Tropical Marine Organisms and Communities

Total Page:16

File Type:pdf, Size:1020Kb

Tropical Marine Organisms and Communities TROPICAL MARINE ORGANISMS AND COMMUNITIES W. B. GLADFELTER [Converted to electronic format by Damon J. Gomez (NOAA/RSMAS) in 2003. Copy available at the NOAA Miami Regional Library. Minor editorial changes were made.] LIST OF FIGURES Front Cover : Acropora palmata Reef East End Field Sites Buck Island Reef Profile Salt River Map Commas Marine Algae Representative Sponge Spicules Canmn Reef Demsponges Lebrunea coralligens Representative Coral Skeletal Forms Sea Cucumber Dissection Conch Dissection Representative West Indian Gastropods West Indian Bivalves Representative Zooplankton Back Cover : Queen Conch TABLE OF CagrENTS I Annotated Checklist of Marine Organisms 1 Plants 2 Sponges 4 Chidarians 7 Echinoderms 12 Chordates 15 Molluscs 18 Annelids 21 Crustaceans 23 II Marine Field Trip Sites, St . Croix, V .I . 27 Map, east erxi field sites 27 Synopsis of field sites 28 Buck Island Reef 32 W.I .L. and Smuggler's Cove 36 Tague Bay patch reefs 40 Lamb Bay 42 Holt's Reef 44 East End Bay 46 Tague Bay backreef : day vs night 49 Horseshoe patch 52 Mangroves 54 Cane Bay Reef 57 Frederiksted Pier 60 III Tropical Marine Organisms : Field and Lab Exercises 63 ID of common marine plants 63 Sponges .67 Field ID of sponges 70 Cnidarians 76 Field ID of anthozoans 84 Echinoderms 88 Molluscs 94 Annelids 102 Crustaceans 104 Tropical zooplankton 106 Field observation of reef fishes 112 IV Analysis of Tropical Marine Camu.inities 114 Echinometra populations in different habitats 115 Recovery of A palmata reef 118 Microhabitat specialization : Associations 120 Coral reef community structure 123 Grassbed community structure 127 Fish community structure on small artificial reefs 130 Primary production on reefs 135 Effects of herbivory on algal community 139 Twilight changeover in reef fish community 142 Niche breadth and overlap in a guild of reef organisms 144 BIBLIOGRAPHY 147 ANNOTATED C"tU KLIST OF MARINE ORGANISMS OF ST CROIX, VIRGIN ISLANDS The following is a master list of the common, conspicuous or otherwise important or interesting shallow-water marine invertebrates of the West Indies in general and St . Croix in particular . The organisms are presented in taxonomic outline so that their relationships can be readily seen . Sane of the higher taxa have been superseded in the technical literature but have been used herein because of their greater usefulness to the ru-ispecialist . Some higher taxa without known local representation have been omitted . The ranks of higher taxa have been abbreviated as follows : € = kingdom ; Ph = Phylum ; Cl = Class ; 0 = order ; F = family . There is no well established set of vernacular names for most marine invertebrates and plants (in contrast to vertebrates) . Therefore the scientific, latinized form is used below . The scientific name of an organism consists of two words : the genus (plural = genera) and the species . Both are underlined or italicized. In the account below, for simplicity, the generic name is often used alone except when there is more than one species dealt with in the same genus . € Monera : prokaryotes, with no nuclear or other internal cell membranes Ph Cyanophyta (=Cyanobacteria ; blue-green algae) Microooleus : "slimy" filamentous masses on intertidal rocks Trichodesmium : planktonic ; tufts of fine brown filaments Oscillatoria : rings and halos on dying coral heads ("black band disease") Ph Eubacteria (bacteria) Ph Prochlorophyta : prokaryotes with pigments similar to those of higher plants Prochloron : tiny single green cells in atrial spaces of certain didemnid ascidians € Protista : unicellular or cell colonies without somatic differentiation ; mostly microscopic ; protozoan, etc . Ph Chrysophyta (diatoms) : planktonic and benthic ; unicellular "plants" with sculptured Si02 test