Spatial and Temporal Distribution of Thaliacea in Relation to Water

Total Page:16

File Type:pdf, Size:1020Kb

Spatial and Temporal Distribution of Thaliacea in Relation to Water ⊕ 國立中山大學 海洋資源研究所 碩士論文 高屏海域海桶類之時空分布及其與水團相關性之研究 Spatial and temporal distribution of Thaliacea in relation to water masses in the Kaoping coastal waters, southwestern Taiwan. 研究生:孫治華撰 指導教授:羅文增 中華民國九十二年六月 謝辭: 今天這本論文能夠完成,我最需要感謝的就是我的指導教授羅文增老師,因 為羅老師除了在論文的寫作上給予我許多的建議與思考空間之外,老師一字字修 改論文的仔細,更讓我從中體會到更嚴謹的做事態度。此外,也要感謝石長泰老 師、黃將修老師與葉信平老師給予論文的建議和修正,使這本論文可以更加完整。 再來我要感謝我父母對我包容因為當他們知道自己在論文寫作上出現困難 後,第一件事情就是告訴我別將得失心看得太重,要我不管怎樣都要以輕鬆的心 情去面對。他們壓抑著自己望子成龍的心情,只要我可以以平常心來完成這最後 的求學階段,也是這樣的心情帶給我在最後階段衝刺的主要動力。 人說:不經一事,不長一智。從一開始對海洋浮游性生物的模糊概念到現在 可以完成一本論文,我學到的不是自己在學識上有多高的長進,而是清楚的了解 到若是身旁沒有像謝鴻諺學長、王世宏、及徐培凱同學這些研究夥伴,自己是絕 對沒法完成這本論文的。也感謝實驗室裡有徐珮紋、余人堯這些學弟妹們的陪伴 讓我在寫論文之際有著愉快的心情來面對論文的壓力。 最後我相信,若是沒你們,這本論文是不會出現的。 中文摘要 本研究是在 2001 年 6 月至 2002 年 10 月期間於高屏海域針對海 桶類進行週年且有系統的調查,以探討海桶類之種類組成、豐度分 布、世代百分比及其與溫度、鹽度及葉綠素 a 濃度之相關性。根據採 樣分析的結果,總共發現海桶類 3 科 11 屬 16 種,最優勢種為 Doliolum denticulatum,佔總豐度的 62.6%;其他主要優勢種包括︰Thalia orientalis(22.8%)、Thalia democratica(7.5%)、Thalia rhomboides (2.4%)和 Dolioletta gegenbauri(2.3%)。 海桶類的,平均豐度為 690.6 ±1601.4 ind./100m3,有明顯的季節 變化,在 2002 年 3 月出現最高豐度,之後則逐季漸減,最低豐度則 是出現在 2001 年 11 月。海桶類豐度一般以 0~100 公尺斜拖居多,但 在 2002 年 3 月及 10 月時,表層(0~5 公尺)海域則出現大量繁生的 情況,其豐度遠大於其他月份 10 倍之巨。高屏海域海桶類群聚組成 與數量在 2001 年各月各測站間變異程度相對較 2002 年 小,其 中 尤 以 2001 年 8 月及 11 月間之相似程度最高,2002 年 3 月及 7 月各測站間 的變異程度則相對最大。海桶類豐度一般和海域表水溫度有顯著負相 關( p < 0.01),但和鹽度和葉綠素 a 濃度則呈顯著正相關(p < 0.05)。 Doliolum denticulatum 和 Dolioletta gegenbauri,均是以有性世代個體 居多,並佔全肌目海桶總豐度的 99.2%;半肌目海桶類也是以有性世 代居多,但僅佔半肌目海桶豐度的 84.3%,其中 Thalia rhomboides 則是唯一以無性世代較多的種類,其有性世代僅佔 40.1%。 i Abstract The species composition, distribution and generations of the thaliacea in relation to the sea surface temperature, salinity and chlorophyll a were studied in the Koaping coastal waters, southwestern Taiwan, from June 2001 to October 2002. In all, 16 species of the thaliacea belonging to 3 families and 11 genera were identified. Among these, Doliolum denticulatum was the most dominant species and comprised 62.2% of the numerical total of thaliacea, other common species including: Thalia orientalis (22.8%), Thalia democratica (7.5%), Thalia rhomboids (2.4%) and Dolioliletta gegenbauri (2.3%). The mean numerical abundance of thaliacea was 690.6 1601.4 ind./100m3. Most species showed apparently seasonal changes, with the highest abundance in March 2002 and the lowest was in November 2001. Higher abundances of thaliacea were generally found in the 100m oblique tows when compared with the surface tows, except in March and October 2002 that bulk abundances were found in the surface waters. The variation of thaliacean species composition and abundance among stations and mouths was larger in 2002 than in 2001. Higher similarity in community structure of thaliacea was found between August and November 2001, while larger variations among stations were found in March and July 2002. In general, the abundance of thaliacea species showed significantly negative correlation with water temperature but significantly positive correlations with salinity and chlorophyll a. Blastozooid(phorozooids and gonozooids) of the Doliolum denticulatum and Dolioletta gegenburia dominated in the study area and comprised 99.2% of total doliolids. Blastozooid(gonozooids) was also dominated ii in Salpida species and comprised 84.3% of total Salpida, except Thalia rhomboids that blastozooid occupied only 40.1%. iii 目錄 章次………………………………………………………………… 頁數 壹、前言………………………………………………………………… 1 貳、材料與方法………………………………………………………... 