Annotated Checklist of the Fishes of Madagascar, Southwestern Indian Ocean, with 158 New Records

Total Page:16

File Type:pdf, Size:1020Kb

Annotated Checklist of the Fishes of Madagascar, Southwestern Indian Ocean, with 158 New Records FishTaxa (2018) 3(1): 1-432 E-ISSN: 2458-942X Journal homepage: www.fishtaxa.com © 2018 FISHTAXA. All rights reserved Annotated checklist of the fishes of Madagascar, southwestern Indian Ocean, with 158 new records Ronald FRICKE*1, Jamal MAHAFINA2, Faustinato BEHIVOKE2, Henitsoa JAONALISON2, 3, Marc LÉOPOLD3, Dominique PONTON4 1Im Ramstal 76, 97922 Lauda-Königshofen, Germany. 2Institut Halieutique et des Sciences Marines, Jeune Équipe Associée à l’IRD ACOM, Université de Toliara, Route du Port Mahavatse II, Toliara 601, Madagascar. 3ENTROPIE, IRD-Université de La Réunion-CNRS, Laboratoire d’Excellence CORAIL, Institut Halieutique et des Sciences Marines, Route du Port Mahavatse II, Toliara 601, Madagascar . 4ENTROPIE, IRD-Université de La Réunion-CNRS, Laboratoire d’Excellence CORAIL, c/o Hydrô Réunion Station Marine, Port ouest, Magasin 10, 97420 Le Port, La Réunion, France. Corresponding author: *E-mail: [email protected] Abstract An annotated checklist of the fish species of the Madagascar EEZ (southwestern Indian Ocean) comprises a total of 1,798 species in 247 families. 158 species are recorded from Madagascar for the first time. The majority of the species is autochthonous; 28 species have been introduced, mainly in freshwater habitats. The fish fauna is mostly marine (95.4% of the total number of native fish species), with the Gobiidae, Labridae, Serranidae, Pomacentridae and Apogonidae being the families with most representatives; among the 90 native freshwater fish species (adults mainly occurring in freshwater), the Cichlidae are the dominating family, but there are also two endemic families, the Bedotiidae (16 species) and Anchariidae (6 species). The fish fauna at Madagascar is typical for offshore, high islands in the southwestern Indian Ocean. Zoogeographically, the main element of the marine fish fauna of Madagascar consists of widespread tropical Indo-Pacific species (978 species, 58.3% of the total native marine species). A total of 13 species (3.3%) are found worldwide, either circumtropical or circumtropical including warm temperate zones. A total of 215 species (12.8%) are found worldwide, either circumtropical or circumtropical including warm temperate zones. An additional 453 species (27.0%) are Indian Ocean endemics, including 233 western Indian Ocean endemics (13.9%), 73 southwestern Indian Ocean endemics (4.4%), 16 species endemic to Madagascar and Mascarenes (1.0%), 4 species endemic to Madagascar and Comoros (0.2%), 3 species endemic to Madagascar and Madagascar Ridge (0.2%), and 37 marine species endemic to Madagascar (2.2%). Most of the autochthonous freshwater fishes are endemic to Madagascar (87 species, 96.7% of the native freshwater species). Keywords: Checklist, Pisces, Southwestern Indian Ocean, Madagascar EEZ, New records, Zoogeography. Zoobank: urn:lsid:zoobank.org:pub:D6B0C9D2-746B-4434-837F-3BEAEE4256AD Introduction Madagascar, which is inhabited by more than 22 million Malagasy people, is the fourth great island of the world with an area of 587,295 km2 (Anonymous 2014a). This large island is situated in the southwestern part of Indian Ocean, separated from the African continent by approximately 400 km large Mozambique Channel. The length of Madagascar is 1,600 km between 11°57'S and 25°39'S, its width is 570 km between 43°14'E and 50°27'E. With 5,600 km of coastline, its Exclusive Economic Zone (EEZ) is one of the largest in the Indian Ocean with a surface area of 1.14 million km² (Barnes-Mauthe et al. 2013). The continental shelf area is estimated to be 117,000 km², and extends more in the northwestern and southern part of the island (Breuil and Grima 2014). The estimated total coral reef area is 1,230 km2, the estimated diversity in species being between 200 and 300 (Spalding et al. 2001). On the other hand, the