Ph Pyrrhophyta (dinoflagellates) Ceratium : 3-horned armored form (i .e . with cellulose plates) Gymnodinium : naked form occurring in reef cnidarians as zooxanthellae Gambierdiscus : large benthic form implicated in ciguatera (tropical fish poisoning) Ph Sa codina (amoebas, etc . ) Cl Foraminifera (forams) : large multinucleate amoebas with perforated Ca0D3 shell often visible to unaided eye J-bnotremma : encrusts in dark cavities or under rocks ; important oanponent in algal ridges, stratified with crustose red algae forms maroon sand grains when eroded Sorites : flat spiralled shell to about 1 mm long in lagoonal sand ; other forms up to 5 mm, may be canon Globigerina : planktonic, taken offshore ; with several u equal spherical chambers 1 A variety of other crustose and free-living forms occur in a number of environments Cl Radiolaria (radiolarians) : planktonic forms with radial Si02 skeletal rays Ph Ciliophora (ciliates and suctorians) : nearly ubiquitous on various substrata ; includes stalked and unstalked forms ; a good source is necrotic marine organisms such as dying hydroids or on "white band disease"-affected A palmata K Plan tae (true plants) : multicellular (usually), with photosynthetic pigments in plastids ; generally attached to substrata; many important plants in tropical waters deposit Ca003 skeletons or inclusions, which then became important components of benthic sediments Ph Rhodophyta (red algae) : reddish, brownish or greenish ; filamentous, branched or crustose ; phycobilins as accessory photosynthetic pigments ; nonmotile gametes € Nemalionales Liagpra : flaccid pinkish-white clumps Galaxaura : clumps of stiff pinkish orange tubular branches Asparagopsis : seasonal on high energy reefs ; like soft little fir trees with reddish midrib € (mot idiales Gelidiella : on intertidal beachrock ; stiff midrib with bipinnate branching € Cryptonemiales Peyssonelia : forming colorful orange or purple crusts in shaded areas (the following genera are corallines, belonging to the family Corallinaceae ; all deposit Ca0)3) Amphiroa : with stiff delicate dichotomous branches Corallina, : on shallow carbonate pavements ; flattened and segmented Jania : very delicate paintbrush-like form Melobesia : small crusty patches on turtle grass blades Lithophyllum : and other crustose eorallines : often forming thickened crusts on dead coral and reef surfaces ; major reef- builders € Gigarbinales Hypnea : hooked branch tips Gracilaria : robust branches, on deeper flats € Rhodymeniales Coelothrix : with iridescent blue tips € Ceramiales Centroceras : with nearly microscopic cross-banding Ceramium : similar but without cross-banding Martensia : delicate lacy pink form, seasonally canton Dasya : very fine filamentous tufts Acanthophora : firm brownish stems with stubby forked lateral branches Bryothamnicn : on wave-swept pavements Laurencia : a number of species, mostly firm and bushy Ph Pheophyta (brown algae) : tan or brown in color due to accessory pigments ; includes many robust forms ; Cao03 deposition not 2 prevalent € Ectocarpales Ralfsia : small dark brown patches on rocks € Dictyotales Dictyota : flat, brown and dichotomously branched Dilophus : similar but with tapering tips Dictyopteris : similar, but with midribs Padina : curled broad blades with conspicuous concentric bands, cannon intertidally Stypopodium: also with concentric bands, blades more linear Lobophora : similar to Padina but without bands € Dictyosiphonales Colpomenia : hollow tan lumps € F ucales Sargassum: quite large and robust, with crinkly blades off tough central stem ; with tiny spherical floats when reproductive Ph Chlorophyta (green algae) : bright to dark green in color ; with chlorophyll b; includes a number of important calcareous forms ; includes a number of coenocytic forms (i .e. with incomplete cell boundaries) € Ulotrichales Entero mrpha : thin and tubular Ulva : delicate flat green blades € Cladophorales Chaetanorpha : long green stringy masses Cladophora : moss-like clumps € Siphoriocladales Batophora : small whorls Neomeris : tiny green or white thin clubs Acetabularia : distinctive small parasols E nodesmis : articulated green branches Valonia : turgid, thin-walled shiny-surfaced spheres Dictyosphaeria : granular crinkly hollow green lumps € Siphonales Bryopsis : very delicate dark green feathers Caulerpa : with extensive tubular stolons ; diversity of thallus forms C raoanosa : pea-like thalli C microphysa : similar but more tapering at base C prolifera : thalli blade-like and smooth C_ cupressoides : linear serrated thalli C sertularioides : feather-like C mexicana : similar but lateral branches wider and overlapping Codium: very dark green felt-like lumpy masses or erect branches Avrainvillea : upright dark green felt-like fans Udotea : similar but paler and stiffer U cyathiformis : goblet-shaped Penicillus : like green shaving brushes anchored in sediment Halimeda : with heavily calcified flat or cylindrical segments ; important contributor to "coral" sand Ph Tracheophyta (vascular plants) Cl Angiospermae Seagrasses : grass-like marine plants in several families other than true grasses ; blades arise from extenmsive root sysbans 3 Thalassia (turtle grass) : blades flat and wide (ca . 1 an) Syringodium (manatee grass) : blades round in x-sec (ca . 1 mm) Halodule (shoal grass) : narrow flattened blades less than 1 mm Halophila : delicate oval blades to a few an long ; generally in shaded areas or deeper water Rupia : in shallow brackish or tenporary .lagoons or salt ponds Mangroves : trees of salty soil that grow along the edges of quiet lagoons, usually zoned landward in the following order : Rhizophora (red mangrove) : grow in seawater to a depth of more than 1 m ; with extensive proproots Laquncularia
Recommended publications
  • Atlas of the Copepods (Class Crustacea: Subclass Copepoda: Orders Calanoida, Cyclopoida, and Harpacticoida)
    Taxonomic Atlas of the Copepods (Class Crustacea: Subclass Copepoda: Orders Calanoida, Cyclopoida, and Harpacticoida) Recorded at the Old Woman Creek National Estuarine Research Reserve and State Nature Preserve, Ohio by Jakob A. Boehler and Kenneth A. Krieger National Center for Water Quality Research Heidelberg University Tiffin, Ohio, USA 44883 August 2012 Atlas of the Copepods, (Class Crustacea: Subclass Copepoda) Recorded at the Old Woman Creek National Estuarine Research Reserve and State Nature Preserve, Ohio Acknowledgments The authors are grateful for the funding for this project provided by Dr. David Klarer, Old Woman Creek National Estuarine Research Reserve. We appreciate the critical reviews of a draft of this atlas provided by David Klarer and Dr. Janet Reid. This work was funded under contract to Heidelberg University by the Ohio Department of Natural Resources. This publication was supported in part by Grant Number H50/CCH524266 from the Centers for Disease Control and Prevention. Its contents are solely the responsibility of the authors and do not necessarily represent the official views of Centers for Disease Control and Prevention. The Old Woman Creek National Estuarine Research Reserve in Ohio is part of the National Estuarine Research Reserve System (NERRS), established by Section 315 of the Coastal Zone Management Act, as amended. Additional information about the system can be obtained from the Estuarine Reserves Division, Office of Ocean and Coastal Resource Management, National Oceanic and Atmospheric Administration, U.S. Department of Commerce, 1305 East West Highway – N/ORM5, Silver Spring, MD 20910. Financial support for this publication was provided by a grant under the Federal Coastal Zone Management Act, administered by the Office of Ocean and Coastal Resource Management, National Oceanic and Atmospheric Administration, Silver Spring, MD.