11 採樣時間、地點及方法…………………………………………11 樣品保存及鑑種………………………………..........................11 海水水文資料………………………………………………......12 資料處理………………………………………………………..13 參、結果…………………………………………………………….…. 15 水文環境因子與水團變化之探討……………………………..15 海桶類種類組成及其時空分布………………………………..17 海桶類豐度之時空分布………………………………………..18 海桶類種歧異度之時空分布…………………………………..20 海桶類優勢種之時空分布……………………………………..21 海桶類有性世代百分比在月別上的變化……………………..25 海桶類豐度與環境因子相關性…………………..……….…...27 海桶類的群聚分析......................................................................28 肆、討 論 ………………………………………………………………... 30 高屏海域之水文環境因子............................................................30 高屏海域之海桶類種類組成........................................................32 海桶類豐度的時空變化................................................................34 海桶類與水文環境和生物間的相關性........................................36 海桶類世代比之變化....................................................................38 伍、結 論 ………………………………………………………………... 41 參考資料………………………………………………………………..43 表…………….………………………………………………………….53 圖………………………………………………………………………. 80 附錄……..………………………………….....………………............ 100 iv 表目錄 表次…………………………………………………………………..頁數 1. 2001 年 6 月到 2002 年 10 月期間於高屏海域各測站表水層之溫 度、鹽度和葉綠素a之濃度..........................................................53 2. 2001 年 6 月到 2002 年 10 月期間於高屏海域表水溫度、鹽度和葉 綠素a濃度之變方分析及鄧肯式多變距檢定分析結果………. 54 3. 2001 年 6 月到 2002 年 10 月期間於高屏海域各測站所發現之海桶 種類分類表……….……………………………………………… 55 4. 2001 年 6 月到 2002 年 10 月期間於高屏海域各測站表層與深層海 桶的平均豐度、相對豐度、種歧異度及種類數…….……..….. 56 5. 2001 年 6 月到 2002 年 10 月期間於高屏海域各月 A.表及深層、 B.表層及 C.深層海桶類的平均豐度、相對豐度、種歧異度及種類 數……………………………..…..………………………………. 62 6. 2001 年 6 月到 2002 年 10 月期間於高屏海域各月 A.近岸測站表 層、B.遠岸測站表層和 C.近岸測站深層、D.遠岸測站深層海桶的 平均豐度、相對豐度、種歧異度及種類數之月別變 化…………………………………………………………..………65 7. 2001 年 6 月到 2002 年 10 月期間於高屏海域 A.高雄港測線、B. 高屏溪測線和 C.枋山測線海桶的平均豐度、相對豐度、種歧異 度及種類數之月別變化…………………………...…………….. 69 8. 高屏海域受 A.南海水和 B.黑潮水影響時海桶之平均豐度、相對豐 度、種歧異度及種類數……………..……………..……………..72 9. 2001 年 6 月到 2002 年 10 月期間於高屏海域 Doliolum denticulatum 之豐度不同世代百分比…………………………………..………74 10. 2001 年 6 月到 2002 年 10 月期間於高屏海域 Thalia orientalis 之豐 度不同世代百分比………………………………………..………75 11. 2001 年 6 月到 2002 年 10 月期間於高屏海域 Thalia democratica v 之豐度不同世代百分比………………………………….……….76 12. 2001 年 6 月到 2002 年 10 月期間於高屏海域 Thalia rhomboides 之 豐度不同世代百分比……………………………………………..77 13. 2001 年 6 月到 2002 年 10 月期間於高屏海域 Dolioletta gegenbauri 之豐度不同世代百分比…………………………………………..78 14. 優勢海桶類各世代與水溫、鹽度和葉綠素 a 之複迴歸分析結果..79 vi 圖目錄 圖次…………………………………………………………………..頁數 1. 2001 年 6 月到 2002 年 10 月期間於高屏海域海桶類之採樣測站位 置圖………………………………………………………………. 80 2. 2001 年 6 月到 2002 年 10 月期間高屏海域各測站海表溫度、鹽度 和葉綠素 a 濃度之季節變化……………….…………...………. 81 3. 2001 年 6 月到 2002 年 10 月期間高屏海域各測站溫度和鹽度之垂 直剖面圖…………………………………………………………. 82 4. 2001 年 6 月到 2002 年 10 月期間於高屏海域各測站之溫鹽圖.. 84 5. 2001 年 6 月到 2002 年 10 月期間於高屏海域海桶類之種類數、平 均豐度、種歧異度、世代百分比和表深層豐度圖……..……… 85 6. 2001 年 6 月到 2002 年 10 月期間高屏海域各測站 Doliolum denticulatum 之豐度變化……...……………………...….………. 86 7. 2001 年 6 月到 2002 年 10 月期間高屏海域各測站 Thalia orientalis 之豐度變化………………………………….….……..…………. 87 8. 2001 年 6 月到 2002 年 10 月期間高屏海域各測站 Thalia democratica 之豐度變化…………………………………………. 88 9. 2001 年 6 月到 2002 年 10 月期間高屏海域各測站 Thalia rhomboides 之豐度變化…..…………………………………….…89 10. 2001 年 6 月到 2002 年 10 月期間高屏海域各測站 Dolioletta gegenbauri 之豐度變化……..……………….……………………90 11. 2001 年 6 月到 2002 年 10 月期間於高屏海域各測站 Doliolum denticulatum 之世代百分比..………………………….…………. 91 12. 2001 年 6 月到 2002 年 10 月期間於高屏海域各測站 Thalia orientalis 之世代百分比…………………………………………. 