,7E-06 1,4E-03 5,06 AA410184 Hs.696454 PBX/knotted 1 homeobox 2 PKNOX2 1,78 2,0E-06 1,5E-03 4,93 N91117 Hs.518326 Stress-associated endoplasmic reticulum protein 1 SERP1 1,19 2,4E-06 1,7E-03 4,73 AI016010 Hs.446438 G protein-coupled receptor, family C, group 5, membe GPRC5C 1,73 2,6E-06 1,7E-03 4,68 R96914 Data not found 1,22 3,0E-06 1,9E-03 4,54 AA693510 Hs.270084 Neural precursor cell expressed, developmentally dowNEDD1 -1,20 3,5E-06 2,1E-03 4,39 AA046067 Hs.682066 Transcribed locus 1,17 3,9E-06 2,2E-03 4,3 R34240 Hs.713576 Transcribed locus 1,11 5,5E-06 2,9E-03 3,98 H73731 Hs.591518 Amine oxidase (flavin containing) domain 2 AOF2 1,04 5,6E-06 2,9E-03 3,97 AA454554 Hs.405873 Myo-inositol 1-phosphate synthase A1 ISYNA1 1,36 5,9E-06 3,0E-03 3,91 AI005572 Data not found -1,61 6,6E-06 3,0E-03 3,83 N63644 Hs.532363 Homeodomain interacting protein kinase 1 HIPK1 0,81 6,5E-06 3,0E-03 3,83 R24201 Hs.533237 WD repeat domain 36 WDR36 -1,20 7,1E-06 3,2E-03 3,75 AA457038 Hs.467662 Integrin beta 1 binding protein 1 ITGB1BP1 1,37 8,2E-06 3,2E-03 3,62 T71965 Hs.100874 ATP synthase mitochondrial F1 complex assembly facATPAF1 1,11 8,1E-06 3,2E-03 3,62 AA459363 Hs.236361 RNA binding motif protein 38 RBM38 2,81 8,3E-06 3,2E-03 3,6 AA463517 Hs.466165 6-phosphogluconolactonase PGLS -0,95 8,5E-06 3,2E-03 3,58 AA453765 Hs.514870 ATP synthase, H+ transporting, mitochondrial F0 com ATP5F1 1,23 8,5E-06 3,2E-03 3,58 AA464612 Hs.655329 Mitochondrial ribosomal protein S18B MRPS18B 1,02 9,7E-06 3,4E-03 3,46 H29322 Hs.434875 Calcium/calmodulin-dependent protein kinase I CAMK1 1,90 9,8E-06 3,4E-03 3,45 AA417247 Hs.97858 Kinesin family member 1B KIF1B 0,99 9,9E-06 3,4E-03 3,44 T71316 Hs.695943 ADP-ribosylation factor 4 ARF4 1,03 1,0E-05 3,5E-03 3,41 W91980 Hs.488835 Transmembrane protein 120A TMEM120A 1,11 1,1E-05 3,7E-03 3,31 AA872041 Hs.31856 Ubiquitin specific peptidase 42 USP42 -0,84 1,2E-05 3,8E-03 3,26 R54972 Hs.444135 Centrosomal protein 97kDa CEP97 0,79 1,2E-05 3,9E-03 3,23 AI017231 Hs.469331 StAR-related lipid transfer (START) domain containingSTARD7 1,08 1,4E-05 4,1E-03 3,14 AA634381 Hs.502528 NADH dehydrogenase (ubiquinone) Fe-S protein 3, 30NDUFS3 1,18 1,4E-05 4,2E-03 3,09 AA127069 Hs.713019 Transcribed locus, strongly similar to NP_033135.2 ryanodine rece 1,68 1,5E-05 4,2E-03 3,07 AA448691 Hs.74137 Transmembrane emp24-like trafficking protein 10 (yeaTMED10 1,09 1,6E-05 4,2E-03 3,01 N77877 Hs.709397 Transducin (beta)-like 1 X-linked receptor 1 TBL1XR1 1,11 1,6E-05 4,2E-03 2,98 AA733203 Hs.604479 Hexosaminidase A (alpha polypeptide) HEXA 1,13 1,6E-05 4,2E-03 2,98 AA485898 Hs.9527 Chromosome 2 open reading frame 28 C2orf28 1,09 1,7E-05 4,2E-03 2,97 AA421046 Hs.567582 F-box protein 31 FBXO31 0,83 1,7E-05 4,2E-03 2,96 AA171718 Data not found 2,45 1,9E-05 4,7E-03 2,86 AA872091 Hs.708155 Transcription factor-like 5 (basic helix-loop-helix) TCFL5 -0,89 1,9E-05 4,7E-03 2,85 AA496800 Hs.293689 Multiple coagulation