    [Show full text]
  • Preliminary Guide to the Identification of the Early Life History Stages
    NOAA Technical Memorandum NMFS-SEFSC-416 PRELIMINARY GUIDE TO TIm IDENTIFICATION OF TIm EARLY LlFE mSTORY STAGES OF BLENNIOID FISHES OF THE WBSTHRN CENTR.AL.ATLANTIC, FAUNAL LIST ANI) MERISTIC DATA FOR All KNOWN BLENNIOID SPECIES gy MARrIN R. CAVALLUZZI AND JOHN E. OLNEY U.S. DEPARTMENT OF COMMERCE National Oceanic and Atniospheric Administration National Marine Fisheries Service Southeast Fisheries Science Center 75 Virginia Beach Drive Miami. Florida 33149 December 1998 NOAA Teclmical Memorandum NMFS-SEFSC-416 PRELlMINARY GUIDE TO TIlE IDBNTIFlCA110N OF TIlE EARLY LIFE HISTORY STAGES OF BLBNNIOm FISHES OF TIm WBSTBRN CBN'l'R.At·A11..ANi'IC, FAUNAL LIST AND MERISllC DATA" -. FOR ALL KNOWN BLBNNIOID SPECJBS BY ~TIN R. CAVALLUZZI AND JOHN E. OLNEY u.s. DBPAR'I'MffiIT OF COMMERCB William M:Daley, Secretary NatioDal Oceanic and Atmospheric Administration D. JIjDlCS Baker, Under Secretary for OCeaJI.Sand Atmosphere National Marine Fisheries Service , Rolland A. Scbmitten, Assistant Administrator for Fisheries December 1998 This Technical Memorandum series is Used for documentation and timely cot:mD1Urlcationofpreliminazy results, interim reports, or similar special-purpose information. Although the memoranda are not subject to complete formal review, editoPal control, or de1Biled editing, they are expected to reflect smmd professional work. NOTICE .The National Mariiie Fisheries Service (NMFS) does not approve, recommend or endorse any proprietary product or material mentioned in this publication. No reference shati be made to NMFS or to this publication furi:rished by NMFS, in any advertising or salespromoiion which would imply that NMFS approves, recommends, or endorses any proprietary product or proprietary material mentioned herein or which has as its purpose any mtent to cause directly or indirectly the advertised product to be used or purchased because of this NMFS publication.
    [Show full text]
  • Reef Fish Biodiversity in the Florida Keys National Marine Sanctuary Megan E
    University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School November 2017 Reef Fish Biodiversity in the Florida Keys National Marine Sanctuary Megan E. Hepner University of South Florida, [email protected] Follow this and additional works at: https://scholarcommons.usf.edu/etd Part of the Biology Commons, Ecology and Evolutionary Biology Commons, and the Other Oceanography and Atmospheric Sciences and Meteorology Commons Scholar Commons Citation Hepner, Megan E., "Reef Fish Biodiversity in the Florida Keys National Marine Sanctuary" (2017). Graduate Theses and Dissertations. https://scholarcommons.usf.edu/etd/7408 This Thesis is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. Reef Fish Biodiversity in the Florida Keys National Marine Sanctuary by Megan E. Hepner A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science Marine Science with a concentration in Marine Resource Assessment College of Marine Science University of South Florida Major Professor: Frank Muller-Karger, Ph.D. Christopher Stallings, Ph.D. Steve Gittings, Ph.D. Date of Approval: October 31st, 2017 Keywords: Species richness, biodiversity, functional diversity, species traits Copyright © 2017, Megan E. Hepner ACKNOWLEDGMENTS I am indebted to my major advisor, Dr. Frank Muller-Karger, who provided opportunities for me to strengthen my skills as a researcher on research cruises, dive surveys, and in the laboratory, and as a communicator through oral and presentations at conferences, and for encouraging my participation as a full team member in various meetings of the Marine Biodiversity Observation Network (MBON) and other science meetings.