92 vii 13. 2001 年 6 月到 2002 年 10 月期間於高屏海域各測站 Thalia democratica 之世代百分比………………………………………. 93 14. 2001 年 6 月到 2002 年 10 月期間於高屏海域各測站 Thalia rhomboides 之世代百分比…..………………………………….…94 15. 2001 年 6 月到 2002 年 10 月期間於高屏海域各測站 Dolioletta gegenbauri 之世代百分比……..………………………….………95 16. 2001 年 6 月至 2002 年 10 月期間於高屏海域海桶類之群聚分析 圖…………………………………………………………………..96 17. 2001 年 6 月到 2002 年 10 月期間高屏海域海桶類之種群分析 圖………………………………………..…………………………97 18. 高屏海域之海桶類第一種群之季節及測站分布圖………....…...98 19. 高屏海域之海桶類第二種群之季節及測站分布圖…...…….…...99 viii 附錄 附錄次……………………………………………………………… 頁數 1. A.全肌目海桶與 B.半肌目海桶生活史…………………...……. 100 2. 高屏海域之海桶類檢索表…………………………………….....101 3. 2001 年到 2002 年中央氣象局逐月逐日氣象資料…………...…104 4. 2002 年 3 月到 2002 年 10 月台灣周邊海域葉綠素 a 濃度圖……106 5. 台灣沿近海域海桶類出現之文獻記錄……………………….…109 6. 不同世代之海桶與橈足類之直線迴歸…………………….……110 ix 前言 海桶類為大型海洋膠體性浮游動物,屬於脊索動物門(Chordata), 尾索亞門(Urochordata),海樽綱(Thaliacea);分為三目,分別是燐 海桶目(Pyrosomatida),共有 1 科 8 種(Van Soest, 1981);全肌目 (Dolioilda)則 有 2 科 20 種( Kruger, 1939; Tokioka and Berner, 1958a, b; Garstang, 1993; Godeaux, 1996)和半肌目(Salpida)共有 1 科 44 種(Madin and Harbison, 1978)。 全肌目海桶有著有性個體/芽生體(blastozooid)和無性個體 (oozooid)為主的複雜世代交替,因有性個體有數種不同的演化形 式而使得其生活史格外的複雜(Brien, 1948)。一般而言,受精過的 卵先會在海洋表層附近孵化成具有游泳能力的有尾幼生(tailed larvae),幼生逐漸成長後則會變態(metamorphosis)成為桶狀 (barrel-like)的無性個體;在成長過程中,無性個體的內臟會逐漸消 失(僅剩心臟和腦),環狀肌變寬甚至癒合,轉換為成熟期或老化期 的無性個體(nurse),此無性個體背芽莖上則會生長出兩種有性個體 之芽,其一為特化的營養個體(trophozooid),其提供早期的有性個 體/育體(phorozooid)營養來源,在育體脫離背芽莖後發育成有性個 1 體(gonozooid)並產生卵施放入海域中,開始另一新的生活史 (Barconnot, 1971)(附錄 1A)。 半肌目海桶的生活史相較於全肌目海桶簡單,其生活史僅由無性的 單獨個體世代(solitary generation, oozooid)和有性的群聚世代 (aggregate generation, blastozooid)相互交替(附錄 1B)。無性的單 獨個體會在體內產生一捲成球狀佈滿有性個體的鍊狀芽莖,有性個體 為先雌後雄的雌雄同體,僅有一個或是幾個卵可以發育成熟,卵在有 性個體脫離無性個體之後馬上會與水體中其他的有性個體所釋放的 精子結合,並成長為無性的單獨個體(Brien, 1948; Godeaux, 1990)。 燐海桶為雌雄同體,但依種類不同而有先雄或雌的差異,其群體是 由無性個體/不完全個體(cyathozooid)形成一會產生有性個體/瓶狀 個體(ascidiozooid)的芽莖,產生的有性個體則嵌於無性個體的精囊 (test)後,有性個體的數量則會依不同亞科有著不同的差異; Pyrosomatine 亞科為一個無性個體後可嵌 4 個有性的瓶狀群體, Pyrostremmatine 亞科的無性個體後則嵌著 30~80 個瓶狀群體,因此可 在水體中形成一幾公分長(Van Soest, 1981)或 是 超 過 20 m,直徑 1.2 m 的群體(colony)(Baker, 1971)。 2 海桶綱早期型態上的研究是由 Neumann (1913)、Garstang (1933)和 Yount (1954)分別開始燐海目、全肌目和半肌目的型態分類,然而在 海桶科的型態分類方面 Doliolum 屬與 Dolioletta gegenbauri 和 Doliolina mulleri 的幼生則因為有太多的相似處而無法明確的區分, 且成熟無性個體在鑑種上亦只有 Dolioletta gegenbauri、Doliolina mulleri 和 Doliolum denticulatum 有文獻上的記載(Uljanin, 1884; Quoy and Gaimard, 1834)。近幾年在型態上的研究,包括有 Bone et al. (1997) 利用內柱(endostyle)、鰓縫(gill apertures)和咽喉開口(oesophageal opening)的相對位置明確地區分外部相似的兩種海桶科(Dolioum nationalis 和 Doliolina mulleri);Godeaux (1998a)對 Doliolum denticulatum 的營養個體作出描述,為全肌目海桶的營養個體第一次 的外部形態記錄;Bone et al. (2000)則利用電子顯微鏡拍攝三種半肌 目海桶的內柱和濾食用的膠質網(mucus net)的外部型態,對海桶的 器官外部形態有更深入的瞭解。 半肌目海桶廣泛的分佈世界各大洋,但在大洋區總是以相當低的密 度存在(Kashkina, 1978);在大陸棚和大陸坡地區則不時出現高密度 的群聚現象,例如;Roger(1982)於 Guinea 灣發現每立方公尺水體 中的 Salpa fusiformis 有高達 1000 個體的豐度,Berner(1967)在加 3 州沿岸(California coast)發現覆蓋面積高達 3500 平方哩的 Thalia democratica 單一種群聚現象;較近期的觀察則是 Nishikawa et al. (1995)於南極 South
Recommended publications
  • Chordata, Tunicata, Thaliacea, Doliolida) from East Coast of Peninsular Malaysia), with an Updated Worldwide Distribution