factor deficiency 2 MCFD2 1,22 1,9E-05 4,7E-03 2,82 AA454840 Hs.563560 MRNA; cDNA DKFZp686E0389 (from clone DKFZp686E0389) 1,21 2,0E-05 4,7E-03 2,8 H10011 Data not found 1,35 2,1E-05 4,7E-03 2,76 W45148 Hs.644026 Transcribed locus 1,07 2,1E-05 4,7E-03 2,75 N26671 Hs.471610 Armadillo repeat containing 9 ARMC9 1,71 2,1E-05 4,7E-03 2,73 R53911 Hs.518602 Wolfram syndrome 1 (wolframin) WFS1 0,87 2,2E-05 4,7E-03 2,71 H41522 Hs.462529 Tumor necrosis factor receptor superfamily, member 2TNFRSF25 -0,75 2,2E-05 4,7E-03 2,71 T52674 Hs.654360 Fms-related tyrosine kinase 1 (vascular endothelial groFLT1 -0,84 2,2E-05 4,7E-03 2,69 W69799 Data not found 0,86 3,5E-05 5,7E-03 2,28 T68739 Data not found -0,95 3,6E-05 5,7E-03 2,26 AA461166 Hs.507948 Component of oligomeric golgi complex 3 COG3 -1,08 3,6E-05 5,7E-03 2,25 AA452566 Hs.703022 Transcribed locus, strongly similar to NP_001073336.1 peroxin 2 [ 0,92 3,6E-05 5,8E-03 2,24 H67876 Hs.118241 Chaperone, ABC1 activity of bc1 complex homolog (S CABC1 1,61 3,8E-05 5,8E-03 2,21 T72068 Hs.592053 RNA binding motif protein 35B RBM35B 0,99 3,8E-05 5,8E-03 2,21 AA458956 Hs.567482 Acyl-Coenzyme A dehydrogenase family, member 9 ACAD9 0,77 4,1E-05 6,2E-03 2,12 AA459650 Hs.304362 PHD finger protein 20-like 1 PHF20L1 0,88 4,1E-05 6,2E-03 2,12 T69603 Hs.524224 Complement component 1, r subcomponent C1R 0,85 4,2E-05 6,3E-03 2,11 AA403295 Hs.526521 Malate dehydrogenase 1, NAD (soluble) MDH1 1,27 4,3E-05 6,3E-03 2,09 AA455999 Hs.247460 Neurolysin (metallopeptidase M3 family) NLN -1,17 4,3E-05 6,3E-03 2,07 AA491249 Hs.356440 Coiled-coil domain containing 72 CCDC72 1,17 4,4E-05 6,4E-03 2,06 H16736 Hs.501127 Attractin-like 1 ATRNL1 1,52 4,7E-05 6,7E-03 2,02 AA705793 Hs.189641 SEC24 related gene family, member D (S. cerevisiae) SEC24D -1,33 5,0E-05 7,0E-03 1,98 AA135958 Hs.489033 ATP-binding cassette, sub-family B (MDR/TAP), mem ABCB1 1,51 5,3E-05 7,3E-03 1,91 AA757457 Hs.187873 Family with sequence similarity 19 (chemokine (C-C mFAM19A4 1,28 5,3E-05 7,3E-03 1,89 AA664389 Hs.507916 TSC22 domain family, member 1 TSC22D1 -1,18 5,4E-05 7,3E-03 1,87 N52772 Hs.8769 Transmembrane protein 47 TMEM47 1,28 5,6E-05 7,6E-03 1,84 R67918 Hs.28780 Zinc finger protein 449 ZNF449 0,57 5,8E-05 7,7E-03 1,82 N95381 Hs.486063 ATG5 autophagy related 5 homolog (S. cerevisiae) ATG5 0,79 5,9E-05 7,7E-03 1,79 H70612 Hs.514373 Myotubularin related protein 4 MTMR4 1,54 6,1E-05 7,7E-03 1,78 AA495786 Hs.521482 Src homology 2 domain containing adaptor protein B SHB -1,41 6,0E-05 7,7E-03 1,77 AA057620 Hs.306083 Chromosome 22 open reading frame 32 C22orf32 0,95 6,1E-05 7,7E-03 1,76 AA449693 Hs.323489 Small nucleolar RNA, C/D box 94 PTCD3 0,89 6,7E-05 8,4E-03 1,68 R43449 Hs.106529 NADH dehydrogenase (ubiquinone) 1 alpha subcomplNDUFAF1 1,14 6,8E-05 8,4E-03 1,67 AA954189 Hs.522090 Galactose-1-phosphate uridylyltransferase GALT 0,74 6,9E-05 8,4E-03 1,65 R86843 Hs.154652 Family with sequence similarity 110, member