    [Show full text]
  • INFORMATION to USERS the Most Advanced Technology Has Been
    INFORMATION TO USERS The most advanced technology has been used to photograph and reproduce this manuscript from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. University M'ProCms International A Ben & Howe'' Information Company 300 North Zeeb Road Ann Arbor Ml 40106-1346 USA 3-3 761-4 700 800 501 0600 Order Numb e r 9022566 S o m e aspects of the functional morphology of the shell of infaunal bivalves (Mollusca) Watters, George Thomas, Ph.D.
    [Show full text]
  • Coral Reef Fishes Which Forage in the Water Column
    HelgotS.nder wiss. Meeresunters, 24, 292-306 (1973) Coral reef fishes which forage in the water column A review of their morphology, behavior, ecology and evolutionary implications W. P. DAVIS1, & R. S. BIRDSONG2 1 Mediterranean Marine Sorting Center; Khereddine, Tunisia, and 2 Department of Biology, Old Dominion University; Norfolk, Virginia, USA EXTRAIT: <<Fourrages. des poissons des r&ifs de coraux dans la colonne d'eau: Morpholo- gie, comportement, &ologie et ~volution. Dans un biotope ~t r&if de coraiI, des esp&es &roitement li~es peuvent servir d'exempIe de diff~renciatlon sur le plan de t'~volutlon. La radiation ~volutive de poissons repr&entant plusieurs familles du r~eif corallien tropical a conduit ~t plusieurs reprises ~t la formation de <dourragers dans la colonne d'eam>. Ce mode de vie comporte une s~rie de caract~res morphologiques et &hologiques d~finis. On trouve des ~xemples similaires dans I'eau douce et dans des habitats non tropicaux. Les traits distinctifs de cette sp&ialisation, la syst6matique, les caract~rlstiques &ologiques et celies se rapportant ~t l'6volution sont d&rits et discut~s. INTRODUCTION The rapid adoption of in situ studies to investigate lifeways of organisms in the oceans is succeeding in bringing the laboratory to the ocean. Before, the conclusions that observers and scientists were classically forced to accept oPcen represented in- accurate abstractions of things that could not be observed. During the past 10-20 years the cataloging of the fauna and flora of the coral reef habitats has been carried out at an escalated rate, coupled with the many and vast improvements in tools, allowing increased periods of continual observation under sea.
    [Show full text]
  • Spatial and Temporal Distribution of the Demersal Fish Fauna in a Baltic Archipelago As Estimated by SCUBA Census
    MARINE ECOLOGY - PROGRESS SERIES Vol. 23: 3143, 1985 Published April 25 Mar. Ecol. hog. Ser. 1 l Spatial and temporal distribution of the demersal fish fauna in a Baltic archipelago as estimated by SCUBA census B.-0. Jansson, G. Aneer & S. Nellbring Asko Laboratory, Institute of Marine Ecology, University of Stockholm, S-106 91 Stockholm, Sweden ABSTRACT: A quantitative investigation of the demersal fish fauna of a 160 km2 archipelago area in the northern Baltic proper was carried out by SCUBA census technique. Thirty-four stations covering seaweed areas, shallow soft bottoms with seagrass and pond weeds, and deeper, naked soft bottoms down to a depth of 21 m were visited at all seasons. The results are compared with those obtained by traditional gill-net fishing. The dominating species are the gobiids (particularly Pornatoschistus rninutus) which make up 75 % of the total fish fauna but only 8.4 % of the total biomass. Zoarces viviparus, Cottus gobio and Platichtys flesus are common elements, with P. flesus constituting more than half of the biomass. Low abundance of all species except Z. viviparus is found in March-April, gobies having a maximum in September-October and P. flesus in November. Spatially, P. rninutus shows the widest vertical range being about equally distributed between surface and 20 m depth. C. gobio aggregates in the upper 10 m. The Mytilus bottoms and the deeper soft bottoms are the most populated areas. The former is characterized by Gobius niger, Z. viviparus and Pholis gunnellus which use the shelter offered by the numerous boulders and stones. The latter is totally dominated by P.