eastern coast is relatively straight and featureless, with few estuaries, capes and bays (Breuil and Grima 2014) but with extensive brackish ecosystem such as the Pangalanes Canal (Moreau 1987). Several brackish lagoons also exist in the south-east of the country (Moreau 1987) (Fig. 1). The total volume of the surface renewable freshwater resources, including lakes and rivers, is estimated about 337 km3 per year (Anonymous 2015a). Most of the Malagasy lacustrine systems are shallow and small in comparison with the African lakes, and although they are more than 3,400 lentic areas, they represent only 0.3% Accepted: 30 June 2017; Published: 14 February 2018 FISHTAXA (2018) 3(1): 1-432 2 Figure 1. Madagascar with its Exclusive Economic Zone (EEZ), dotted lines corresponding to contested limits. Shape files of rivers and coastlines are from BD500 developed by Foiben-Taosarintanin’i Madagasikara (Institut géographique et hydrographique de Madagascar, http://www.ftm.mg/framepro.htm). Rivers and streams have been simplified in order to improve readability. The shape file of coral reefs corresponds to Andréfouët et al. (2009); the shape file of mangrove cover of Madagascar coast was developed by Anonymous (2015b) using LandSat 7 ETM and Landsat 8 OLI data and a classification method. Numbers correspond to localities cited in the text, see Table 1 for their names. of the country’s area (Elouard and Gibon 2001). Lake Alaotra, situated in the east of Madagascar, is known as the largest lake of the country but does not exceed 200 km2 during the high water period (Moreau 1987) plus 350 km2 of swamps (Moreau 1979). The other main water bodies are Lake Kinkony (139 km²) and Lake Ihotry (97 km²) along with Lakes Anketraka and Tsimanampetsostsa in western Madagascar, the total area of lakes being close to 1,500 km² (Breuil and Grima 2014). Malagasy large rivers form an important and dense hydrographic network that can be separated in five sub-systems (Elouard and Gibon 2001): the Montagne d’Ambre Basin (11,200 km2), the Tsaratanana Basin (20,000 km2), the eastern, western and southern basins 2 (respectively 150,000, 365,000, and 48,750 km ). The most recent checklist of the fish fauna of Madagascar is limited to a publication by Fischer and Bianchi (1984) recording 350 fish trade species from the island. Sauvage (1887, 1891a) revised the fishes of the greater Madagascar region, but also included many species not known from Madagascar but occurring at the coast of East Africa and nearby islands including the Comoros, Seychelles and Mascarenes. Sauvage's Madagascar Region stretched between 2°S and 26°S, and between 42°E and 65°E (Maugé 1978: 95). This has caused confusion in the literature in many cases; one of the most striking cases is that of Chaetodon madagaskariensis Ahl 1923 which was based on Sauvage's (1891a) description of Choetodon (Tetragonoptrus) miliaris (non Quoy Fricke et al.- Annotated checklist of the fishes of Madagascar 3 & Gaimard 1825), allegedly from Madagascar, but in fact based on C. chrysurus Desjardins 1834 from Mauritius. The present paper provides an updated checklist of the fishes of the Madagascar EEZ, based on all available sources. It includes the fish species of both inland and marine waters. Material and Methods The present paper provides a list of all fishes recorded from Madagascar. The study area includes the waters of the EEZ of Madagascar, but excludes the Éparses Islands in Mozambique Channel (e.g. see Fricke et al. 2013), the Comoros and Mayotte (see Wickel et al. 2014), and Walters Shoals on the Madagascar Ridge (e.g. see Collette and Parin 1991). For each species, the first record from Madagascar is provided. Species in Sauvage (1887, 1891a), a work that deals with the greater Madagascar region including neighbouring islands, are only considered as recorded from Madagascar if the occurrence is expressedly stated. The checklist of McKenna and Allen (2005) partially uses Sauvage's records; therefore only positive records of species that the authors observed in northwestern