B FAM110B 0,83 7,1E-05 8,4E-03 1,63 W81371 Hs.700870 Transcribed locus, strongly similar to NP_062458.1 homeobox D8 1,50 7,1E-05 8,4E-03 1,63 R99331 Hs.379548 Ubiquitin protein ligase E3 component n-recognin 3 UBR3 0,83 7,2E-05 8,4E-03 1,61 AA497033 Hs.442378 Cysteine dioxygenase, type I CDO1 2,48 7,2E-05 8,4E-03 1,61 AA179391 Hs.278277 3-oxoacid CoA transferase 1 OXCT1 1,41 7,3E-05 8,4E-03 1,61 AA970729 Hs.461131 Cytochrome b5 type B (outer mitochondrial membraneCYB5B 1,33 7,3E-05 8,4E-03 1,6 AA496022 Hs.296049 Microfibrillar-associated protein 4 MFAP4 0,75 7,6E-05 8,4E-03 1,58 N26546 Hs.115617 Corticotropin releasing hormone binding protein CRHBP 1,36 7,6E-05 8,4E-03 1,58 H68309 Data not found 0,87 7,5E-05 8,4E-03 1,56 AA490855 Hs.485041 Tripartite motif-containing 26 TRIM26 0,99 7,6E-05 8,4E-03 1,56 W89071 Data not found 0,91 7,6E-05 8,4E-03 1,56 AA917868 Hs.435126 SLC2A4 regulator SLC2A4RG -1,43 8,4E-05 9,2E-03 1,51 AA482230 Hs.332795 Leucine zipper, down-regulated in cancer 1-like LDOC1L 0,83 8,7E-05 9,3E-03 1,44 AI356709 Hs.332197 Peroxidasin homolog (Drosophila) PXDN -1,01 8,7E-05 9,3E-03 1,44 AA451861 Hs.372633 Dipeptidase 2 DPEP2 1,03 8,7E-05 9,3E-03 1,43 AA446865 Hs.534261 Mitochondrial ribosomal protein L46 MRPL46 1,06 8,8E-05 9,3E-03 1,42 N66003 Hs.159492 Spastic ataxia of Charlevoix-Saguenay (sacsin) SACS 1,13 8,9E-05 9,3E-03 1,42 AA469975 Hs.578109 Solute carrier family 25, member 29 SLC25A29 1,22 9,1E-05 9,4E-03 1,41 H14348 Hs.494163 Guanine deaminase GDA -0,75 9,2E-05 9,5E-03 1,38 AA701412 Hs.352548 Transmembrane protein 149 TMEM149 0,93 9,3E-05 9,5E-03 1,38 AA456646 Hs.654545 Choroideremia-like (Rab escort protein 2) CHML -0,82 9,5E-05 9,5E-03 1,36 AA398025 Hs.658033 KIAA0240 KIAA0240 -0,96 9,6E-05 9,5E-03 1,36 AA505082 Hs.475812 STT3, subunit of the oligosaccharyltransferase compleSTT3B 1,29 9,7E-05 9,5E-03 1,35 W73797 Hs.356273 ER degradation enhancer, mannosidase alpha-like 2 EDEM2 0,77 9,6E-05 9,5E-03 1,35 AA069372 Hs.519385 Forkhead box D1 FOXD1 0,94 9,6E-05 9,5E-03 1,34 T52999 Hs.9521 Zinc finger protein 92 ZNF92 1,17 9,8E-05 9,5E-03 1,33 T69767 Data not found 1,08 9,9E-05 9,5E-03 1,32 R73672 Data not found 1,60 1,0E-04 9,7E-03 1,3 AA610066 Hs.98428 Homeobox B6 HOXB6 0,95 1,0E-04
Recommended publications
  • Gene Symbol Gene Description ACVR1B Activin a Receptor, Type IB
    Table S1. Kinase clones included in human kinase cDNA library for yeast two-hybrid screening Gene Symbol Gene Description ACVR1B activin A receptor, type IB ADCK2 aarF domain containing kinase 2 ADCK4 aarF domain containing kinase 4 AGK multiple substrate lipid kinase;MULK AK1 adenylate kinase 1 AK3 adenylate kinase 3 like 1 AK3L1 adenylate kinase 3 ALDH18A1 aldehyde dehydrogenase 18 family, member A1;ALDH18A1 ALK anaplastic lymphoma kinase (Ki-1) ALPK1 alpha-kinase 1 ALPK2 alpha-kinase 2 AMHR2 anti-Mullerian hormone receptor, type II ARAF v-raf murine sarcoma 3611 viral oncogene homolog 