    Journal of Sustainability Science and Management ISSN: 1823-8556 Volume 13 Number 5, 2018 © Penerbit UMT TAXONOMIC REVISION OF THE FAMILY DOLIOLIDAE BRONN, 1862 (CHORDATA, TUNICATA, THALIACEA, DOLIOLIDA) FROM EAST COAST OF PENINSULAR MALAYSIA), WITH AN UPDATED WORLDWIDE DISTRIBUTION NUR ‘ALIAH BINTI ADAM1 AND NURUL HUDA AHMAD ISHAK*1, 2 1School of Marine and Environmental Sciences, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia 2Institute of Oceanography and Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia *Corresponding author: [email protected] Abstract: The marine pelagic tunicate from the family of Doliolidae Bronn, 1862 in the coastal waters of Terengganu was studied for the first time, hereby presented in this paper. The distribution was analysed from 18 sampling stations alongside the Terengganu waters; including Pulau Bidong, Pulau Yu and Pulau Kapas. Samples were collected from April to July 2016 using 200µm Bongo net; towed vertically from a stationary vessel; and were preserved in a 5% buffered formaldehyde. Five species discovered in this family were identified as new records in Malaysian waters:Doliolum denticulatum Quoy and Gaimard, 1834, Doliolum nationalis Borgert, 1894, Dolioletta gegenbauri Uljanin, 1884, Doliolina mulleri Krohn, 1852 and Dolioloides rarum Grobben, 1882. A comprehensive review of the species description, diagnosis and a key to the phorozooid from the recorded species is herewith provided. We also deliver a detailed map of current and known worldwide occurrence of these five species, and thus consequently update the biodiversity of Malaysian fauna. KEYWORDS: Doliolid, pelagic tunicates, South China Sea, Terengganu, taxonomy, biogeography Introduction have the most complex life cycle compared to any of the pelagic tunicates; consisting of no lesser Pelagic tunicates are large transparent animals than six different and successive morphological that measure up to 25cm (Lavaniegos & Ohman, stages (Godeaux et al., 1998; Paffenhöfer & 2003).
    [Show full text]
  • The Origins of Chordate Larvae Donald I Williamson* Marine Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
    lopmen ve ta e l B Williamson, Cell Dev Biol 2012, 1:1 D io & l l o l g DOI: 10.4172/2168-9296.1000101 e y C Cell & Developmental Biology ISSN: 2168-9296 Research Article Open Access The Origins of Chordate Larvae Donald I Williamson* Marine Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom Abstract The larval transfer hypothesis states that larvae originated as adults in other taxa and their genomes were transferred by hybridization. It contests the view that larvae and corresponding adults evolved from common ancestors. The present paper reviews the life histories of chordates, and it interprets them in terms of the larval transfer hypothesis. It is the first paper to apply the hypothesis to craniates. I claim that the larvae of tunicates were acquired from adult larvaceans, the larvae of lampreys from adult cephalochordates, the larvae of lungfishes from adult craniate tadpoles, and the larvae of ray-finned fishes from other ray-finned fishes in different families. The occurrence of larvae in some fishes and their absence in others is correlated with reproductive behavior. Adult amphibians evolved from adult fishes, but larval amphibians did not evolve from either adult or larval fishes. I submit that [1] early amphibians had no larvae and that several families of urodeles and one subfamily of anurans have retained direct development, [2] the tadpole larvae of anurans and urodeles were acquired separately from different Mesozoic adult tadpoles, and [3] the post-tadpole larvae of salamanders were acquired from adults of other urodeles. Reptiles, birds and mammals probably evolved from amphibians that never acquired larvae.