    [Show full text]
  • St. Kitts Final Report
    ReefFix: An Integrated Coastal Zone Management (ICZM) Ecosystem Services Valuation and Capacity Building Project for the Caribbean ST. KITTS AND NEVIS FIRST DRAFT REPORT JUNE 2013 PREPARED BY PATRICK I. WILLIAMS CONSULTANT CLEVERLY HILL SANDY POINT ST. KITTS PHONE: 1 (869) 765-3988 E-MAIL: [email protected] 1 2 TABLE OF CONTENTS Page No. Table of Contents 3 List of Figures 6 List of Tables 6 Glossary of Terms 7 Acronyms 10 Executive Summary 12 Part 1: Situational analysis 15 1.1 Introduction 15 1.2 Physical attributes 16 1.2.1 Location 16 1.2.2 Area 16 1.2.3 Physical landscape 16 1.2.4 Coastal zone management 17 1.2.5 Vulnerability of coastal transportation system 19 1.2.6 Climate 19 1.3 Socio-economic context 20 1.3.1 Population 20 1.3.2 General economy 20 1.3.3 Poverty 22 1.4 Policy frameworks of relevance to marine resource protection and management in St. Kitts and Nevis 23 1.4.1 National Environmental Action Plan (NEAP) 23 1.4.2 National Physical Development Plan (2006) 23 1.4.3 National Environmental Management Strategy (NEMS) 23 1.4.4 National Biodiversity Strategy and Action Plan (NABSAP) 26 1.4.5 Medium Term Economic Strategy Paper (MTESP) 26 1.5 Legislative instruments of relevance to marine protection and management in St. Kitts and Nevis 27 1.5.1 Development Control and Planning Act (DCPA), 2000 27 1.5.2 National Conservation and Environmental Protection Act (NCEPA), 1987 27 1.5.3 Public Health Act (1969) 28 1.5.4 Solid Waste Management Corporation Act (1996) 29 1.5.5 Water Courses and Water Works Ordinance (Cap.
    [Show full text]
  • Caribbean Wildlife Undersea 2017
    Caribbean Wildlife Undersea life This document is a compilation of wildlife pictures from The Caribbean, taken from holidays and cruise visits. Species identification can be frustratingly difficult and our conclusions must be checked via whatever other resources are available. We hope this publication may help others having similar problems. While every effort has been taken to ensure the accuracy of the information in this document, the authors cannot be held re- sponsible for any errors. Copyright © John and Diana Manning, 2017 1 Angelfishes (Pomacanthidae) Corals (Cnidaria, Anthozoa) French angelfish 7 Bipinnate sea plume 19 (Pomacanthus pardu) (Antillogorgia bipinnata) Grey angelfish 8 Black sea rod 20 (Pomacanthus arcuatus) (Plexaura homomalla) Queen angelfish 8 Blade fire coral 20 (Holacanthus ciliaris) (Millepora complanata) Rock beauty 9 Branching fire coral 21 (Holacanthus tricolor) (Millepora alcicornis) Townsend angelfish 9 Bristle Coral 21 (Hybrid) (Galaxea fascicularis) Elkhorn coral 22 Barracudas (Sphyraenidae) (Acropora palmata) Great barracuda 10 Finger coral 22 (Sphyraena barracuda) (Porites porites) Fire coral 23 Basslets (Grammatidae) (Millepora dichotoma) Fairy basslet 10 Great star coral 23 (Gramma loreto) (Montastraea cavernosa) Grooved brain coral 24 Bonnetmouths (Inermiidae) (Diploria labyrinthiformis) Boga( Inermia Vittata) 11 Massive starlet coral 24 (Siderastrea siderea) Bigeyes (Priacanthidae) Pillar coral 25 Glasseye snapper 11 (Dendrogyra cylindrus) (Heteropriacanthus cruentatus) Porous sea rod 25 (Pseudoplexaura
    [Show full text]
  • Reported Siphonostomatoid Copepods Parasitic on Marine Fishes of Southern Africa