Madagascar are used for the present checklist. Fourmanoir (1957) also deals with the greater Madagascar region including the Éparses and Comoro islands; again species are only considered to be recorded from Madagascar if a Madagascar locality is expressedly mentioned. In the checklist, an asterisk indicates families or species endemic to Madagascar. In the material lists, "C&S" stands for specimens which have been cleared and stained for osteological analysis. Higher classification follows Nelson (2006), family classification follows Laan et al. (2014), updated according to Eschmeyer et al. (2017). The more recent version of fishes of the world by Nelson et al. (2016) has not been used here, due to various errors and inconsistencies (some of those were pointed out by Britz 2017). For the distribution analysis, the following works were consulted to assess the fish fauna of islands and island groups in the Western Indian Ocean: Europa Island, Fricke et al. (2013); Seychelles, Smith and Smith (1963) and Randall and Egmont (1994), updated using various papers including Allen (1972), Dawson (1967, 1968, 1977a), Fraser and Lachner (1985), Golani (1984), Hoese and Reader (1985), Holleman (2005, 2007), Keith et al. (2004), Kim and Amaoka (2001), Kovačić and Bogorodsky (2013), Lachner and Karnella (1978, 1980), Matsunuma et al. (2017), Polunin and Lubbock (1977), Randall (1999c, 2001), Randall and Bogorodsky (2016), Randall and Clements (2001), Randall and Heemstra (1985, 2009), Randall and Lourie (2009), Randall et al. (2008, 2013, 2014, 2015), Randall and Victor (2015), Schwarzhans and Møller (2007), Springer and Williams (1994), Starck (1969), Tyler (1966), Uiblein (2011), Uiblein and Gouws (2014), Uiblein and Heemstra (2011b); Maldives, Randall and Anderson (1993) and Anderson et al. (1998), updated using various papers including Allen and Erdmann (2006), Allen and Randall (2002), Gon and Randall (2003), Fukui and Motomura (2016), Kuiter and Debelius (1999), Randall (2001, 2011b), Randall et al. (2013, 2014, 2015), Randall and Victor (2014, 2015), Smith-Vaniz (2010), Victor (2016b); Chagos Archipelago, Winterbottom and Anderson (1997), updated using various papers including Böhlke (2000), Craig (2008), Gill and Edwards (2004), Holleman (2005), Randall et al.
Recommended publications
  • Reef Fish Biodiversity in the Florida Keys National Marine Sanctuary Megan E
    University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School November 2017 Reef Fish Biodiversity in the Florida Keys National Marine Sanctuary Megan E. Hepner University of South Florida, [email protected] Follow this and additional works at: https://scholarcommons.usf.edu/etd Part of the Biology Commons, Ecology and Evolutionary Biology Commons, and the Other Oceanography and Atmospheric Sciences and Meteorology Commons Scholar Commons Citation Hepner, Megan E., "Reef Fish Biodiversity in the Florida Keys National Marine Sanctuary" (2017). Graduate Theses and Dissertations. https://scholarcommons.usf.edu/etd/7408 This Thesis is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. Reef Fish Biodiversity in the Florida Keys National Marine Sanctuary by Megan E. Hepner A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science Marine Science with a concentration in Marine Resource Assessment College of Marine Science University of South Florida Major Professor: Frank Muller-Karger, Ph.D. Christopher Stallings, Ph.D. Steve Gittings, Ph.D. Date of Approval: October 31st, 2017 Keywords: Species richness, biodiversity, functional diversity, species traits Copyright © 2017, Megan E. Hepner ACKNOWLEDGMENTS I am indebted to my major advisor, Dr. Frank Muller-Karger, who provided opportunities for me to strengthen my skills as a researcher on research cruises, dive surveys, and in the laboratory, and as a communicator through oral and presentations at conferences, and for encouraging my participation as a full team member in various meetings of the Marine Biodiversity Observation Network (MBON) and other science meetings.