    [Show full text]
  • The Plankton Lifeform Extraction Tool: a Digital Tool to Increase The
    Discussions https://doi.org/10.5194/essd-2021-171 Earth System Preprint. Discussion started: 21 July 2021 Science c Author(s) 2021. CC BY 4.0 License. Open Access Open Data The Plankton Lifeform Extraction Tool: A digital tool to increase the discoverability and usability of plankton time-series data Clare Ostle1*, Kevin Paxman1, Carolyn A. Graves2, Mathew Arnold1, Felipe Artigas3, Angus Atkinson4, Anaïs Aubert5, Malcolm Baptie6, Beth Bear7, Jacob Bedford8, Michael Best9, Eileen 5 Bresnan10, Rachel Brittain1, Derek Broughton1, Alexandre Budria5,11, Kathryn Cook12, Michelle Devlin7, George Graham1, Nick Halliday1, Pierre Hélaouët1, Marie Johansen13, David G. Johns1, Dan Lear1, Margarita Machairopoulou10, April McKinney14, Adam Mellor14, Alex Milligan7, Sophie Pitois7, Isabelle Rombouts5, Cordula Scherer15, Paul Tett16, Claire Widdicombe4, and Abigail McQuatters-Gollop8 1 10 The Marine Biological Association (MBA), The Laboratory, Citadel Hill, Plymouth, PL1 2PB, UK. 2 Centre for Environment Fisheries and Aquacu∑lture Science (Cefas), Weymouth, UK. 3 Université du Littoral Côte d’Opale, Université de Lille, CNRS UMR 8187 LOG, Laboratoire d’Océanologie et de Géosciences, Wimereux, France. 4 Plymouth Marine Laboratory, Prospect Place, Plymouth, PL1 3DH, UK. 5 15 Muséum National d’Histoire Naturelle (MNHN), CRESCO, 38 UMS Patrinat, Dinard, France. 6 Scottish Environment Protection Agency, Angus Smith Building, Maxim 6, Parklands Avenue, Eurocentral, Holytown, North Lanarkshire ML1 4WQ, UK. 7 Centre for Environment Fisheries and Aquaculture Science (Cefas), Lowestoft, UK. 8 Marine Conservation Research Group, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK. 9 20 The Environment Agency, Kingfisher House, Goldhay Way, Peterborough, PE4 6HL, UK. 10 Marine Scotland Science, Marine Laboratory, 375 Victoria Road, Aberdeen, AB11 9DB, UK.
    [Show full text]
  • Articles and Plankton
    Ocean Sci., 15, 1327–1340, 2019 https://doi.org/10.5194/os-15-1327-2019 © Author(s) 2019. This work is distributed under the Creative Commons Attribution 4.0 License. The Pelagic In situ Observation System (PELAGIOS) to reveal biodiversity, behavior, and ecology of elusive oceanic fauna Henk-Jan Hoving1, Svenja Christiansen2, Eduard Fabrizius1, Helena Hauss1, Rainer Kiko1, Peter Linke1, Philipp Neitzel1, Uwe Piatkowski1, and Arne Körtzinger1,3 1GEOMAR, Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany 2University of Oslo, Blindernveien 31, 0371 Oslo, Norway 3Christian Albrecht University Kiel, Christian-Albrechts-Platz 4, 24118 Kiel, Germany Correspondence: Henk-Jan Hoving ([email protected]) Received: 16 November 2018 – Discussion started: 10 December 2018 Revised: 11 June 2019 – Accepted: 17 June 2019 – Published: 7 October 2019 Abstract. There is a need for cost-efficient tools to explore 1 Introduction deep-ocean ecosystems to collect baseline biological obser- vations on pelagic fauna (zooplankton and nekton) and es- The open-ocean pelagic zones include the largest, yet least tablish the vertical ecological zonation in the deep sea. The explored habitats on the planet (Robison, 2004; Webb et Pelagic In situ Observation System (PELAGIOS) is a 3000 m al., 2010; Ramirez-Llodra et al., 2010). Since the first rated slowly (0.5 m s−1) towed camera system with LED il- oceanographic expeditions, oceanic communities of macro- lumination, an integrated oceanographic sensor set (CTD- zooplankton and micronekton have been sampled using nets O2) and telemetry allowing for online data acquisition and (Wiebe and Benfield, 2003). Such sampling has revealed a video inspection (low definition).