    REPORTED SIPHONOSTOMATOID COPEPODS PARASITIC ON MARINE FISHES OF SOUTHERN AFRICA BY SUSAN M. DIPPENAAR1) School of Molecular and Life Sciences, University of Limpopo, Private Bag X1106, Sovenga 0727, South Africa ABSTRACT Worldwide there are more than 12000 species of copepods known, of which 4224 are symbiotic. Most of the symbiotic species belong to two orders, Poecilostomatoida (1771 species) and Siphonos- tomatoida (1840 species). The order Siphonostomatoida currently consists of 40 families that are mostly marine and infect invertebrates as well as vertebrates. In a report on the status of the marine biodiversity of South Africa, parasitic invertebrates were highlighted as taxa about which very little is known. A list was compiled of all the records of siphonostomatoids of marine fishes from southern African waters (from northern Angola along the Atlantic Ocean to northern Mozambique along the Indian Ocean, including the west coast of Madagascar and the Mozambique channel). Quite a few controversial reports exist that are discussed. The number of species recorded from southern African waters comprises a mere 9% of the known species. RÉSUMÉ Dans le monde, il y a plus de 12000 espèces de Copépodes connus, dont 4224 sont des symbiotes. La plupart de ces espèces symbiotes appartiennent à deux ordres, les Poecilostomatoida (1771 espèces) et les Siphonostomatoida (1840 espèces). L’ordre des Siphonostomatoida comprend actuellement 40 familles, qui sont pour la plupart marines, et qui infectent des invertébrés aussi bien que des vertébrés. Dans un rapport sur l’état de la biodiversité marine en Afrique du Sud, les invertébrés parasites ont été remarqués comme étant très peu connus.
    [Show full text]
  • Microgasterópodos Asociados Con El Banco Natural De La Pepitona Arca
    Ciencias Marinas (2005), 31(1A): 119–124 http://dx.doi.org/10.7773/cm.v31i11.71 Nota de Investigación/Research Note Microgasterópodos asociados con el banco natural de la pepitona Arca zebra (Swainson, 1833; Mollusca: Bivalvia) ubicado en la localidad de Chacopata, Estado Sucre, Venezuela Microgastropods associated with the natural bank of Arca zebra (Swainson, 1833; Mollusca: Bivalvia) located in Chacopata, Sucre State, Venezuela Samuel Narciso1 Antulio Prieto-Arcas2 Vanessa Acosta-Balbás2* 1 Fundación para la Defensa de la Naturaleza (FUDENA) Estación de Chichiriviche Estado Falcón, Venezuela E-mail: [email protected] 2 Departamento de Biología, Escuela de Ciencias Universidad de Oriente Apartado 245 Cumaná, Estado Sucre, Venezuela * E-mail: [email protected] Recibido en febrero de 2004; aceptado en agosto de 2004 Resumen El objetivo de este estudio fue analizar la taxonomía de los microgasterópodos asociados con el bivalvo Arca zebra, un importante recurso pesquero del nororiente de Venezuela. Las muestras se obtuvieron con rastras metálicas en la localidad de Chacopata, Estado Sucre, Venezuela. Se recolectaron un total de 381 gasterópodos pertenecientes a 25 especies incluidas en 12 familias, de las cuales las más diversas, de acuerdo con el número de especies, fueron Marginellidae (4), Collumbelidae (4) y Fisurellidae (3). Del total de las especies recolectadas, siete (Marginella haematita, Lucapina sowerby, Cantharus cancellarius, Crassispira tampanensis, Pyrgocytara coxi, Monilispira leusosyma y Terebra nasulla) representan nuevos registros para Venezuela, aunque pueden catalogarse como típicas del Atlántico tropical occidental. Palabras clave: micromoluscos, bivalvos, costas de Venezuela. Abstract The objective of this study was to analyze the taxonomy of microgastropods associated with the bivalve Arca zebra, an important fishing resource of the northern coast of Venezuela.
