Quick viewing(Text Mode)

Marine Ecology Progress Series 549:9

Marine Ecology Progress Series 549:9

The following supplement accompanies the article

Finding the way to the top: how the composition of oceanic mid-trophic micronekton groups determines apex predator biomass in the central North Pacific

C. Anela Choy*, Colette C. C. Wabnitz, Mariska Weijerman, Phoebe A. Woodworth-Jefcoats, Jeffrey J. Polovina4

*Corresponding author: [email protected]

Marine Ecology Progress Series 549: 9–25 (2016)

Table S1. Description of all 41 Ecopath functional groups, including key and references for diet and biological parameters. Functional Group Example Taxa Group Description and Source(s) 1 Blue Sharks Prionace glauca Biological parameters and diet follow ‘blue sharks’ group in Howell et al. (2013), including some updated stock status information from the most recent blue shark assessment in the Pacific Ocean (Shark Working Group 2013). 2 Other Sharks white sharks (Carcharodon Biological parameters and diet follow carcharias), tiger sharks ‘other sharks’ group in Howell et al. (Galeocerdo cuvier), shortfin (2013). Mako sharks (Isurus oxyrinchus), silky sharks (Carcharhinus falciformis), oceanic white tip (Carcharhinus longimanus), Galapagos shark (Carcharhinus galapagensis), bigeye thresher (Alopias superciliosus), common thresher (Alopias vulpinus), pelagic thresher (Alopias pelagicus), sandbar shark (Carcharhinus plumbeus), longfin mako (Isurus paucus), dogfish (Squalus mitsukurii, Squalus blainville), (Pseudocarcharias kamoharai) 3 Broadbill Swordfish Xiphias gladius Biological parameters and diet follow ‘swordfish’ group in Howell et al. (2013). Diet information was updated to include Young et al. (2006). 4 Blue Marlin Makaira nigricans Biological parameters and diet follow ‘blue marlin’ group in Howell et al. (2013). 5 Striped Marlin Tetrapturus audax Biological parameters and diet follow

1 ‘striped marlin’ group in Howell et al. (2013). 6 Other Billfishes sailfish (Istiophorus Biological parameters and diet follow platypterus), black marlin ‘other billfishes’ group in Howell et al. (Makaira indica), shortbill (2013). spearfish (Tetrapturus angustirostris) 7 Small Billfishes Juveniles of broadbill Biological parameters and diet follow swordfish (Xiphias gladius), ‘other billfishes’ group in Howell et al. blue marlin (Makaira (2013). Diet information was updated to nigricans), striped marlin include Shimose et al. (2010) and Young (Tetrapturus audax), sailfish et al. (2006), mostly to downplay the (Istiophorus platypterus), importance of prey. Maximum black marlin (Makaira sizes for billfishes in this group were 110 indica), shortbill spearfish cm, or approximately 8 kg. (Tetrapturus angustirostris) 8 Baleen Whales Bryde's whale (Balaenoptera Biological parameters and diet follow edeni), sei whale Essington (2006) and Ramp et al. (2010, (Balaenoptera borealis) 2014), with some updated diet information from Pauly et al. (1998). Consists primarily of Bryde’s whales (Balaenoptera edeni) and small numbers of sei whales (Balaenoptera borealis). Humpback whales (Megaptera novaeangliae) are not considered because they do not feed while residing in the CNP (Calambokidis et al. 1996). 9 Toothed Whales false killer whale (Pseudorca Group consists of false killer whales, the crassidens), pantropical most-frequently encountered dolphin spotted dolphin (Stenella species in offshore Hawaiian waters attenuata), rough-toothed (pantropical spotted dolphin (Stenella dolphin (Steno bredanensis), attenuata), rough-toothed dolphin (Steno common bottlenose dolphin bredanensis), and common bottlenose (Tursiops truncatus); short- dolphin (Tursiops truncates); R. Baird, finned pilot whale pers. comm.), and other large toothed (Globicephala whale species common to offshore macrorhynchus), sperm Hawaiian waters (sperm whale (Physeter whale (Physeter catodon), short-finned pilot whale macrocephalus), Blainville's (Globicephala macrorhynchus), beaked whale (Mesoplodon Blainville’s beaked whale (Mesoyloden densirostris), Cuvier's densirostris), and Cuvier’s beaked whale beaked whale (Ziphius (Ziphius cavirostris)). Biomass cavirostris) information comes from NMFS marine mammal stock assessment reports and Barlow (2006). Biological parameters follow ‘sperm whales’ group in Essington (2006) and ‘toothed whales’ group in Griffiths et al. (2010). Consumption rates were also taken from Oleson et al. (2010) and Barlow et al. (2008), and compared to ‘sperm whale’ and ‘toothed whales’ groups from Essington (2006) and Griffiths et al. (2010), respectively. Diet information for false killer whales comes from Oleson et al. (2010, and references therein) and Baird et al. (2008), as well as from Pauly et al. (1998) and Jefferson et al. (1993) for the dolphin, sperm, pilot and beaked whale species. Diet information was weighted according to

2 biomass of the different toothed whale species. 10 Bigeye Tuna Thunnus obesus Biological parameters and diet follow ‘bigeye tuna’ group in Howell et al. (2013). Diet information was updated to include King and Ikehara (1956). The importance of crustacean prey to juvenile bigeye tuna was reduced. Maximum sizes for juvenile bigeye tuna in this group were 100 cm, or approximately 16 kg. 11 Juvenile Bigeye Tuna Thunnus obesus See above, group 10 12 Yellowfin Tuna Thunnus albacares Biological parameters and diet follow ‘yellowfin tuna’ group in Howell et al. (2013). Diet information was updated to include Olson et al. (2014), King and Ikehara (1956), Reintjes and King (1953), and Alverson (1963). Maximum sizes for juvenile yellowfin tuna in this group were 120 cm, or approximately 29 kg. 13 Juvenile Yellowfin Tuna Thunnus albacares See above, group 12 14 Albacore Tuna Thunnus alalunga Biological parameters and diet follow ‘bigeye tuna’ group in Howell et al. (2013). Diet information was updated to include Pinkas et al. (1971). Maximum sizes for juvenile albacore tuna in this group were 90 cm, or approximately 10 kg. 15 Juvenile Albacore Tuna Thunnus alalunga See above, group 14 16 Skipjack Tuna Katsuwonus pelamis Biological parameters and diet follow ‘skipjack tuna’ group in Howell et al. (2013). Diet information was updated to include Alverson (1963), transferring some of the importance of epipelagic fish prey to crustacean and mesozooplankton prey. Maximum sizes for juvenile skipjack tuna in this group were 30 cm, or approximately 0.5 kg. 17 Juvenile Skipjack Tuna Katsuwonus pelamis See above, group 16 18 Mahi-mahi Coryphaena hippurus Biological parameters and diet follow ‘mahimahi’ group in Howell et al. (2013). 19 Lancetfish Alepisaurus ferox Biological parameters and diet follow ‘lancetfish’ group in Howell et al. (2013). Diet information was updated using Choy et al. (2013) and Moteki et al. (1993). 20 Opah Lampris guttatus Diet information comes from Choy et al. (2013). Consumption rates follow ‘opah’ group in Griffiths et al. (2010). Very little biological data is available for opah, thus P:B is estimated from FishBase (at a temperature of 18°C). 21 Snake Mackerel & Escolars snake mackerel (Gempylus Snake mackerel (Gempylus serpens) and serpens), Smith’s escolar escolar (Lepidocybium flavobrunneum, (Lepidocybium Ruvettus pretiosus, Scombrolabrax flavobrunneum), oilfish heterolepis) diet information comes from (Ruvettus pretiosus), longfin Choy et al. (2013) and Nakamura and escolar (Scombrolabrax Parin (1993). Specific biological heterolepis), Roudi escolar parameters are taken from the ‘mid- (Promethichthys prometheus) trophic level fish’ group from Howell et al. (2013), as well as from FishBase (at a temperature of 18°C) and Polovina et al.