    [Show full text]
  • Bibliography Database of Living/Fossil Sharks, Rays and Chimaeras (Chondrichthyes: Elasmobranchii, Holocephali) Papers of the Year 2016
    www.shark-references.com Version 13.01.2017 Bibliography database of living/fossil sharks, rays and chimaeras (Chondrichthyes: Elasmobranchii, Holocephali) Papers of the year 2016 published by Jürgen Pollerspöck, Benediktinerring 34, 94569 Stephansposching, Germany and Nicolas Straube, Munich, Germany ISSN: 2195-6499 copyright by the authors 1 please inform us about missing papers: [email protected] www.shark-references.com Version 13.01.2017 Abstract: This paper contains a collection of 803 citations (no conference abstracts) on topics related to extant and extinct Chondrichthyes (sharks, rays, and chimaeras) as well as a list of Chondrichthyan species and hosted parasites newly described in 2016. The list is the result of regular queries in numerous journals, books and online publications. It provides a complete list of publication citations as well as a database report containing rearranged subsets of the list sorted by the keyword statistics, extant and extinct genera and species descriptions from the years 2000 to 2016, list of descriptions of extinct and extant species from 2016, parasitology, reproduction, distribution, diet, conservation, and taxonomy. The paper is intended to be consulted for information. In addition, we provide information on the geographic and depth distribution of newly described species, i.e. the type specimens from the year 1990- 2016 in a hot spot analysis. Please note that the content of this paper has been compiled to the best of our abilities based on current knowledge and practice, however,
    [Show full text]
  • Evaluation of the Status of the Recreational Fishery for Ulua in Hawai‘I, and Recommendations for Future Management
    Department of Land and Natural Resources Division of Aquatic Resources Technical Report 20-02 Evaluation of the status of the recreational fishery for ulua in Hawai‘i, and recommendations for future management October 2000 Benjamin J. Cayetano Governor DIVISION OF AQUATIC RESOURCES Department of Land and Natural Resources 1151 Punchbowl Street, Room 330 Honolulu, HI 96813 November 2000 Cover photo by Kit Hinhumpetch Evaluation of the status of the recreational fishery for ulua in Hawai‘i, and recommendations for future management DAR Technical Report 20-02 “Ka ulua kapapa o ke kai loa” The ulua fish is a strong warrior. Hawaiian proverb “Kayden, once you get da taste fo’ ulua fishing’, you no can tink of anyting else!” From Ulua: The Musical, by Lee Cataluna Rick Gaffney and Associates, Inc. 73-1062 Ahikawa Street Kailua-Kona, Hawaii 96740 Phone: (808) 325-5000 Fax: (808) 325-7023 Email: [email protected] 3 4 Contents Introduction . 1 Background . 2 The ulua in Hawaiian culture . 2 Coastal fishery history since 1900 . 5 Ulua landings . 6 The ulua sportfishery in Hawai‘i . 6 Biology . 8 White ulua . 9 Other ulua . 9 Bluefin trevally movement study . 12 Economics . 12 Management options . 14 Overview . 14 Harvest refugia . 15 Essential fish habitat approach . 27 Community based management . 28 Recommendations . 29 Appendix . .32 Bibliography . .33 5 5 6 Introduction Unique marine resources, like Hawai‘i’s ulua/papio, have cultural, scientific, ecological, aes- thetic and functional values that are not generally expressed in commercial catch statistics and/or the market place. Where their populations have not been depleted, the various ulua pop- ular in Hawai‘i’s fisheries are often quite abundant and are thought to play the role of a signifi- cant predator in the ecology of nearshore marine ecosystems.