    [Show full text]
  • Tunicata 4 Alberto Stolfi and Federico D
    Tunicata 4 Alberto Stolfi and Federico D. Brown Chapter vignette artwork by Brigitte Baldrian. © Brigitte Baldrian and Andreas Wanninger. A. Stolfi Department of Biology , Center for Developmental Genetics, New York University , New York , NY , USA F. D. Brown (*) EvoDevo Laboratory, Departamento de Zoologia , Instituto de Biociências, Universidade de São Paulo , São Paulo , SP , Brazil Evolutionary Developmental Biology Laboratory, Department of Biological Sciences , Universidad de los Andes , Bogotá , Colombia Centro Nacional de Acuicultura e Investigaciones Marinas (CENAIM) , Escuela Superior Politécnica del Litoral (ESPOL) , San Pedro , Santa Elena , Ecuador e-mail: [email protected] A. Wanninger (ed.), Evolutionary Developmental Biology of Invertebrates 6: Deuterostomia 135 DOI 10.1007/978-3-7091-1856-6_4, © Springer-Verlag Wien 2015 [email protected] 136 A. Stolfi and F.D. Brown Above all , perhaps , I am indebted to a decidedly the phylogenetic relationships between the three vegetative , often beautiful , and generally obscure classes and many orders and families have yet to group of marine animals , both for their intrinsic interest and for the enjoyment I have had in search- be satisfactorily settled. Appendicularia, ing for them . N. J. Berrill (1955) Thaliacea, and Ascidiacea remain broadly used in textbooks and scientifi c literature as the three classes of tunicates; however, recent molecular INTRODUCTION phylogenies have provided support for the mono- phyly of only Appendicularia and Thaliacea, but Tunicates are a group of marine fi lter-feeding not of Ascidiacea (Swalla et al. 2000 ; animals1 that have been traditionally divided into Tsagkogeorga et al. 2009 ; Wada 1998 ). A para- three classes: (1) Appendicularia, also known as phyletic Ascidiacea calls for a reevaluation of larvaceans because their free-swimming and tunicate relationships.
    [Show full text]
  • On Some Pelagic Doliolid Tunicates (Thaliacea, Doliolida) Collected by a Submersible Off the Eastern North American Coast
    BULLETIN OF MARINE SCIENCE, 72(3): 589–612, 2003 ON SOME PELAGIC DOLIOLID TUNICATES (THALIACEA, DOLIOLIDA) COLLECTED BY A SUBMERSIBLE OFF THE EASTERN NORTHAMERICAN COAST J. E. A. Godeaux and G. R. Harbison ABSTRACT Specimens of Doliolids collected from a submersible at several stations off the eastern coast of North America were examined. Four species were identified, of which three were described by Godeaux (1996). Of these, one belongs to the new genus, Paradoliopsis (Godeaux, 1996). It is proposed that the order Doliolida be divided into two suborders: the Doliolidina (animals with eight muscle bands), and the Doliopsidina (animals with five muscle bands). Each suborder is represented in our collection by two families. For the Doliolidina these families are the Doliolidae (Doliolinetta intermedia) and the Doliopsoididae (Doliopsoides atlanticum), and for the Doliopsidina the families are the Doliopsidae (Doliopsis bahamensis) and the Paradoliopsidae (Paradoliopsis harbisoni). The family Doliolidae is the best known group of the tunicate order Doliolida. The vertical distribution of members of this family has been well documented with the use of multiple opening and closing nets. The various stages of the complex life cycle of the different species of Doliolidae are located in the epipelagic and mesopelagic layers. They are mainly found at depths between 50–100 m, where they graze on small autotrophic algae (Weikert and Godeaux, unpubl.). Doliolids are so fragile that they are easily dam- aged, making their identification difficult. Identification and determination of the various stages in the life cycle is made even more difficult by the fact that several different spe- cies are often mixed together in a single net collection.
    [Show full text]
  • S41598-018-23749-W.Pdf
    www.nature.com/scientificreports OPEN De novo draft assembly of the Botrylloides leachii genome provides further insight into Received: 6 September 2017 Accepted: 20 March 2018 tunicate evolution Published: xx xx xxxx Simon Blanchoud1,2, Kim Rutherford 1, Lisa Zondag1, Neil J. Gemmell 1 & Megan J. Wilson1 Tunicates are marine invertebrates that compose the closest phylogenetic group to the vertebrates. These chordates present a particularly diverse range of regenerative abilities and life-history strategies. Consequently, tunicates provide an extraordinary perspective into the emergence and diversity of these traits. Here we describe the genome sequencing, annotation and analysis of the Stolidobranchian Botrylloides leachii. We have produced a high-quality 159 Mb assembly, 82% of the predicted 194 Mb genome. Analysing genome size, gene number, repetitive elements, orthologs clustering and gene ontology terms show that B. leachii has a genomic architecture similar to that of most solitary tunicates, while other recently sequenced colonial ascidians have undergone genome expansion. In addition, ortholog clustering has identifed groups of candidate genes for the study of colonialism and whole-body regeneration. By analysing the structure and composition of conserved gene linkages, we observed examples of cluster breaks and gene dispersions, suggesting that several lineage-specifc genome rearrangements occurred during tunicate evolution. We also found lineage-specifc gene gain and loss within conserved cell-signalling pathways. Such examples of genetic changes within conserved cell-signalling pathways commonly associated with regeneration and development that may underlie some of the diverse regenerative abilities observed in tunicates. Overall, these results provide a novel resource for the study of tunicates and of colonial ascidians.