3 (2009). 22 Other Large Pelagic Fishes wahoo (Acanthocybium Follows ‘mid-trophic level fish’ group in solandri), pomfrets (Brama Howell et al. (2013). However, diet japonica, Taractichthys information was re-balanced to remove steindachneri, Taractes snake mackerel (Gempylus serpens), rubescens, Eumegistus opah (Lampris guttatus), and escolars illustris), mola (Mola mola, (Lepidocybium flavobrunneum, Ruvettus Ranzania laevis, Masturus pretiosus, Scombrolabrax heterolepis) lanceolatus) into their own groups. Wahoo (Acanthocybium solandri) diet information was updated to include Zischke (2012, and references therein). Diet information for fishes from the family Molidae was updated to include Pope et al. (2010, and references therein). 23 Sea Birds albatrosses (Phoebastria This group is comprised of representative immutabilis, Phoebastria common tropical sea birds with known nigripes), sooty tern oceanic feeding habits: black-footed (Onychoprion fuscatus), albatross (Phoebastria nigripes), Laysan Bulwer’s petrel (Bulweria albatross (Phoebastria immutabilis), bulwerii), brown noddy sooty tern (Onychoprion fuscatus), (Anous stolidus), black wedge-tailed shearwater (Puffinus noddy (Anous tenuirostris), pacificus), and Bulwer’s petrel (Bulweria wedge-tailed shearwater bulwerii). Diet information comes (Puffinus pacificus) primarily from Harrison et al. (1983) and Shealer (2002) and was weighted according to biomass of the different sea bird species. Biomass was estimated using numbers of breeding pairs for the Hawaiian Archipelago from Harrison and Seki (1987) and Harrison et al. (1984). Other biological parameters follow ‘seabirds’ group in Griffiths et al. (2010). 24 Sea Turtles loggerhead (Caretta caretta), Diet information is based primarily on leatherback (Dermochelys sea turtle species known to feed in coriacea), olive ridley oceanic central North Pacific waters: (Lepidochelys olivacea), green (Chelonia mydas; Arthur and green (Chelonia mydas) Balazs 2008; Parker et al. 2011), leatherback (Dermochelys coriacea; Jones & Seminoff 2013; Bjorndal 1997), loggerhead (Caretta caretta; Parker et al. 2005), and olive ridley (Lepidochelys olivacea; Jones & Seminoff 2013; Bjorndal 1997). Biomass estimates were taken from Jones et al. (2012) for leatherback turtles, and from National Marine Fisheries Service biological opinions and 5-year reviews. Other biological parameters were estimated using growth and mortality data in Jones et al. (2012) and Jones et al. (2011) for leatherback turtles, Wabnitz et al. (2010) for green turtles, and Swimmer et al. (2014) for loggerhead turtles. P:B and Q:B were variable between leatherback turtles and the other hard-shelled species, and were thus weighted according to biomass estimates of the different turtle species. 25 Small Epipelagic Fishes beloniformes (Exocoetidae, Follows ‘epipelagic fish’ group in Howell

4 Hemiramphidae, Belonidae, et al. (2013). Diet information was and Scomberesocidae updated to include Van Noord et al. families), jacks (Family (2013). Carangidae), rainbow runner (Elagatis bipinnulata), small tunas (Auxis spp., Euthynnus affinis), clupeiformes (Clupeidae and Engraulidae families) 26 Zooplanktivorous Myctophidae, Biological parameters follow Micronekton Fishes , ‘mesopelagic fish’ group in Howell et al. , (2013), and has been further informed by Bathylagidae, Torres et al. (1979) and Childress et al. Bregmacerotidae, and (1980). Diet information was re-balanced families to remove the families belonging to the (among others) carnivorous micronekton group. Diet information comes primarily from Clarke (1980), Clarke (1982), and Hopkins et al. (1996). Biomass estimates were derived in the same way as the ‘carnivorous micronekton fish’ group. 27 Carnivorous Micronekton , Melamphaidae, Biomass was estimated from best Fishes Chiasmodontidae, and available trawling studies conducted in Paralepididae fish families, offshore waters surrounding the Hawaiian and Anguilliformes Islands: Drazen et al. (2011), Pahkomov and Yamamura (2010), and Maynard et al. (1975). Due to the mobility of midwater fishes, trawls are known underestimates of mesopelagic fish biomass by at least an order of magnitude (Koslow et al. 1997; Kaartvedt et al. 2012). Thus, the highest biomass estimate of the three trawling studies was selected, and a correction factor of 3 was used to account for trawl capture inefficiency. This correction factor was chosen to keep biomass estimates comparable to the ‘mesopelagic fish’ group in Howell et al. (2013). Diet information comes primarily from Clarke (1980), Clarke (1978), Clarke (1973), DeWitt and Cailliet (1972), and Lancraft et al. (1988). Biological parameters are drawn from the ‘mesopelagic fish’ group in Howell et al. (2013), and from Davison et al. (2013). Additionally, Torres et al. (1979) and Childress et al. (1980) who showed that the metabolic rate decreases with depth and that non-migratory mesophotic fishes have an even lower metabolic rate compared to the migratory (e.g. the ‘zooplanktivorous micronekton fishes’ group) species. Metabolic rates (respiration/biomass ratio in Ecopath) decreased with depth indicating that the input parameters follow this thermodynamic rule well. 28 Decapod Ophlophoridae, Pandalidae, Diet information from this group comes Pasaphaeidae, Penaeidae, primarily from Podeswa (2012), Hopkins