1 ARSG arylsulfatase G;ARSG AURKB aurora kinase B AURKC aurora kinase C BCKDK branched chain alpha-ketoacid dehydrogenase kinase BMPR1A bone morphogenetic protein receptor, type IA BMPR2 bone morphogenetic protein receptor, type II (serine/threonine kinase) BRAF v-raf murine sarcoma viral oncogene homolog B1 BRD3 bromodomain containing 3 BRD4 bromodomain containing 4 BTK Bruton agammaglobulinemia tyrosine kinase BUB1 BUB1 budding uninhibited by benzimidazoles 1 homolog (yeast) BUB1B BUB1 budding uninhibited by benzimidazoles 1 homolog beta (yeast) C9orf98 chromosome 9 open reading frame 98;C9orf98 CABC1 chaperone, ABC1 activity of bc1 complex like (S. pombe) CALM1 calmodulin 1 (phosphorylase kinase, delta) CALM2 calmodulin 2 (phosphorylase kinase, delta) CALM3 calmodulin 3 (phosphorylase kinase, delta) CAMK1 calcium/calmodulin-dependent protein kinase I CAMK2A calcium/calmodulin-dependent protein kinase (CaM kinase) II alpha CAMK2B calcium/calmodulin-dependent
    [Show full text]
  • Combination of Photodynamic Therapy with Fenretinide and C6
    Wayne State University Wayne State University Theses 1-1-2015 Combination Of Photodynamic Therapy With Fenretinide And C6-Pyridinium Ceramide Enhances Killing Of Scc17b Human Head And Neck Squamous Cell Carcinoma Cells Via The eD Novo Sphingolipid Biosynthesis And Mitochondrial Apoptosis Nithin Bhargava Boppana Wayne State University, Follow this and additional works at: https://digitalcommons.wayne.edu/oa_theses Part of the Medicinal Chemistry and Pharmaceutics Commons Recommended Citation Boppana, Nithin Bhargava, "Combination Of Photodynamic Therapy With Fenretinide And C6-Pyridinium Ceramide Enhances Killing Of Scc17b Human Head And Neck Squamous Cell Carcinoma Cells Via The eD Novo Sphingolipid Biosynthesis And Mitochondrial Apoptosis" (2015). Wayne State University Theses. 431. https://digitalcommons.wayne.edu/oa_theses/431 This Open Access Thesis is brought to you for free and open access by DigitalCommons@WayneState. It has been accepted for inclusion in Wayne State University Theses by an authorized administrator of DigitalCommons@WayneState. COMBINATION OF PHOTODYNAMIC THERAPY WITH FENRETINIDE AND C6-PYRIDINIUM CERAMIDE ENHANCES KILLING OF SCC17B HUMAN HEAD AND NECK SQUAMOUS CELL CARCINOMA CELLS VIA THE DE NOVO SPHINGOLIPID BIOSYNTHESIS AND MITOCHONDRIAL APOPTOSIS by NITHIN BHARGAVA BOPPANA THESIS Submitted to the Graduate School of Wayne State University, Detroit, Michigan in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE 2015 MAJOR: PHARMACEUTICAL SCIENCES Approved By: ________________________________ Advisor Date © COPYRIGHT BY NITHIN BHARGAVA BOPPANA 2015 All Rights Reserved DEDICATION Dedicated to my mom Rekha Vasireddy for always believing in me and helping me in becoming the person who I am today. ii ACKNOWLEDGEMENTS I am grateful to my advisor, Dr. Duska Separovic for her invaluable mentorship throughout the project.