    [Show full text]
  • Ecosystem Profile Madagascar and Indian
    ECOSYSTEM PROFILE MADAGASCAR AND INDIAN OCEAN ISLANDS FINAL VERSION DECEMBER 2014 This version of the Ecosystem Profile, based on the draft approved by the Donor Council of CEPF was finalized in December 2014 to include clearer maps and correct minor errors in Chapter 12 and Annexes Page i Prepared by: Conservation International - Madagascar Under the supervision of: Pierre Carret (CEPF) With technical support from: Moore Center for Science and Oceans - Conservation International Missouri Botanical Garden And support from the Regional Advisory Committee Léon Rajaobelina, Conservation International - Madagascar Richard Hughes, WWF – Western Indian Ocean Edmond Roger, Université d‘Antananarivo, Département de Biologie et Ecologie Végétales Christopher Holmes, WCS – Wildlife Conservation Society Steve Goodman, Vahatra Will Turner, Moore Center for Science and Oceans, Conservation International Ali Mohamed Soilihi, Point focal du FEM, Comores Xavier Luc Duval, Point focal du FEM, Maurice Maurice Loustau-Lalanne, Point focal du FEM, Seychelles Edmée Ralalaharisoa, Point focal du FEM, Madagascar Vikash Tatayah, Mauritian Wildlife Foundation Nirmal Jivan Shah, Nature Seychelles Andry Ralamboson Andriamanga, Alliance Voahary Gasy Idaroussi Hamadi, CNDD- Comores Luc Gigord - Conservatoire botanique du Mascarin, Réunion Claude-Anne Gauthier, Muséum National d‘Histoire Naturelle, Paris Jean-Paul Gaudechoux, Commission de l‘Océan Indien Drafted by the Ecosystem Profiling Team: Pierre Carret (CEPF) Harison Rabarison, Nirhy Rabibisoa, Setra Andriamanaitra,
    [Show full text]
  • 1 an Annotated Checklist of the Chondrichthyans of South Africa 1 2 3
    1 An annotated checklist of the chondrichthyans of South Africa 2 3 4 DAVID A. EBERT1, 2, 3, 6, SABINE P. WINTNER4 & PETER M. KYNE5 5 6 1 Pacific Shark Research Center, Moss Landing Marine Laboratories, Moss Landing, 7 USA 8 2 South African Institute for Aquatic Biodiversity, Grahamstown, South Africa 9 3 Department of Ichthyology, California Academy of Sciences, San Francisco, USA 10 4 University of KwaZulu-Natal, School of Life Sciences, Durban, South Africa 11 5 Research Institute for the Environment and Livelihoods, Charles Darwin University, 12 Darwin, Australia 13 14 6 Corresponding author: E-mail: [email protected] 15 16 David A. Ebert ORCID ID 0000-0003-4604-8192 17 Sabine P. Wintner ORCID ID 0000-0001-7350-5999 18 Peter M. Kyne ORCID ID 0000-0003-4494-2625 19 20 21 1 1 Abstract 2 3 An annotated checklist of chondrichthyan fishes (sharks, batoids, and chimaeras) 4 occurring in South African waters is presented. The checklist is the result of decades of 5 research and on-going systematic revisions of the regional fauna. The chondrichthyan 6 fauna of South Africa is one of the richest in the world with 191 species, comprising 50 7 families and 103 genera. It consists of 30 families, 64 genera, and 111 species of sharks; 8 17 families, 36 genera, and 72 species of batoids; and, 3 families, 5 genera, and 8 species 9 of chimaeras. The most species-rich shark families are the whaler sharks Carcharhinidae 10 with 20 species followed by the deepwater catsharks Pentanchidae with 13 species.
    [Show full text]
  • Evolutionary Genomics of a Plastic Life History Trait: Galaxias Maculatus Amphidromous and Resident Populations
    EVOLUTIONARY GENOMICS OF A PLASTIC LIFE HISTORY TRAIT: GALAXIAS MACULATUS AMPHIDROMOUS AND RESIDENT POPULATIONS by María Lisette Delgado Aquije Submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy at Dalhousie University Halifax, Nova Scotia August 2021 Dalhousie University is located in Mi'kma'ki, the ancestral and unceded territory of the Mi'kmaq. We are all Treaty people. © Copyright by María Lisette Delgado Aquije, 2021 I dedicate this work to my parents, María and José, my brothers JR and Eduardo for their unconditional love and support and for always encouraging me to pursue my dreams, and to my grandparents Victoria, Estela, Jesús, and Pepe whose example of perseverance and hard work allowed me to reach this point. ii TABLE OF CONTENTS LIST OF TABLES ............................................................................................................ vii LIST OF FIGURES ........................................................................................................... ix ABSTRACT ...................................................................................................................... xii LIST OF ABBREVIATION USED ................................................................................ xiii ACKNOWLEDGMENTS ................................................................................................ xv CHAPTER 1. INTRODUCTION ....................................................................................... 1 1.1 Galaxias maculatus ..................................................................................................