    [Show full text]
  • The Natural Resources of Monterey Bay National Marine Sanctuary
    Marine Sanctuaries Conservation Series ONMS-13-05 The Natural Resources of Monterey Bay National Marine Sanctuary: A Focus on Federal Waters Final Report June 2013 U.S. Department of Commerce National Oceanic and Atmospheric Administration National Ocean Service Office of National Marine Sanctuaries June 2013 About the Marine Sanctuaries Conservation Series The National Oceanic and Atmospheric Administration’s National Ocean Service (NOS) administers the Office of National Marine Sanctuaries (ONMS). Its mission is to identify, designate, protect and manage the ecological, recreational, research, educational, historical, and aesthetic resources and qualities of nationally significant coastal and marine areas. The existing marine sanctuaries differ widely in their natural and historical resources and include nearshore and open ocean areas ranging in size from less than one to over 5,000 square miles. Protected habitats include rocky coasts, kelp forests, coral reefs, sea grass beds, estuarine habitats, hard and soft bottom habitats, segments of whale migration routes, and shipwrecks. Because of considerable differences in settings, resources, and threats, each marine sanctuary has a tailored management plan. Conservation, education, research, monitoring and enforcement programs vary accordingly. The integration of these programs is fundamental to marine protected area management. The Marine Sanctuaries Conservation Series reflects and supports this integration by providing a forum for publication and discussion of the complex issues currently facing the sanctuary system. Topics of published reports vary substantially and may include descriptions of educational programs, discussions on resource management issues, and results of scientific research and monitoring projects. The series facilitates integration of natural sciences, socioeconomic and cultural sciences, education, and policy development to accomplish the diverse needs of NOAA’s resource protection mandate.
    [Show full text]
  • Sur Ridge Field Guide: Monterey Bay National Marine Sanctuary
    Office of National Marine Sanctuaries National Oceanic and Atmospheric Administration Marine Conservation Science Series Sur Ridge Field Guide: Monterey Bay National Marine Sanctuary ©MBARI October 2017 | sanctuaries.noaa.gov | MARINE SANCTUARIES CONSERVATION SERIES ONMS-17-10 U.S. Department of Commerce Wilbur Ross, Secretary National Oceanic and Atmospheric Administration Benjamin Friedman, Acting Administrator National Ocean Service Russell Callender, Ph.D., Assistant Administrator Office of National Marine Sanctuaries John Armor, Director Report Authors: Erica J. Burton1, Linda A. Kuhnz2, Andrew P. DeVogelaere1, and James P. Barry2 1Monterey Bay National Marine Sanctuary National Ocean Service National Oceanic and Atmospheric Administration 99 Pacific Street, Bldg 455A, Monterey, CA, 93940, USA 2Monterey Bay Aquarium Research Institute 7700 Sandholdt Road, Moss Landing, CA, 95039, USA Suggested Citation: Burton, E.J., L.A. Kuhnz, A.P. DeVogelaere, and J.P. Barry. 2017. Sur Ridge Field Guide: Monterey Bay National Marine Sanctuary. Marine Sanctuaries Conservation Series ONMS- 17-10. U.S. Department of Commerce, National Oceanic and Atmospheric Administration, Office of National Marine Sanctuaries, Silver Spring, MD. 122 pp. Cover Photo: Clockwise from top left: bamboo coral (Isidella tentaculum, foreground center), sea star (Hippasteria californica), Shortspine Thornyhead (Sebastolobus alascanus), and crab (Gastroptychus perarmatus). Credit: Monterey Bay Aquarium Research Institute. About the Marine Sanctuaries Conservation Series The Office of National Marine Sanctuaries, part of the National Oceanic and Atmospheric Administration, serves as the trustee for a system of underwater parks encompassing more than 620,000 square miles of ocean and Great Lakes waters. The 13 national marine sanctuaries and two marine national monuments within the National Marine Sanctuary System represent areas of America’s ocean and Great Lakes environment that are of special national significance.