    [Show full text]
  • Genetic Basis of Simple and Complex Traits with Relevance to Avian Evolution
    Genetic basis of simple and complex traits with relevance to avian evolution Małgorzata Anna Gazda Doctoral Program in Biodiversity, Genetics and Evolution D Faculdade de Ciências da Universidade do Porto 2019 Supervisor Miguel Jorge Pinto Carneiro, Auxiliary Researcher, CIBIO/InBIO, Laboratório Associado, Universidade do Porto Co-supervisor Ricardo Lopes, CIBIO/InBIO Leif Andersson, Uppsala University FCUP Genetic basis of avian traits Nota Previa Na elaboração desta tese, e nos termos do número 2 do Artigo 4º do Regulamento Geral dos Terceiros Ciclos de Estudos da Universidade do Porto e do Artigo 31º do D.L.74/2006, de 24 de Março, com a nova redação introduzida pelo D.L. 230/2009, de 14 de Setembro, foi efetuado o aproveitamento total de um conjunto coerente de trabalhos de investigação já publicados ou submetidos para publicação em revistas internacionais indexadas e com arbitragem científica, os quais integram alguns dos capítulos da presente tese. Tendo em conta que os referidos trabalhos foram realizados com a colaboração de outros autores, o candidato esclarece que, em todos eles, participou ativamente na sua conceção, na obtenção, análise e discussão de resultados, bem como na elaboração da sua forma publicada. Este trabalho foi apoiado pela Fundação para a Ciência e Tecnologia (FCT) através da atribuição de uma bolsa de doutoramento (PD/BD/114042/2015) no âmbito do programa doutoral em Biodiversidade, Genética e Evolução (BIODIV). 2 FCUP Genetic basis of avian traits Acknowledgements Firstly, I would like to thank to my all supervisors Miguel Carneiro, Ricardo Lopes and Leif Andersson, for the demanding task of supervising myself last four years.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • 1 Metabolic Dysfunction Is Restricted to the Sciatic Nerve in Experimental
    Page 1 of 255 Diabetes Metabolic dysfunction is restricted to the sciatic nerve in experimental diabetic neuropathy Oliver J. Freeman1,2, Richard D. Unwin2,3, Andrew W. Dowsey2,3, Paul Begley2,3, Sumia Ali1, Katherine A. Hollywood2,3, Nitin Rustogi2,3, Rasmus S. Petersen1, Warwick B. Dunn2,3†, Garth J.S. Cooper2,3,4,5* & Natalie J. Gardiner1* 1 Faculty of Life Sciences, University of Manchester, UK 2 Centre for Advanced Discovery and Experimental Therapeutics (CADET), Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK 3 Centre for Endocrinology and Diabetes, Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, UK 4 School of Biological Sciences, University of Auckland, New Zealand 5 Department of Pharmacology, Medical Sciences Division, University of Oxford, UK † Present address: School of Biosciences, University of Birmingham, UK *Joint corresponding authors: Natalie J. Gardiner and Garth J.S. Cooper Email: [email protected]; [email protected] Address: University of Manchester, AV Hill Building, Oxford Road, Manchester, M13 9PT, United Kingdom Telephone: +44 161 275 5768; +44 161 701 0240 Word count: 4,490 Number of tables: 1, Number of figures: 6 Running title: Metabolic dysfunction in diabetic neuropathy 1 Diabetes Publish Ahead of Print, published online October 15, 2015 Diabetes Page 2 of 255 Abstract High glucose levels in the peripheral nervous system (PNS) have been implicated in the pathogenesis of diabetic neuropathy (DN). However our understanding of the molecular mechanisms which cause the marked distal pathology is incomplete. Here we performed a comprehensive, system-wide analysis of the PNS of a rodent model of DN.
    [Show full text]
  • Supplementary Materials
    1 Supplementary Materials: Supplemental Figure 1. Gene expression profiles of kidneys in the Fcgr2b-/- and Fcgr2b-/-. Stinggt/gt mice. (A) A heat map of microarray data show the genes that significantly changed up to 2 fold compared between Fcgr2b-/- and Fcgr2b-/-. Stinggt/gt mice (N=4 mice per group; p<0.05). Data show in log2 (sample/wild-type). 2 Supplemental Figure 2. Sting signaling is essential for immuno-phenotypes of the Fcgr2b-/-lupus mice. (A-C) Flow cytometry analysis of splenocytes isolated from wild-type, Fcgr2b-/- and Fcgr2b-/-. Stinggt/gt mice at the age of 6-7 months (N= 13-14 per group). Data shown in the percentage of (A) CD4+ ICOS+ cells, (B) B220+ I-Ab+ cells and (C) CD138+ cells. Data show as mean ± SEM (*p < 0.05, **p<0.01 and ***p<0.001). 3 Supplemental Figure 3. Phenotypes of Sting activated dendritic cells. (A) Representative of western blot analysis from immunoprecipitation with Sting of Fcgr2b-/- mice (N= 4). The band was shown in STING protein of activated BMDC with DMXAA at 0, 3 and 6 hr. and phosphorylation of STING at Ser357. (B) Mass spectra of phosphorylation of STING at Ser357 of activated BMDC from Fcgr2b-/- mice after stimulated with DMXAA for 3 hour and followed by immunoprecipitation with STING. (C) Sting-activated BMDC were co-cultured with LYN inhibitor PP2 and analyzed by flow cytometry, which showed the mean fluorescence intensity (MFI) of IAb expressing DC (N = 3 mice per group). 4 Supplemental Table 1. Lists of up and down of regulated proteins Accession No.