    [Show full text]
  • Updated Checklist of Marine Fishes (Chordata: Craniata) from Portugal and the Proposed Extension of the Portuguese Continental Shelf
    European Journal of Taxonomy 73: 1-73 ISSN 2118-9773 http://dx.doi.org/10.5852/ejt.2014.73 www.europeanjournaloftaxonomy.eu 2014 · Carneiro M. et al. This work is licensed under a Creative Commons Attribution 3.0 License. Monograph urn:lsid:zoobank.org:pub:9A5F217D-8E7B-448A-9CAB-2CCC9CC6F857 Updated checklist of marine fishes (Chordata: Craniata) from Portugal and the proposed extension of the Portuguese continental shelf Miguel CARNEIRO1,5, Rogélia MARTINS2,6, Monica LANDI*,3,7 & Filipe O. COSTA4,8 1,2 DIV-RP (Modelling and Management Fishery Resources Division), Instituto Português do Mar e da Atmosfera, Av. Brasilia 1449-006 Lisboa, Portugal. E-mail: [email protected], [email protected] 3,4 CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal. E-mail: [email protected], [email protected] * corresponding author: [email protected] 5 urn:lsid:zoobank.org:author:90A98A50-327E-4648-9DCE-75709C7A2472 6 urn:lsid:zoobank.org:author:1EB6DE00-9E91-407C-B7C4-34F31F29FD88 7 urn:lsid:zoobank.org:author:6D3AC760-77F2-4CFA-B5C7-665CB07F4CEB 8 urn:lsid:zoobank.org:author:48E53CF3-71C8-403C-BECD-10B20B3C15B4 Abstract. The study of the Portuguese marine ichthyofauna has a long historical tradition, rooted back in the 18th Century. Here we present an annotated checklist of the marine fishes from Portuguese waters, including the area encompassed by the proposed extension of the Portuguese continental shelf and the Economic Exclusive Zone (EEZ). The list is based on historical literature records and taxon occurrence data obtained from natural history collections, together with new revisions and occurrences.
    [Show full text]
  • UNEP/CMS/COP13/Doc.28.2.9 MIGRATORY 24 September 2019
    CONVENTION ON UNEP/CMS/COP13/Doc.28.2.9 MIGRATORY 24 September 2019 SPECIES Original: English 13th MEETING OF THE CONFERENCE OF THE PARTIES Gandhinagar, India, 17 - 22 February 2020 Agenda Item 28.2 PROPOSAL FOR A CONCERTED ACTION FOR THE COMMON GUITARFISH (Rhinobatos rhinobatos) AND BOTTLENOSE WEDGEFISH (Rhynchobatus australiae) ALREADY ON APPENDIX II OF THE CONVENTION, AND THE FAMILIES RHINOBATIDAE AND GLAUCOSTEGIDAE Summary: The IUCN Shark Specialist Group has submitted the attached proposal for a Concerted Action for the Common Guitarfish (Rhinobatos rhinobatos) and Bottlenose Wedgefish (Rhynchobatus australiae), in accordance with the process elaborated in Resolution 12.28. In addition to the aforementioned CMS-listed species, the families Rhinobatidae, Rhinidae and Glaucostegidae are proposed for Concerted Action because of their similar conservation needs. *The geographical designations employed in this document do not imply the expression of any opinion whatsoever on the part of the CMS Secretariat (or the United Nations Environment Programme) concerning the legal status of any country, territory, or area, or concerning the delimitation of its frontiers or boundaries. The responsibility for the contents of the document rests exclusively with its author UNEP/CMS/COP13/Doc.28.2.9 PROPOSAL FOR A CONCERTED ACTION FOR THE COMMON GUITARFISH (Rhinobatos rhinobatos) AND BOTTLENOSE WEDGEFISH (Rhynchobatus australiae) ALREADY ON APPENDIX II OF THE CONVENTION, AND THE FAMILIES RHINOBATIDAE AND GLAUCOSTEGIDAE (i). Proponent: International Union For Conservation of Nature - IUCN Species Survival Commission’s Shark Specialist Group (IUCN SSG) The IUCN SSG has long been a trusted source of science-based information and advice on sharks and their relatives (Class Chondrichthyes: sharks, rays, and chimaeras) and provides leadership for the conservation of threatened species and populations of all chondrichthyan fishes.