    [Show full text]
  • A Comparison of Copepoda (Order: Calanoida, Cyclopoida, Poecilostomatoida) Density in the Florida Current Off Fort Lauderdale, Florida
    Nova Southeastern University NSUWorks HCNSO Student Theses and Dissertations HCNSO Student Work 6-1-2010 A Comparison of Copepoda (Order: Calanoida, Cyclopoida, Poecilostomatoida) Density in the Florida Current Off orF t Lauderdale, Florida Jessica L. Bostock Nova Southeastern University, [email protected] Follow this and additional works at: https://nsuworks.nova.edu/occ_stuetd Part of the Marine Biology Commons, and the Oceanography and Atmospheric Sciences and Meteorology Commons Share Feedback About This Item NSUWorks Citation Jessica L. Bostock. 2010. A Comparison of Copepoda (Order: Calanoida, Cyclopoida, Poecilostomatoida) Density in the Florida Current Off Fort Lauderdale, Florida. Master's thesis. Nova Southeastern University. Retrieved from NSUWorks, Oceanographic Center. (92) https://nsuworks.nova.edu/occ_stuetd/92. This Thesis is brought to you by the HCNSO Student Work at NSUWorks. It has been accepted for inclusion in HCNSO Student Theses and Dissertations by an authorized administrator of NSUWorks. For more information, please contact [email protected]. Nova Southeastern University Oceanographic Center A Comparison of Copepoda (Order: Calanoida, Cyclopoida, Poecilostomatoida) Density in the Florida Current off Fort Lauderdale, Florida By Jessica L. Bostock Submitted to the Faculty of Nova Southeastern University Oceanographic Center in partial fulfillment of the requirements for the degree of Master of Science with a specialty in: Marine Biology Nova Southeastern University June 2010 1 Thesis of Jessica L. Bostock Submitted in Partial Fulfillment of the Requirements for the Degree of Masters of Science: Marine Biology Nova Southeastern University Oceanographic Center June 2010 Approved: Thesis Committee Major Professor :______________________________ Amy C. Hirons, Ph.D. Committee Member :___________________________ Alexander Soloviev, Ph.D.
    [Show full text]
  • New Records of Marine Ornamental Shrimps (Decapoda: Stenopodidea and Caridea) from the Gulf of Mannar, Tamil Nadu, India
    12 6 2010 the journal of biodiversity data 7 December 2016 Check List NOTES ON GEOGRAPHIC DISTRIBUTION Check List 12(6): 2010, 7 December 2016 doi: http://dx.doi.org/10.15560/12.6.2010 ISSN 1809-127X © 2016 Check List and Authors New records of marine ornamental shrimps (Decapoda: Stenopodidea and Caridea) from the Gulf of Mannar, Tamil Nadu, India Sanjeevi Prakash1, 3, Thipramalai Thangappan Ajith Kumar2* and Thanumalaya Subramoniam1 1 Centre for Climate Change Studies, Sathyabama University, Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai - 600119, Tamil Nadu, India 2 ICAR - National Bureau of Fish Genetic Resources, Canal Ring Road, Dilkusha Post, Lucknow - 226002, Uttar Pradesh, India 3 Current address: Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA * Corresponding author. E-mail: [email protected] Abstract: Marine ornamental shrimps found in from coral reefs have greatly affected their diversity and tropical coral reef waters are widely recognized for the distribution (Wabnitz et al. 2003). aquarium trade. Our survey of ornamental shrimps in Among all the ornamental shrimps, Stenopus the Gulf of Mannar, Tamil Nadu (India) has found three spp. and Lysmata spp. are the most attractive and species, which we identify as Stenopus hispidus Olivier, extensively traded organisms in the marine aquarium 1811, Lysmata debelius Bruce, 1983, and L. amboinensis industry (Calado 2008). Interestingly, these shrimps are De Man, 1888, based on morphology and color pattern. associates of fishes, in particular, the groupers and giant These shrimps are recorded for the first time in Gulf of moray eels (Gymnothorax spp.). These shrimps display a Mannar, Tamil Nadu.
    [Show full text]