    [Show full text]
  • Protein Identities in Evs Isolated from U87-MG GBM Cells As Determined by NG LC-MS/MS
    Protein identities in EVs isolated from U87-MG GBM cells as determined by NG LC-MS/MS. No. Accession Description Σ Coverage Σ# Proteins Σ# Unique Peptides Σ# Peptides Σ# PSMs # AAs MW [kDa] calc. pI 1 A8MS94 Putative golgin subfamily A member 2-like protein 5 OS=Homo sapiens PE=5 SV=2 - [GG2L5_HUMAN] 100 1 1 7 88 110 12,03704523 5,681152344 2 P60660 Myosin light polypeptide 6 OS=Homo sapiens GN=MYL6 PE=1 SV=2 - [MYL6_HUMAN] 100 3 5 17 173 151 16,91913397 4,652832031 3 Q6ZYL4 General transcription factor IIH subunit 5 OS=Homo sapiens GN=GTF2H5 PE=1 SV=1 - [TF2H5_HUMAN] 98,59 1 1 4 13 71 8,048185945 4,652832031 4 P60709 Actin, cytoplasmic 1 OS=Homo sapiens GN=ACTB PE=1 SV=1 - [ACTB_HUMAN] 97,6 5 5 35 917 375 41,70973209 5,478027344 5 P13489 Ribonuclease inhibitor OS=Homo sapiens GN=RNH1 PE=1 SV=2 - [RINI_HUMAN] 96,75 1 12 37 173 461 49,94108966 4,817871094 6 P09382 Galectin-1 OS=Homo sapiens GN=LGALS1 PE=1 SV=2 - [LEG1_HUMAN] 96,3 1 7 14 283 135 14,70620005 5,503417969 7 P60174 Triosephosphate isomerase OS=Homo sapiens GN=TPI1 PE=1 SV=3 - [TPIS_HUMAN] 95,1 3 16 25 375 286 30,77169764 5,922363281 8 P04406 Glyceraldehyde-3-phosphate dehydrogenase OS=Homo sapiens GN=GAPDH PE=1 SV=3 - [G3P_HUMAN] 94,63 2 13 31 509 335 36,03039959 8,455566406 9 Q15185 Prostaglandin E synthase 3 OS=Homo sapiens GN=PTGES3 PE=1 SV=1 - [TEBP_HUMAN] 93,13 1 5 12 74 160 18,68541938 4,538574219 10 P09417 Dihydropteridine reductase OS=Homo sapiens GN=QDPR PE=1 SV=2 - [DHPR_HUMAN] 93,03 1 1 17 69 244 25,77302971 7,371582031 11 P01911 HLA class II histocompatibility antigen,
    [Show full text]
  • A General Binding Mechanism for All Human Sulfatases by the Formylglycine-Generating Enzyme
    A general binding mechanism for all human sulfatases by the formylglycine-generating enzyme Dirk Roeser*, Andrea Preusser-Kunze†, Bernhard Schmidt†, Kathrin Gasow*, Julia G. Wittmann*, Thomas Dierks‡, Kurt von Figura†, and Markus Georg Rudolph*§ *Department of Molecular Structural Biology, University of Go¨ttingen, Justus-von-Liebig-Weg 11, D-37077 Go¨ttingen, Germany; †Department of Biochemistry II, Heinrich-Du¨ker-Weg 12, University of Go¨ttingen, D-37073 Go¨ttingen, Germany; and ‡Department of Biochemistry I, Universita¨tsstrasse 25, University of Bielefeld, D-33615 Bielefeld, Germany Edited by Carolyn R. Bertozzi, University of California, Berkeley, CA, and approved November 8, 2005 (received for review September 1, 2005) The formylglycine (FGly)-generating enzyme (FGE) uses molecular tases, suggesting a general binding mechanism of substrate sulfa- oxygen to oxidize a conserved cysteine residue in all eukaryotic tases by FGE. sulfatases to the catalytically active FGly. Sulfatases degrade and The details of how O2-dependent cysteine oxidation is mediated remodel sulfate esters, and inactivity of FGE results in multiple by FGE are unknown. As a first step toward the elucidation of the sulfatase deficiency, a fatal disease. The previously determined FGE molecular mechanism of FGly formation, we have previously crystal structure revealed two crucial cysteine residues in the active determined crystal structures of FGE in various oxidation states site, one of which was thought to be implicated in substrate (8). FGE adopts a novel fold with surprisingly little regular sec- 2ϩ binding. The other cysteine residue partakes in a novel oxygenase ondary structure and contains two structural Ca ions and two mechanism that does not rely on any cofactors.