    [Show full text]
  • Trait Decoupling Promotes Evolutionary Diversification of The
    Trait decoupling promotes evolutionary diversification of the trophic and acoustic system of damselfishes rspb.royalsocietypublishing.org Bruno Fre´de´rich1, Damien Olivier1, Glenn Litsios2,3, Michael E. Alfaro4 and Eric Parmentier1 1Laboratoire de Morphologie Fonctionnelle et Evolutive, Applied and Fundamental Fish Research Center, Universite´ de Lie`ge, 4000 Lie`ge, Belgium 2Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland Research 3Swiss Institute of Bioinformatics, Ge´nopode, Quartier Sorge, 1015 Lausanne, Switzerland 4Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA Cite this article: Fre´de´rich B, Olivier D, Litsios G, Alfaro ME, Parmentier E. 2014 Trait decou- Trait decoupling, wherein evolutionary release of constraints permits special- pling promotes evolutionary diversification of ization of formerly integrated structures, represents a major conceptual the trophic and acoustic system of damsel- framework for interpreting patterns of organismal diversity. However, few fishes. Proc. R. Soc. B 281: 20141047. empirical tests of this hypothesis exist. A central prediction, that the tempo of morphological evolution and ecological diversification should increase http://dx.doi.org/10.1098/rspb.2014.1047 following decoupling events, remains inadequately tested. In damselfishes (Pomacentridae), a ceratomandibular ligament links the hyoid bar and lower jaws, coupling two main morphofunctional units directly involved in both feeding and sound production. Here, we test the decoupling hypothesis Received: 2 May 2014 by examining the evolutionary consequences of the loss of the ceratomandib- Accepted: 9 June 2014 ular ligament in multiple damselfish lineages. As predicted, we find that rates of morphological evolution of trophic structures increased following the loss of the ligament.
    [Show full text]
  • New Zealand Fishes a Field Guide to Common Species Caught by Bottom, Midwater, and Surface Fishing Cover Photos: Top – Kingfish (Seriola Lalandi), Malcolm Francis
    New Zealand fishes A field guide to common species caught by bottom, midwater, and surface fishing Cover photos: Top – Kingfish (Seriola lalandi), Malcolm Francis. Top left – Snapper (Chrysophrys auratus), Malcolm Francis. Centre – Catch of hoki (Macruronus novaezelandiae), Neil Bagley (NIWA). Bottom left – Jack mackerel (Trachurus sp.), Malcolm Francis. Bottom – Orange roughy (Hoplostethus atlanticus), NIWA. New Zealand fishes A field guide to common species caught by bottom, midwater, and surface fishing New Zealand Aquatic Environment and Biodiversity Report No: 208 Prepared for Fisheries New Zealand by P. J. McMillan M. P. Francis G. D. James L. J. Paul P. Marriott E. J. Mackay B. A. Wood D. W. Stevens L. H. Griggs S. J. Baird C. D. Roberts‡ A. L. Stewart‡ C. D. Struthers‡ J. E. Robbins NIWA, Private Bag 14901, Wellington 6241 ‡ Museum of New Zealand Te Papa Tongarewa, PO Box 467, Wellington, 6011Wellington ISSN 1176-9440 (print) ISSN 1179-6480 (online) ISBN 978-1-98-859425-5 (print) ISBN 978-1-98-859426-2 (online) 2019 Disclaimer While every effort was made to ensure the information in this publication is accurate, Fisheries New Zealand does not accept any responsibility or liability for error of fact, omission, interpretation or opinion that may be present, nor for the consequences of any decisions based on this information. Requests for further copies should be directed to: Publications Logistics Officer Ministry for Primary Industries PO Box 2526 WELLINGTON 6140 Email: [email protected] Telephone: 0800 00 83 33 Facsimile: 04-894 0300 This publication is also available on the Ministry for Primary Industries website at http://www.mpi.govt.nz/news-and-resources/publications/ A higher resolution (larger) PDF of this guide is also available by application to: [email protected] Citation: McMillan, P.J.; Francis, M.P.; James, G.D.; Paul, L.J.; Marriott, P.; Mackay, E.; Wood, B.A.; Stevens, D.W.; Griggs, L.H.; Baird, S.J.; Roberts, C.D.; Stewart, A.L.; Struthers, C.D.; Robbins, J.E.