5 Sergestidae, Pandalidae, et al. (1994), and Flock and Hopkins Benthesicymidae families (1992). Biological parameters follow those of the ‘invertebrates’ group in Howell et al. (2013) and the ‘mesopelagic crustaceans’ group in Griffiths et al. (2010). 29 Other Crustaceans mysids (Eucopeidae, Diet information from this group comes Lophogastridae families), primarily from Podeswa (2012) and hyperiid amphipods, isopods, Hopkins et al. (1994). Biological lobster phyllosoma, parameters follow those of the stomatopods, scyllarids ‘invertebrates’ group in Howell et al. (2013) and the ‘mesopelagic crustaceans’ group in Griffiths et al. (2010). 30 Predatory Gelatinous pelagic cnidarians Diet information is summarized from (Siphonophora, Ctenophora, Purcell (1980), Purcell (1991), and Scyphozoa, hydromedusae) Purcell and Arai (2001). Biomass was estimated using average biomass of pelagic cnidarians (Siphonophora, Ctenophora, Scyphozoa) for the North Pacific Tropical Gyre biome in Lucas et al. (2014). Proximal and elemental compositions from Lucas et al. (2011) were used to convert from carbon to wet weight biomass. Other biological parameters are summarized from a meta- analysis by Pauly et al. (2009). 31 Filter-feeding Gelatinous Pyrosomatidae and Salpidae Diet information is summarized from families, pelagic tunicates Madin et al. (2006), Bone et al. (2003), (Class Appendicularia) Purcell and Madin (1991), and Alldredge and Madin (1982). Salps, pyrosomes, and appendicularians were considered generalist feeders across particle size classes ranging from approximately < 1µm (appendicularians) to upwards of 4µm (salps and pyrosomes). Biomass was estimated in the same way as was done for the ‘predatory gelatinous ’ group, but using biomass for (pyrosomes and salps). Other biological parameters are summarized from a meta- analysis by Pauly et al. (2009) for the central North Pacific. 32 Epipelagic Mollusks Ommastrephidae Follows ‘epipelagic mollusks’ group in (Ommastrephes bartramii, Howell et al. (2013). Diet information Sthenoteuthis oualaniensis, was updated to include Parry (2006) and Eucleoteuthis luminosa, Watanabe et al. (2004). Hyaloteuthis pelagica), Onychoteuthidae (Onykia spp., Onychoteuthis spp.), Argonautidae, Carinariidae, Davoliniidae, Loliginidae, Sepiolidae, and Thysanoteuthidae families 33 Mesopelagic Mollusks Enoploteuthidae, Follows ‘mesopelagic mollusks’ group in Pyroteuthidae, Howell et al. (2013). Diet information Amphitretidae, was updated to include Passarella and Histioteuthidae, Gonatidae Hopkins (1991). (Gonatopsis spp., Gonatus spp.), Cranchiidae, and Chiroteuthidae (Chiroteuthis

6 spp.) families 34 Bathypelagic Fishes Anoplogastridae, Ceratiidae, Biological parameters follow Himantolophidae, ‘bathypelagic fish’ group in Howell et al. Oneirodidae, Melamphaidae, (2013). Based on the low metabolic rate Sternoptychidae, of bathypelagic fishes (Torres et al. 1979, Omosudidae, Childress et al. 1980) we decreased the Chiasmodontidae, Q/B value to 2.4. Diet information was Cyematidae, and drawn from existing literature: Hopkins Eurypharyngidae families et al. (1996), Gordon et al. (1985), Clarke (1978), Clarke (1982). 35 Mesozooplankton copepods (Neocalanus Biological parameters and diet follow robustior, Pleuromamma ‘mesozooplankton’ group in Howell et al. xiphias, Euchaeta rimana, (2013). Oithona spp.), chaetognaths, pteropods, euphausiids, amphipods 36 Microzooplankton ciliates, copepod nauplii, Biological parameters and diet follow heterotrophic dinoflagellates, ‘microzooplankton’ group in Howell et protozoa, tintinnids al. (2013). 37 Diatoms diatoms (Class Biological parameters follow ‘large Bacillariophyceae) phytoplankton >5µm’ and ‘small phytoplankton <5µm’ groups in Howell et al. (2013). Large phytoplankton were further divided into diatoms, diazotrophs, and other types of >5µm phytoplankton, using 1991 biomass output from ESM2.1 (see Methods). 38 Diazotrophs Trichodesmium, Richelia, See above, group 37 other small cyanobacterial diazotrophs 39 Other Large Phytoplankton some prymnesiophytes, See above, group 37 pelagophytes, and crptophytes 40 Small Phytoplankton Prochlorococcus, See above, group 37 Synechococcus, picoeukaryotes, other cyanobacteria 41 Detritus particulate organic matter Parameters follow ‘detritus’ group in Howell et al. (2013).

References for Table S1 Alldredge AL, Madin LP (1982) Pelagic tunicates: unique herbivores in the marine plankton. Bioscience 32:655–663 doi:10.2307/1308815 Alverson FG (1963) The food of yellowfin and skipjack tunas in the eastern tropical Pacific Ocean. Inter-American Tropical Tuna Comm Bull 7:295–367. http://aquaticcommons.org/2610 Arthur KE, Balazs GH (2008) A comparison of immature green turtles (Chelonia mydas) diets among seven sites in the main Hawaiian islands’. Pac Sci 62:205–217 doi:10.2984/1534- 6188(2008)62[205:ACOIGT]2.0.CO;2 Baird RW, Gorgone AM, McSweeny DJ, Salden DR and others (2008) False killer whales (Pseudorca crassidens) around the main Hawaiian Islands: Long-term site fidelity, inter-island movements, and association patterns. Mar Mamm Sci 24:591–612 doi:10.1111/j.1748-7692.2008.00200.x Barlow J (2006) Cetacean abundance in Hawaiian waters estimated from a summer/fall survey in 2002. Mar Mamm Sci 22:446–464 doi:10.1111/j.1748-7692.2006.00032.x