    [Show full text]
  • Tropical Marine Organisms and Communities
    TROPICAL MARINE ORGANISMS AND COMMUNITIES W. B. GLADFELTER [Converted to electronic format by Damon J. Gomez (NOAA/RSMAS) in 2003. Copy available at the NOAA Miami Regional Library. Minor editorial changes were made.] LIST OF FIGURES Front Cover : Acropora palmata Reef East End Field Sites Buck Island Reef Profile Salt River Map Commas Marine Algae Representative Sponge Spicules Canmn Reef Demsponges Lebrunea coralligens Representative Coral Skeletal Forms Sea Cucumber Dissection Conch Dissection Representative West Indian Gastropods West Indian Bivalves Representative Zooplankton Back Cover : Queen Conch TABLE OF CagrENTS I Annotated Checklist of Marine Organisms 1 Plants 2 Sponges 4 Chidarians 7 Echinoderms 12 Chordates 15 Molluscs 18 Annelids 21 Crustaceans 23 II Marine Field Trip Sites, St . Croix, V .I . 27 Map, east erxi field sites 27 Synopsis of field sites 28 Buck Island Reef 32 W.I .L. and Smuggler's Cove 36 Tague Bay patch reefs 40 Lamb Bay 42 Holt's Reef 44 East End Bay 46 Tague Bay backreef : day vs night 49 Horseshoe patch 52 Mangroves 54 Cane Bay Reef 57 Frederiksted Pier 60 III Tropical Marine Organisms : Field and Lab Exercises 63 ID of common marine plants 63 Sponges .67 Field ID of sponges 70 Cnidarians 76 Field ID of anthozoans 84 Echinoderms 88 Molluscs 94 Annelids 102 Crustaceans 104 Tropical zooplankton 106 Field observation of reef fishes 112 IV Analysis of Tropical Marine Camu.inities 114 Echinometra populations in different habitats 115 Recovery of A palmata reef 118 Microhabitat specialization : Associations
    [Show full text]
  • Biodiversity of the Coastal Zone of NE Kalimantan (Berau Region)
    Marine biodiversity of the coastal area of the Berau region, East Kalimantan, Indonesia Progress report East Kalimantan Program - Pilot phase (October 2003) Preliminary results of a field survey performed by an Indonesian - Dutch biodiversity research team sponsored by Indonesian Royal Netherlands Foundation for the Institute of Academy of Arts Advancement of Sciences and Sciences Tropical Research Editor: Dr. Bert W. Hoeksema December 2004 nationaal natuurhistorisch national museum of natural history Marine biodiversity of the coastal area of the Berau region, East Kalimantan, Indonesia Progress report: East Kalimantan Program - Pilot phase (October 2003) Preliminary results of a field survey performed by an Indonesian - Dutch biodiversity research team Editor: Dr. Bert W. Hoeksema National Museum of Natural History – Naturalis, PO Box 9517, 2300 RA Leiden, The Netherlands. [email protected] Contents Contents ……………………………………………………..…………………….……………… 2 Abstract ……………………………………………………………………………………….…… 3 Introduction (Dr.B.W. Hoeksema) …………………………………………………..………….. 3 - Stony corals (Dr. B.W. Hoeksema, Dr. Suharsono, Dr. D.F.R. Cleary) ………………...... 7 - Soft corals (Drs. L.P. van Ofwegen, Dra A.E.W. Manuputty & Ir Y. Tuti H.) …………….. 17 - Pontoniine shrimps (Dr. C.H.J.M. Fransen) …………………..…………………………...... 19 - Algae (Dr. W.F. Prud’homme van Reine & Dr. L.N. de Senerpont Domis) …………....... 22 - Plankton (Dr. M. van Couwelaar & Dr. A. Pierrot-Bults) ……………………………...……. 24 - Cetacea and manta rays (Drs. Danielle Kreb & Ir. Budiono) ………………….………...... 28 - Reef fish (Prof. Dr. G. van der Velde & Dr. I.A. Nagelkerken) ………………….……...…. 39 - Sponges (Drs. N.J. de Voogd & Dr. R.W.M. van Soest) ………………………...……….... 43 - Gastropoda 1: Conidae (Mr. R.G. Moolenbeek) ………..………………………..……….... 47 - Gastropoda 2: Strombus and Lambis (Strombidae) (Mr. J. Goud) ………….……………. 49 - Larger Foraminifera (Dr.
    [Show full text]
  • Phylogenetic Analysis of Phenotypic Characters of Tunicata Supports Basal Appendicularia and Monophyletic Ascidiacea
    Cladistics Cladistics 36 (2020) 259–300 10.1111/cla.12405 Phylogenetic analysis of phenotypic characters of Tunicata supports basal Appendicularia and monophyletic Ascidiacea Katrin Brauna, Fanny Leubnerb and Thomas Stachc,* aVergleichende Zoologie, Institut fur€ Biologie, Humboldt-Universitat€ zu Berlin, Philippstrasse 13, Haus 2, 10115 Berlin, Germany; bAnimal Evolution and Biodiversity, J-F-Blumenbach Institute for Zoology & Anthropology, Georg-August-University Gottingen,€ Untere Karspule€ 2, 37073 Gottingen,€ Germany; cMolekulare Parasitologie, Institut fur€ Biologie, Humboldt-Universitat€ zu Berlin, Philippstrasse 13, Haus 14, 10115 Berlin, Germany Abstract With approximately 3000 marine species, Tunicata represents the most disparate subtaxon of Chordata. Molecular phyloge- netic studies support Tunicata as sister taxon to Craniota, rendering it pivotal to understanding craniate evolution. Although successively more molecular data have become available to resolve internal tunicate phylogenetic relationships, phenotypic data have not been utilized consistently. Herein these shortcomings are addressed by cladistically analyzing 117 phenotypic characters for 49 tunicate species comprising all higher tunicate taxa, and five craniate and cephalochordate outgroup species. In addition, a combined analysis of the phenotypic characters with 18S rDNA-sequence data is performed in 32 OTUs. The analysis of the combined data is congruent with published molecular analyses. Successively up-weighting phenotypic characters indicates that phenotypic data contribute disproportionally more to the resulting phylogenetic hypothesis. The strict consensus tree from the analysis of the phenotypic characters as well as the single most parsimonious tree found in the analysis of the combined dataset recover monophyletic Appendicularia as sister taxon to the remaining tunicate taxa. Thus, both datasets support the hypothesis that the last common ancestor of Tunicata was free-living and that ascidian sessility is a derived trait within Tunicata.
    [Show full text]