    [Show full text]
  • Cellular and Molecular Signatures in the Disease Tissue of Early
    Cellular and Molecular Signatures in the Disease Tissue of Early Rheumatoid Arthritis Stratify Clinical Response to csDMARD-Therapy and Predict Radiographic Progression Frances Humby1,* Myles Lewis1,* Nandhini Ramamoorthi2, Jason Hackney3, Michael Barnes1, Michele Bombardieri1, Francesca Setiadi2, Stephen Kelly1, Fabiola Bene1, Maria di Cicco1, Sudeh Riahi1, Vidalba Rocher-Ros1, Nora Ng1, Ilias Lazorou1, Rebecca E. Hands1, Desiree van der Heijde4, Robert Landewé5, Annette van der Helm-van Mil4, Alberto Cauli6, Iain B. McInnes7, Christopher D. Buckley8, Ernest Choy9, Peter Taylor10, Michael J. Townsend2 & Costantino Pitzalis1 1Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK. Departments of 2Biomarker Discovery OMNI, 3Bioinformatics and Computational Biology, Genentech Research and Early Development, South San Francisco, California 94080 USA 4Department of Rheumatology, Leiden University Medical Center, The Netherlands 5Department of Clinical Immunology & Rheumatology, Amsterdam Rheumatology & Immunology Center, Amsterdam, The Netherlands 6Rheumatology Unit, Department of Medical Sciences, Policlinico of the University of Cagliari, Cagliari, Italy 7Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK 8Rheumatology Research Group, Institute of Inflammation and Ageing (IIA), University of Birmingham, Birmingham B15 2WB, UK 9Institute of
    [Show full text]
  • Health Effects Support Document for Perfluorooctanoic Acid (PFOA)
    United States Office of Water EPA 822-R-16-003 Environmental Protection Mail Code 4304T May 2016 Agency Health Effects Support Document for Perfluorooctanoic Acid (PFOA) Perfluorooctanoic Acid – May 2016 i Health Effects Support Document for Perfluorooctanoic Acid (PFOA) U.S. Environmental Protection Agency Office of Water (4304T) Health and Ecological Criteria Division Washington, DC 20460 EPA Document Number: 822-R-16-003 May 2016 Perfluorooctanoic Acid – May 2016 ii BACKGROUND The Safe Drinking Water Act (SDWA), as amended in 1996, requires the Administrator of the U.S. Environmental Protection Agency (EPA) to periodically publish a list of unregulated chemical contaminants known or anticipated to occur in public water systems and that may require regulation under SDWA. The SDWA also requires the Agency to make regulatory determinations on at least five contaminants on the Contaminant Candidate List (CCL) every 5 years. For each contaminant on the CCL, before EPA makes a regulatory determination, the Agency needs to obtain sufficient data to conduct analyses on the extent to which the contaminant occurs and the risk it poses to populations via drinking water. Ultimately, this information will assist the Agency in determining the most appropriate course of action in relation to the contaminant (e.g., developing a regulation to control it in drinking water, developing guidance, or deciding not to regulate it). The PFOA health assessment was initiated by the Office of Water, Office of Science and Technology in 2009. The draft Health Effects Support Document for Perfluoroctanoic Acid (PFOA) was completed in 2013 and released for public comment in February 2014.