7 Barlow J, Kahru M, Mitchell BG (2008) Cetacean biomass, prey consumption, and primary production requirements in the California Current ecosystem. Mar Ecol Prog Ser 371:285–295 doi:10.3354/meps07695 Bjorndal KA 1997. Foraging ecology and nutrition of sea turtles. In The biology of sea turtles. eds. PL Lutz and JA Musick. CRC Press, London. pp. 199–231 Bone Q, Carre C, Chang P (2003) Tunicate feeding filters. J Mar Biol Assoc UK 83:907–919 doi:10.1017/S002531540300804Xh Calambokidis J, Steiger GH, Evenson JR, Flynn KR and others (1996) Interchange and isolation of humpback whales off California and other North Pacific feeding grounds. Mar Mamm Sci 12:215–226 doi:10.1111/j.1748-7692.1996.tb00572.x Childress JJ, Taylor SM, Cailliet GM, Price MH (1980) Patterns of growth, energy utilization and reproduction in some meso-and bathypelagic fishes off southern California. Mar Biol 61:27–40 doi:10.1007/BF00410339 Choy CA, Portner E, Iwane M, Drazen JC (2013) Diets of five important predatory mesopelagic fishes of the central North Pacific. Mar Ecol Prog Ser 492:169–184 doi:10.3354/meps10518 Clarke TA (1973) Some aspects of the ecology of lanternfishes (Myctophidae) in the Pacific Ocean near Hawaii. Fish Bull 71:401–434 Clarke TA (1978) Diel feeding patterns of 16 species of mesopelagic fishes from Hawaiian waters. Fish Bull 76:495–513 Clarke TA (1980) Diets of fourteen species of vertically migrating mesopelagic fishes in Hawaiian waters. Fish Bull 78:619–640 Clarke TA (1982) Feeding habits of stomiatoid fishes from Hawaiian waters. Fish Bull 80:287–304 Davison PC, Checkley DM Jr, Koslow JA, Barlow J (2013) Carbon export mediated by mesopelagic fishes in the northeast Pacific Ocean. Prog Oceanogr 116: 14−30 DeWitt FA, Cailliet GM (1972) Feeding habits of two bristlemouth fishes, acclinidens and C. signata (Gonostomatidae). Copeia 1972:868–871 doi:10.2307/1442749 Drazen JC, De Forest LG, Domokos R (2011) Micronekton abundance and biomass in Hawaiian waters as influenced by seamounts, eddies, and the moon. Deep Sea Res Part I Oceanogr Res Pap 58: 557−566 Essington TE 2006. Pelagic ecosystem response to a century of commercial whaling and fishing. In Whales, whaling and ocean ecosystems. eds JA Estes, DP DeMaster, DF Doak, TM Williams, RF Brownell. University of California Press, Berkeley and Los Angeles, CA. pp. 38–49 Flock ME, Hopkins TL (1992) Species composition, vertical distribution, and food habits of the Sergestid shrimp assemblage in the eastern Gulf of Mexico. J Crustac Biol 12:210–223 doi:10.2307/1549076 Gordon, J. D. M., S. Nishida and T. Nemoto (1985) The diet of mesopelagic fish from the Pacific coast of Hokkaido, Japan. J. Oceanogr. Soc. Japan, 41, 89–97 Griffiths SP, Young JW, Lansdell MJ, Campbell RA and others (2010) Ecological effects of longline fishing and climate change on the pelagic ecosystem off eastern Australia. Rev Fish Biol Fish 20: 239−272 Harrison CS, Seki MP 1987. Trophic relationships among tropical seabirds at the Hawaiian Islands. In Seabirds: feeding ecology and role in marine ecosystems. ed JP Croxall. Cambridge University Press, England. pp 305–326 Harrison CS, Hida TS, Seki MP (1983) Hawaiian seabird feeding ecology. Wildl Monogr 85:1–71

8 Harrison CS, Naughton MB, Fefer SI 1984. The status and conservation of seabirds in the Hawaiian Archipelago and Johnston Atoll. In Status and conservation of the world’s seabirds. eds JP Croxall, PGH Evans, RW Schreiber. ICBP, Cambridge. pp. 513-526. Hopkins TL, Flock ME, Gartner JV Jr, Torres JJ (1994) Structure and trophic ecology of a low latitude midwater decapod and mysid assemblage. Mar Ecol Prog Ser 109:143–156 doi:10.3354/meps109143 Hopkins TL, Sutton TT, Lancraft TM (1996) The trophic structure and predation impact of a low latitude midwater fish assemblage. Prog Oceanogr 38:205–239 doi:10.1016/S0079- 6611(97)00003-7 Howell EA, Wabnitz CCC, Dunne JP, Polovina JJ (2013) Climate-induced primary productivity change and fishing impacts on the Central North Pacific ecosystem and Hawaii-based pelagic longline fishery. Clim Change 119:79–93 doi:10.1007/s10584-012-0597-z Jefferson TA, Leatherwood S, Webber MA 1993. Marine mammals of the world. FAO Species Identification Guide. Food and Agriculture Organization, Rome. 320 pp. Jones TT, Bostrom BL, Hastings MD, Van Houtan KS, Pauly D, Jones DR (2012) Resource requirements of the Pacific leatherback turtle population. PLoS ONE 7: e45447. doi:10. 1371/journal.pone.0045447 Jones TT, Seminoff JA 2013. Feeding Biology: advances from field-based observations, physiological studies, and molecular techniques. In The biology of sea turtles, volume III. eds. J Wyneken, KL Lohmann, JA Musick. CRC Press, London. pp. 211-247 Kaartvedt S, Staby A, Aksnes DL (2012) Efficient trawl avoidance by mesopelagic fishes causes large underestimation of their biomass. Mar Ecol Prog Ser 456: 1−6 King JE, Ikehara II (1956) Comparative study of food of bigeye and yellowfin tuna in the central Pacific. Fish Bull 57:61–81 Koslow JA, Kloser RJ, Williams A (1997) Pelagic biomass and community structure over the mid- continental slope off southeastern Australia based upon acoustic and midwater trawl sampling. Mar Ecol Prog Ser 146: 21−35 Lancraft TM, Hopkin TL, Torres JJ (1988) Aspects of the ecology of the mesopelagic fish elongatum (Gonostomatidae, ) in the eastern Gulf of Mexico. Mar Ecol Prog Ser 49: 27–40 Lucas CH, Pitt KA, Purcell JE, Lebrato M, Condon RH (2011) What’s in a jellyfish? Proximate and elemental composition and biometric relationships for use in biogeochemical studies. Ecology 92:1704 doi:10.1890/11-0302.1 Lucas CH, Jones DOB, Hollyhead CJ, Condon RH and others (2014) Gelatinous biomass in the global oceans: geographic variation and environmental drivers. Glob Ecol Biogeogr. 23: 701-714 doi:10.1111/geb.12169 Madin LP, Kremer P, Wiebe PH, Purcell JE, Horgan EH, Nemazie DA (2006) Periodic swarms of the salp Salpa aspera in the slope water off the NE United States: biovolume, vertical migration, grazing and vertical flux. Deep-Sea Res I 53:804–819 doi:10.1016/j.dsr.2005.12.018 Maynard SD, Riggs FV, Walters J (1975) Mesopelagic micronekton in Hawaiian waters: faunal composition, standing stock, and . Fish Bull 73: 726−736 Moteki M, Fujita K, Kohno H (1993) Stomach contents of longnose lancetfish, Alepisaurus ferox, in Hawaiian and central equatorial Pacific waters. J Tokyo Univ Fish 80:121–137 Nakamura, I. and N. V. Parin (1993) FAO species catalogue. Vol. 15. Snake mackerels and cutlassfishes of the world (Families Gempylidae and Trichiuridae). An annotated and illustrated catalogue of the snake mackerels, snoeks, escolars, gemfishes, sackfishes, domine, oilfish, cut-