    [Show full text]
  • Reef Fishes of the Bird's Head Peninsula, West
    Check List 5(3): 587–628, 2009. ISSN: 1809-127X LISTS OF SPECIES Reef fishes of the Bird’s Head Peninsula, West Papua, Indonesia Gerald R. Allen 1 Mark V. Erdmann 2 1 Department of Aquatic Zoology, Western Australian Museum. Locked Bag 49, Welshpool DC, Perth, Western Australia 6986. E-mail: [email protected] 2 Conservation International Indonesia Marine Program. Jl. Dr. Muwardi No. 17, Renon, Denpasar 80235 Indonesia. Abstract A checklist of shallow (to 60 m depth) reef fishes is provided for the Bird’s Head Peninsula region of West Papua, Indonesia. The area, which occupies the extreme western end of New Guinea, contains the world’s most diverse assemblage of coral reef fishes. The current checklist, which includes both historical records and recent survey results, includes 1,511 species in 451 genera and 111 families. Respective species totals for the three main coral reef areas – Raja Ampat Islands, Fakfak-Kaimana coast, and Cenderawasih Bay – are 1320, 995, and 877. In addition to its extraordinary species diversity, the region exhibits a remarkable level of endemism considering its relatively small area. A total of 26 species in 14 families are currently considered to be confined to the region. Introduction and finally a complex geologic past highlighted The region consisting of eastern Indonesia, East by shifting island arcs, oceanic plate collisions, Timor, Sabah, Philippines, Papua New Guinea, and widely fluctuating sea levels (Polhemus and the Solomon Islands is the global centre of 2007). reef fish diversity (Allen 2008). Approximately 2,460 species or 60 percent of the entire reef fish The Bird’s Head Peninsula and surrounding fauna of the Indo-West Pacific inhabits this waters has attracted the attention of naturalists and region, which is commonly referred to as the scientists ever since it was first visited by Coral Triangle (CT).
    [Show full text]
  • Table 7: Species Changing IUCN Red List Status (2018-2019)
    IUCN Red List version 2019-3: Table 7 Last Updated: 10 December 2019 Table 7: Species changing IUCN Red List Status (2018-2019) Published listings of a species' status may change for a variety of reasons (genuine improvement or deterioration in status; new information being available that was not known at the time of the previous assessment; taxonomic changes; corrections to mistakes made in previous assessments, etc. To help Red List users interpret the changes between the Red List updates, a summary of species that have changed category between 2018 (IUCN Red List version 2018-2) and 2019 (IUCN Red List version 2019-3) and the reasons for these changes is provided in the table below. IUCN Red List Categories: EX - Extinct, EW - Extinct in the Wild, CR - Critically Endangered [CR(PE) - Critically Endangered (Possibly Extinct), CR(PEW) - Critically Endangered (Possibly Extinct in the Wild)], EN - Endangered, VU - Vulnerable, LR/cd - Lower Risk/conservation dependent, NT - Near Threatened (includes LR/nt - Lower Risk/near threatened), DD - Data Deficient, LC - Least Concern (includes LR/lc - Lower Risk, least concern). Reasons for change: G - Genuine status change (genuine improvement or deterioration in the species' status); N - Non-genuine status change (i.e., status changes due to new information, improved knowledge of the criteria, incorrect data used previously, taxonomic revision, etc.); E - Previous listing was an Error. IUCN Red List IUCN Red Reason for Red List Scientific name Common name (2018) List (2019) change version Category
    [Show full text]