    [Show full text]
  • Expression of Smooth Muscle and Extracellular Matrix Proteins in Relation to Airway Function in Asthma
    Expression of smooth muscle and extracellular matrix proteins in relation to airway function in asthma Annelies M. Slats, MD,a Kirsten Janssen, BHe,a Annemarie van Schadewijk, MSc,a Dirk T. van der Plas, BSc,a Robert Schot, BSc,a Joost G. van den Aardweg, MD, PhD,b Johan C. de Jongste, MD, PhD,c Pieter S. Hiemstra, PhD,a Thais Mauad, MD,d Klaus F. Rabe, MD, PhD,a and Peter J. Sterk, MD, PhDa,e Leiden, Alkmaar, Rotterdam, and Amsterdam, The Netherlands, and Sa˜o Paulo, Brazil Background: Smooth muscle content is increased within the selective expression of airway smooth muscle proteins and airway wall in patients with asthma and is likely to play a role in components of the extracellular matrix. (J Allergy Clin airway hyperresponsiveness. However, smooth muscle cells Immunol 2008;121:1196-202.) express several contractile and structural proteins, and each of these proteins may influence airway function distinctly. Key words: Actin, desmin, elastin, airway smooth muscle, extracel- Objective: We examined the expression of contractile and lular matrix, lung function, hyperresponsiveness, deep inspiration- structural proteins of smooth muscle cells, as well as induced bronchodilation, bronchial biopsies extracellular matrix proteins, in bronchial biopsies of patients with asthma, and related these to lung function, airway hyperresponsiveness, and responses to deep inspiration. Asthma is characterized by chronic airway inflammation, Methods: Thirteen patients with asthma (mild persistent, which is presumed to contribute to variable airways obstruction 1 atopic, nonsmoking) participated in this cross-sectional study. and bronchial hyperresponsiveness. However, recent studies FEV1% predicted, PC20 methacholine, and resistance of the have led to a reappraisal of the role of airway smooth muscle in 2 respiratory system by the forced oscillation technique during asthma pathophysiology.
    [Show full text]
  • Table SI. Primer List of Genes Used for Reverse Transcription‑Quantitative PCR Validation
    Table SI. Primer list of genes used for reverse transcription‑quantitative PCR validation. Genes Forward (5'‑3') Reverse (5'‑3') Length COL1A1 AGTGGTTTGGATGGTGCCAA GCACCATCATTTCCACGAGC 170 COL6A1 CCCCTCCCCACTCATCACTA CGAATCAGGTTGGTCGGGAA 65 COL2A1 GGTCCTGCAGGTGAACCC CTCTGTCTCCTTGCTTGCCA 181 DCT CTACGAAACCAGGATGACCGT ACCATCATTGGTTTGCCTTTCA 192 PDE4D ATTGCCCACGATAGCTGCTC GCAGATGTGCCATTGTCCAC 181 RP11‑428C19.4 ACGCTAGAAACAGTGGTGCG AATCCCCGGAAAGATCCAGC 179 GPC‑AS2 TCTCAACTCCCCTCCTTCGAG TTACATTTCCCGGCCCATCTC 151 XLOC_110310 AGTGGTAGGGCAAGTCCTCT CGTGGTGGGATTCAAAGGGA 187 COL1A1, collagen type I alpha 1; COL6A1, collagen type VI, alpha 1; COL2A1, collagen type II alpha 1; DCT, dopachrome tautomerase; PDE4D, phosphodiesterase 4D cAMP‑specific. Table SII. The differentially expressed mRNAs in the ParoAF_Control group. Gene ID logFC P‑Value Symbol Description ENSG00000165480 ‑6.4838 8.32E‑12 SKA3 Spindle and kinetochore associated complex subunit 3 ENSG00000165424 ‑6.43924 0.002056 ZCCHC24 Zinc finger, CCHC domain containing 24 ENSG00000182836 ‑6.20215 0.000817 PLCXD3 Phosphatidylinositol‑specific phospholipase C, X domain containing 3 ENSG00000174358 ‑5.79775 0.029093 SLC6A19 Solute carrier family 6 (neutral amino acid transporter), member 19 ENSG00000168916 ‑5.761 0.004046 ZNF608 Zinc finger protein 608 ENSG00000134343 ‑5.56371 0.01356 ANO3 Anoctamin 3 ENSG00000110400 ‑5.48194 0.004123 PVRL1 Poliovirus receptor‑related 1 (herpesvirus entry mediator C) ENSG00000124882 ‑5.45849 0.022164 EREG Epiregulin ENSG00000113448 ‑5.41752 0.000577 PDE4D Phosphodiesterase
    [Show full text]