9 lassfishes, scabbardfishes, hairtails, and frostfishes known to date. FAO Fisheries Synopis. No. 125, Vol. 15. 136 p., 200 figs. Oleson EM, Boggs CH, Forney KA, Hanson MB and others (2010) Status review of Hawaiian insular false killer whales (Pseudorca crassidens) under the Endangered Species Act. US Department of Commerce, NOAA Tech. Memo., NOAA-TM-NMFS-PIFSC-22, 140 p. Olson RJ, Duffy LM, Kuhnert PM, Galván-Magaña F and others (2014) Decadal diet shift in yellowfin tuna Thunnus albacares suggests broad-scale food web changes in the eastern tropical Pacific Ocean. Mar Ecol Prog Ser 497:157–178 doi:10.3354/meps10609 Pahkomov E, O Yamamura (2010) Report of the Advisory Panel on Micronekton Sampling Inter- calibration Experiment. North Pacific Marine Science Organization, PICES Sci. Rep. No. 38 Parker DM, Cooke WJ, Balazs GH (2005) Diet of oceanic loggerhead sea turtles (Caretta caretta) in the central North Pacific. Fish Bull 103:142–152 Parker DM, Dutton PH, Balazs G (2011) Oceanic diet and distribution of haplotypes for the green turtle, Chelonias mydas, in the central North Pacific. Pac Sci 65:419–431 doi:10.2984/65.4.419 Parry M (2006) Feeding behavior of two ommastrephid squids Ommastrephes bartramii and Sthenoteuthis oualaniensis off Hawaii. Mar Ecol Prog Ser 318:229–235 doi:10.3354/meps318229 Passarella KC, Hopkins TL (1991) Species composition and food habits of the micronektonic cephalopod assemblage in the eastern Gulf of Mexico. Bull Mar Sci 49:638–659 Pauly D, Trites AW, Capuli E, Christensen V (1998) Diet composition and trophic levels of marine mammals. ICES J Mar Sci 55:467–481 doi:10.1006/jmsc.1997.0280 Pauly D, Graham W, Libralato S, Morissette L, Palomares MLD (2009) Jellyfish in ecosystems, online databases, and ecosystem models. Hydrobiologia 616:67–85 doi:10.1007/s10750-008- 9583-x Pinkas L, Oliphant MS, Iverson ILK (1971) Food habits of albacore, bluefin tuna, and bonito in California waters. Calif Dep Fish Game, Fish Bull 152, 105 pp. Podeswa Y 2012. Active carbon transport and feeding ecology of pelagic decapods in the North Pacific Subtropical Gyre. MS thesis, Univ British Columbia, 119 pp. Polovina JJ, Abecassis M, Howell EA, Woodworth P (2009) Increases in the relative abundance of mid-trophic level fishes concurrent with declines in apex predators in the subtropical North Pacific, 1996−2006. Fish Bull 107:523−531 Pope EC, Hays GC, Thys TM, Doyle TK and others (2010) The biology and ecology of the ocean sunfish Mola mola: a review of current knowledge and future research perspectives. Rev Fish Biol Fish 20:471–487 doi:10.1007/s11160-009-9155-9 Purcell JE (1980) Influence of siphonophore behavior upon their natural diets: evidence for aggressive mimicry. Science 209:1045–1047 PubMed doi:10.1126/science.209.4460.1045 Purcell JE (1991) A review of cnidarians and ctenophores feeding on competitors in the plankton. Hydrobiologia 216/217:335–342 doi:10.1007/BF00026483 Purcell JE, Arai MN (2001) Interactions of pelagic cnidarians and ctenophores with fish: a review. Hydrobiologia 451:27–44 doi:10.1023/A:1011883905394 Purcell JE, Madin LP (1991) Diel patterns of migration, feeding, and spawning by salps in the Subarctic Pacific. Mar Ecol Prog Ser 73:211–217 doi:10.3354/meps073211 Ramp C, Bérubé M, Palsbøll P, Hagen W, Sears R (2010) Sex-specific survival in the humpback whale Megaptera novaeangliae in the Gulf of St. Lawrence, Canada. Mar Ecol Prog Ser 400:267– 276 doi:10.3354/meps08426 Ramp C, Delarue J, Bérubé M, Hammond PS, Sears R (2014) Fin whale survival and abundance in the Gulf of St. Lawrence, Canada. Endang Spec Res 23:125–132 doi:10.3354/esr00571

10 Reintjes JW, King JE (1953) Food of yellowfin tuna in the central Pacific. Fish Bull 81: 91-110 Shark Working Group (2013) Stock assessment and future projections of blue shark in the North Pacific Ocean. Western and Central Pacific Fisheries Commission, Report WCPFC-SC9-2013/ SA-WP-11, 82pp Shealer DA 2002. Foraging behavior and food of seabirds. In Biology of marine birds. eds EA Schreiber, J Burger. CRC Press, Boca Raton, FL, pp 137–177 Shimose T, Yokawa K, Saito H (2010) Habitat and food partitioning of billfishes (Xiphioidei). J Fish Biol 76:2418–2433 PubMed doi:10.1111/j.1095-8649.2010.02628.x Swimmer Y, Campora C, McNaughton L, Musyl M, Parga M (2014) Post-release mortality estimates of loggerhead sea turtles (Caretta caretta) caught in pelagic longline fisheries based on satellite data and hooking location. Aquatic Conserv: Mar Freshw Ecosyst 24: 498-510 Torres JJ, Belman BW, Childress JJ (1979) Oxygen consumption rates of midwater fishes as a function of depth of occurrence. Deep Sea Res Part A Oceanogr Res Pap 26: 185−197 Van Noord JE, Lewallen EA, Pitman RL (2013) Flyingðsh feeding ecology in the eastern Paciðc: prey partitioning within a speciose epipelagic community. J Fish Biol 83:326–342 PubMed doi:10.1111/jfb.12173 Wabnitz CCC, Balazs G, Beavers S, Bjorndal KA, Bolten AB and others (2010) Ecosystem structure and processes at Kaloko Honokohau, focusing on the role of herbivores, including the green sea turtle Chelonia mydas, in reef resilience. Mar Ecol Prog Ser 420: 27-44. Watanabe H, Kubodera T, Ichii T, Kawahara S (2004) Feeding habits of neon flying squid Ommastrephes bartramii in the transitional region of the central North Pacific. Mar Ecol Prog Ser 266:173–184 doi:10.3354/meps266173 Young J, Lansdell M, Riddoch S, Revill A (2006) Feeding ecology of broadbill swordfish, Xiphias gladius, off Eastern Australia in relation to physical and environmental variables. Bull Mar Sci 79:793–809

11 Table S2. Balanced Ecopath diet matrix showing percent diet composition (wet weight basis) of consumers (columns) and their prey items (rows). J. =Juvenile, L = Large, Pel = Pelagic, MN = micronekton, Crus. = Crustacean.

erel erel

Prey \ Predator Tuna ore

Albac Tuna Skipjack

. . Blue Sharks Blue Sharks Other Broadbill Swordfish Marlin Blue Marlin Striped Billfishes Other Billfishes Small Whales Baleen Whales Toothed Tuna Bigeye BigeyeTuna J. Tuna Yellowfin Yellowfin J. Tuna Tuna Albacore J Tuna Skipjack J Mahimahi Lancetfish Opah Mack Snake Escolars & Large Other Fishes Pelagic Blue Sharks 0 0.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Other Sharks 0.02 0.01 0 0 0 0.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Broadbill Swordf 0.01 0.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Blue Marlin 0.01 0.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Striped Marlin 0.01 0.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Other Billfishes 0.01 0.01 0 0.02 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Small Billfishes 0.01 0.01 0 0.01 0 0 0.002 0 0 0 0 0 0 0.01 0 0 0 0 0 0 0 0.003333 Baleen Whales 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Toothed Whales 0 0.01 0 0 0 0 0 0 0.0002 0 0 0 0 0 0 0 0 0 0 0 0 0 Bigeye Tuna 0 0.05 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 J. Bigeye Tuna 0.01 0.03 0.002 0.02 0.005 0 0 0 0 0 0 0 0 0 0.002 0 0 0 0 0 0 0 Yellowfin Tuna 0.01 0.02 0 0.01 0.01 0 0 0 0.0004 0 0 0 0 0 0 0 0 0 0 0 0 0 J. Yellowfin Tuna 0.01 0.02 0.002 0.01 0.002 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Albacore Tuna 0 0.05 0 0.01 0 0 0 0 0.0003 0 0 0 0 0.001 0 0 0 0 0 0 0 0 J. Albacore Tuna 0.01 0.03 0.002 0.01 0.01 0.01 0 0 0 0.01 0 0.02 0 0 0 0 0 0 0 0 0 0 Skipjack Tuna 0.02 0.02 0.002 0.01 0.01 0 0 0 0.0003 0 0 0.02 0 0 0 0 0 0 0 0 0 0 J. Skipjack Tuna 0.01 0.05 0.002 0.1 0.1 0.125 0.01 0 0 0.005 0.005 0.02 0 0.02 0.005 0.02 0 0.02 0 0 0 0.0001 Mahimahi 0.025 0.05 0.014 0.03 0.01 0.01 0 0 0.0031 0.04 0 0.02 0 0.01 0 0 0 0.02 0 0 0 0.0033 Lancetfish 0.05 0.08 0.04 0.05 0.05 0 0 0 0 0.1 0 0.05 0 0.05 0 0 0 0 0.05 0.2774 0 0 Opah 0 0.01 0 0 0 0 0.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Snake Mackerel 0 0.01 0.002 0.05 0.05 0 0.02 0 0 0.05 0 0.02 0 0.02 0 0 0 0.06 0 0 0.027 0 Other L. Pel. Fish 0.05 0.01 0.04 0.02 0.01 0.01 0 0.05 0.1567 0.05 0 0.09 0 0.02 0 0 0 0.014 0.0728 0.2060 0.1793 0.025 Sea Birds 0 0.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Sea Turtles 0 0.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Small Epi. Fishes 0.1 0.16 0.1 0.3 0.35 0.525 0.35 0.125 0.0398 0.08 0.3 0.27 0.2 0.27 0.28 0.2 0.1 0.55 0.0186 0.0005 0.01 0.05 Zoopl. MN Fishes 0.1 0.02 0.003 0 0 0 0 0.1438 0.1230 0.025 0.01 0.02 0 0.03 0.01 0.1 0 0.03 0.0014 0.0151 0.05 0 Carniv. MN 0.1 0.08 0.04 0.02 0.05 0 0.2 0.0188 0 0.2 0.15 0.05 0.1 0.17 0.04 0.01 0.05 0.01 0.2 0.1033 0.08 0.08 Fishes Decapod Crust. 0 0 0.0005 0.02 0.01 0 0 0 0 0.035 0.1 0.03 0.125 0.05 0.05 0.01 0.05 0.001 0.0014 0.0066 0.1 0.0819 Other Crustaceans 0.05 0.02 0.0005 0.01 0.043 0.01 0.108 0.0188 0 0.035 0.215 0.2 0.405 0.074 0.403 0.1 0.465 0.05 0.22 0.0728 0.0827 0.1 Pred. Gelatinous 0 0 0 0 0 0 0 0 0 0.02 0.01 0 0.01 0 0 0 0 0 0 0.0053 0 0.18 Filter-feed. Gelat. 0 0 0 0 0 0 0 0 0 0.02 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0 0.097 0.0481 0 0.15 Epi. Molluscs 0.37 0.17 0.1 0.3 0.28 0.3 0.2 0 0.3807 0.13 0.075 0.15 0 0.18 0 0.3 0 0.2 0.056 0.0137 0.208 0.0333 Mesopel. 0.015 0 0.6 0 0 0 0 0.025 0.2953 0.1 0.075 0 0.05 0.055 0.05 0 0.075 0.03 0.1 0.1993 0.09 0.09 Molluscs Bathypel. Fishes 0 0.02 0.05 0 0 0 0 0 0 0.1 0 0.01 0 0.01 0 0 0 0.01 0.0827 0.0291 0 0 Mesozooplankton 0 0 0 0 0.01 0 0.1 0.5 0 0 0.05 0.02 0.1 0.01 0.15 0.25 0.2 0 0.0998 0.0228 0.17 0.2 Microzooplankton 0 0 0 0 0 0 0 0.1188 0 0 0 0 0 0 0 0 0.05 0 0 0 0.003 0 Diatoms 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Diazotrophs 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Other L. Phytopl. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Small Phytopl. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.003 Detritus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.005 0 0 0 0

12

Continuation Table S2 ton ton -

- Fishes

ank

Prey \ predator feeding - Sea Birds Sea Turtles Sea Fishes Epi. Small MN Zooplanktiv. Fishes MN Carniv. Decapod Crustaceans Crustaceans Other Predatory Gelatinous Filter Gelatinous Epipelagic Molluscs Mesopelagic Molluscs Fishes Bathypelagic Mesozooplank Microzoopl Blue Sharks 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Other Sharks 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Broadbill Swordfish 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Blue Marlin 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Striped Marlin 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Other Billfishes 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Small Billfishes 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Baleen Whales 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Toothed Whales 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Bigeye Tuna 0 0 0 0 0 0 0 0 0 0 0 0 0 0 J. Bigeye Tuna 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Yellowfin Tuna 0 0 0 0 0 0 0 0 0 0 0 0 0 0 J. Yellowfin Tuna 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Albacore Tuna 0 0 0 0 0 0 0 0 0 0 0 0 0 0 J. Albacore Tuna 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Skipjack Tuna 0 0 0 0 0 0 0 0 0 0 0 0 0 0 J. Skipjack Tuna 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Mahimahi 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Lancetfish 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Opah 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Snake Mackerel 0 0 0 0 0 0 0 0 0 0.001 0 0 0 0 Other L. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Sea Birds 0.0003 0 0 0 0 0 0 0 0 0 0 0 0 0 Sea Turtles 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Small Epi. Fishes 0.1631 0 0.054 0 0 0 0 0.012 0 0.05 0.01 0 0 0 Zoopl. MN Fishes 0.0057 0.0003 0 0 0.4 0.005 0.007 0 0 0.05 0.01 0.07 0 0 Carniv. MN Fishes 0.0187 0.0003 0.05 0 0.02 0.01 0.005 0.01 0 0.08 0.02 0.05 0 0 Decapod Crustaceans 0.0146 0 0.15 0 0.1337 0.03 0.0148 0 0 0.039 0.01 0.002 0 0 Other Crustaceans 0.0562 0.0013 0.3 0 0.0965 0.02 0.01 0.009 0 0.38 0.37 0.016 0 0 Pred. Gelatinous 0.0021 0.412 0 0 0 0.0233 0.0055 0.035 0 0 0.01 0.1057 0 0 Filter-feed. Gelat. 0.0239 0.25 0.02 0 0 0 0.007 0.03 0 0 0 0.02 0 0 Epipelagic Molluscs 0.5796 0 0.025 0 0 0 0 0 0 0.05 0 0 0 0 Mesopelagic Molluscs 0.0399 0 0.017 0 0.0686 0.008 0.0025 0 0 0.09 0.025 0.05 0 0 Bathypelagic Fishes 0 0 0.009 0 0.1112 0 0 0 0 0.04 0.02 0.02 0 0 Mesozooplankton 0.0957 0.2575 0.105 0.7281 0.17 0.46 0.51 0.763 0.02 0.22 0.125 0.316 0.05 0 Microzooplankton 0 0 0.055 0.1486 0 0.0434 0.0933 0.141 0.08 0 0.1 0.35 0.37 0 Diatoms 0 0 0.0083 0 0 0 0 0 0.175 0 0.033 0 0.05 0 Diazotrophs 0 0.0025 0.0083 0 0 0 0 0 0.175 0 0.033 0 0.05 0 Other L. Phytopl. 0 0.0763 0.0083 0.0333 0 0.15 0.005 0 0.1 0 0.033 0 0.05 0 Small Phytoplankton 0 0 0 0.0067 0 0 0 0 0.3 0 0 0 0 1 Detritus 0 0 0.19 0.0833 0 0.2503 0.34 0 0.15 0 0.2 0 0.43 0

13 100

)

2 10 -

km 1

s (t 0.1 s a

m 0.01 o i

B 0.001 … … 0.0001 … i s s s s s s s s s s s s s s s s a a a a a a n a n n h a h n n n h n n i i h r c k c k es es es es e u e e e s n h u s d u l l n n a n n n o o o o o o l l l i m r r s a s a r r t t a h t t t t h h o h h p t o o l i u u p un u un u u un a a a a o u u s r a r ar s s s s k k k k k k e n o d n l T l T o i T T T i B i t h h O h l h l T

T

im

e T r r c u e o n e n n n c F F F a l t M M S S k k

c

e o

e e a i e n v h ll a l n T s o a n a a a

n a W W a i i

l l r l r l c c t c c c o y y n l

r

e l a E i D o i e i e d o a s

w B B a M a Mo p p p o o p e S a e e e r e d n r k

j j g g g e u u e l w S c c w u az M L l o l o o o r c g c g & c c

e h e l i n a a a p p G G i i r i i

p t i S t a a l l o o l i t i

e l o i o B B ll a e l h a l D y g gi y B i B l l l l r y k b k e e z b e z g t C e h

M O l M l t r a a h h a b

t S S e r e m p p o n l l o e d

P S ip i A A s l o r so P d Y S Y e B y o i e e O o P

o e

t e er p d c u l l k a e h i e o n p l p T i e e p a g l E h c t i o l o i

Z r a e g t i n a d r l M r ee a a p M l n so a v c f n e e o O B E B m ar a L e e r u e v e M

v r- S L

J i v r P v u D m e M e r n J u e t u S r J l k e J i h a a t h F t C n O S O Species ranked by Trophic Level

1000 100

P:B

l 10 a

nu 1 n A 0.1 … … 0.01 … i s s s s s s s s s s s s s s s a a a a a a a a n n n n h n n n n h h i r h i c c k k e es e es es e e n es d h u s u u s l n n l n n n a n o o o o o o l l l i ms r r s s a a r r r t a t t t t h h h h h p l o t o o i u u p u u u u un un a a a a o u u s s r a s s s a r kt k k k k k e l l o n o n T d T T T i T m i B i t h h l O l h h

T

i T

e c r u e n r e o n n n c F F F a l S t S M M k

c o

k o e T e

e e e i n n h ll s a l v T a a a a n o

n

W a a i i W

l l l r l r t c c c c c y o y n r

ea l

l a E i D i e i o e o d

s B M B M z p w p p a o a p o e e S a e r e r e n d k

g g j j g u u e ea w l c c u S a M o o L o l o l c g c g & c c h l e

e i a a n a p G p G i i i i

p t i i t S a a o l l ow l t i i

er l o o i B B ll a e l l h a D y y g g B B i l l l l r z e e k b b z y e k g t e Cr

h M O M l l t a a r h h a

b e r t S e S m p P o p o p n l l e d

S i i r A A s l r o s Y Y d e S B y

i e e O P oo o e t e e p c d u l k l e a h i e oo n p p l T e P e i e p a g l E h c i t o l o i

Z r a e g t o i a n r d l M r a ee a p M l n s a v c f n e e o O B E B m ar a L e e u e v e M

v r- S L J i v r Pr

v u D m e M e n J u e t u S r J l k er J i h a a t h F t C n O S O Species ranked by Trophic Level

100

Q:B l

a 10 nnu A

1 … i s s s s s s s s s s s s s a a a a a a a a n n n h n h n r i h i c k k es e es e e u es s u n es es d s n es n l l n ah n n o o l l o l i sc r s a a r r t a h t a h h o h l o h t h t i u u p u un un un u un a a ar a u u s a ar r s s s k s s k e k e n l l d o n T T T T T T T i B T i i i h h l O l h

im

e r c c u n n c e F F F F l M S M Sh k k

c o o e a e

e n n

h s ll a l a a o a

n a W W a i i T l l r c c r t c t c c y n

e l l a E n i e e i i d o

a s s M w M B B p a p o o eye e S a er e e d n

r

o j ja g g g e u u w e w l S c u c u M L l l o t r g g & c c c

e h l e a a a p G p G i i r r

p i i i S a o a l o l l t i i

k l e oo o i B B ll a e l l h g g B B i l l l r b k e z z y k e g b e t e C C h O l l M t a a r a b e r t e S S

m p o o Pe p n n l l o e n d

S i i A A l s o r s Y Y d e S B y

i e e o O o o o e t e p d c u k l e a r t h i e n p p T i e p a g l E c i t c l o o k i

r e i i o a n d l r M r ee a a p M e l n s v a c f n e e o B E B a M L n e e u r e v e M

v r-

J v o r s P v u D m e r M e J u e u t u S k c J l k J i i h o n a t r F a n M l o O

S v p i er o n h r o t Z a O C Species ranked by Trophic Level

Figure S1. Pre-balance check of Ecopath input parameters. *After evaluation, we halved the Q:B of juvenile skipjack tuna, which also led to a reduction in the adult skipjack tuna Q:B ratio, and we almost doubled the Q:B for lancetfish. The other parameters that are outliers (e.g., low biomass of some phytoplankton groups, sea birds and sea turtles, high Q:B ratio for seabirds) were double- checked but we maintained confidence that they are correct based on the best available literature and expert opinion. For the phytoplankton groups in particular, the ecosystem in consideration is a highly oligotrophic, open ocean system and so low phytoplankton biomass is expected. On a per group basis, in line with available literature information phytoplankton biomass is dominated by small cells. Biomass estimates presented here fit directly with ESM outputs, as outlined in the Methods section.

14 Carnivorous Micronekton Fishes group (#27) 6 10 v=1 - v=2 4 v=10 - v=2 5 2

0 0 6 Other Micronekton Crustaceans group (#29)

Decapod Crustaceans group (#28) Other Crusta ceans group (#29) 6 8 6

6 4 4 4 2 2 2

0 0 0

10 4 8 3 6 2 4 2 1 0 0

Mesopelagic Mollusks group (#33) Bathypelagic Fishes group (#34) 20 5 15 4 3 10 2 5 1 0 0

Epipelagic Mollusks group (#32) Other Crustaceans & Epipelagic Mollusks group 30 20 30 25 16 25 20 12 15 8 10 4 5 i 0 i 0 s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s a s a s a a a a a a a a a n n n a n a a h a n n h h n a n n n n h n i i r h r i i h c c k e e k e es e k cs es e e k cs u es e u s u e d e h e n e e s e e n s es ns d d u n l l u h s n n n n u n ah d n n l n l n n n n o o n o n o n n o l o l l o o l l l i r s r m s a i r r t r a ms s s r t r r r r t t h h h h t t h a o h a t p a t t o h l h t h h h h i t i l t o p u u u p i u u u u u i o u u u u u a u a u u a a a a u o a u a s s o r s s a a s s u u r k s k k s k r s a a s s s k e r k k k e e n l l n d o o a T T T i T i i T d T T o T n ma B l i l o t T T T T n T T T i i T i i B ma h t h t l h h O h l h t

i

Opah h

h

l l e

r

u i r

c n n c n c n r c u r n n c F F F n F a l F l F F F a l l S e t M M

k c o o

e S S e e M e e M t i

h

k m l n ce n

l s a k e e

e acea o T e a o i a a o n a a n h a s a l l ma

T

o an a a

a

a a W i W i

W l W l l r l i r a i c a c ck t c c t l l r o r l l y y t t c c n n c r

c l

l a y y o D E o

n r n

e l a E l i i D D e S e i e o d i i i e D e d

s s M B B M w

z s p p p a a o p s a o t B w B M z M p e o p e Sea o p p e e e t o d n e e

S

g e g g j e j e d n o

u

u e

g g jac g ja u e u w w s l S u a u t w w e S M o o s La c l l u u o r l o g g a & t c c M o La o o r l g l g e

h l o e & i a a a c

c e l h e G G p p i i r i r a a

p a i i t t p Sea G p r r i l i G ac

ac l p k o l o o l i i

t S l

i t i t ac a l l e o o l k l o o i o B B i t

i l

a l e e l o l i o h B B l e l l h D g g y y C B B C i l l l r D e C C g y B e e z B y k k b g i y b e z g n l l l r t e e

k b h b z

e e y e z k n g t e O

l h l t O l l a a r h h a t b r t e e S S a r m a P n p h p o h b o n a r o l t e e S l S o e P n d p n p o o

o n l o l

e n i d S i A A

l

i o r S P P s i A A e Y Y d S B l y o r

s P e o P Y Y i Sma e e B y O o

o o e G i o t e e e O o

o

p o d c e G t e l r

l e p a c d t h l k e i r

ad e l n p l p T t e i h e e i p a g n l p p T l E i e e e p c i t a g l l E o k c i i t l r i a o & k e g i i o n a r i d e & i g M o ack e r n

p d M M ac r e r ee a

n s p v M f r n e n s v s e ca f n e B E Ba s m e - M La n B e E e B r M - La v ne e

M e e

d r u e r v e

M S La

Ju d r v i r Sma o La r

J P

v i v r o Dec r e P v

u r e D M e r Ju h e r e e M t r J h u e e t c u Ju l k e Ju c J p l h i k i h e J p i h i h a t t h F a o t t h F o t n M t t O n M O t

O O

S c r O S c r O y e y h M he t M t O O

Figure S2. Vulnerability analyses of each micronekton functional group. Results show the absolute change in biomass (y-axis) per functional group (x-axis) between using a vulnerability value of 1 and 2 (grey), and 10 and 2 (black). Titles at the top of each graph indicate the micronekton group that underwent a 30% reduction in biomass.

15