Sur Ridge Field Guide: Monterey Bay National Marine Sanctuary
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Faunal Assemblage Structure on the Patton Seamount (Gulf of Alaska, USA)
Faunal Assemblage Structure on the Patton Seamount (Gulf of Alaska, USA) Gerald R. Hoff and Bradley Stevens Reprinted from the Alaska Fishery Research Bulletin Vol. 11 No. 1, Summer 2005 The Alaska Fisheries Research Bulletin can be found on the World Wide Web at URL: http://www.adfg.state.ak.us/pubs/afrb/afrbhome.php Alaska Fishery Research Bulletin 11(1):27–36. 2005. Copyright © 2005 by the Alaska Department of Fish and Game Faunal Assemblage Structure on the Patton Seamount (Gulf of Alaska, USA) Gerald R. Hoff and Bradley Stevens ABSTRACT: Epibenthic and demersal assemblages of fish and invertebrates on the Patton Seamount in the Gulf of Alaska, U.S.A., were studied in July 1999 using the Deep Sea Research Vehicle Alvin. Faunal associations with depth were described using video analysis of 8 dives from 151 to 3,375 m. A cluster analysis applied to the observations suggests three benthic faunal communities based on depth: 1) a shallow-water community (151–950 m) consisting mainly of rockfishes, flatfishes, sea stars, and attached suspension feeders, 2) a mid-depth community (400–1500 m) also consisting of numerous attached suspension-feeding organisms such as corals, sponges, crinoids, sea anemones, and sea cucumbers and fish such as the sablefishAnoplopoma fimbria and the giant grenadier Albatrossia pectoralis both of which were aggregated over a relatively narrow depth range, and 3) a deep-water community (500–3,375 m) consisting of fewer attached suspension feeders and more highly mobile species such as the Pacific grenadier Coryphaenoides acrolepis, popeye grenadier C. cinereus, Pacific flatnose Antimora microlepis, and large mobile crabs Macroregonia macrochira and Chionoecetes spp. -
CHECKLIST and BIOGEOGRAPHY of FISHES from GUADALUPE ISLAND, WESTERN MEXICO Héctor Reyes-Bonilla, Arturo Ayala-Bocos, Luis E
ReyeS-BONIllA eT Al: CheCklIST AND BIOgeOgRAphy Of fISheS fROm gUADAlUpe ISlAND CalCOfI Rep., Vol. 51, 2010 CHECKLIST AND BIOGEOGRAPHY OF FISHES FROM GUADALUPE ISLAND, WESTERN MEXICO Héctor REyES-BONILLA, Arturo AyALA-BOCOS, LUIS E. Calderon-AGUILERA SAúL GONzáLEz-Romero, ISRAEL SáNCHEz-ALCántara Centro de Investigación Científica y de Educación Superior de Ensenada AND MARIANA Walther MENDOzA Carretera Tijuana - Ensenada # 3918, zona Playitas, C.P. 22860 Universidad Autónoma de Baja California Sur Ensenada, B.C., México Departamento de Biología Marina Tel: +52 646 1750500, ext. 25257; Fax: +52 646 Apartado postal 19-B, CP 23080 [email protected] La Paz, B.C.S., México. Tel: (612) 123-8800, ext. 4160; Fax: (612) 123-8819 NADIA C. Olivares-BAñUELOS [email protected] Reserva de la Biosfera Isla Guadalupe Comisión Nacional de áreas Naturales Protegidas yULIANA R. BEDOLLA-GUzMáN AND Avenida del Puerto 375, local 30 Arturo RAMíREz-VALDEz Fraccionamiento Playas de Ensenada, C.P. 22880 Universidad Autónoma de Baja California Ensenada, B.C., México Facultad de Ciencias Marinas, Instituto de Investigaciones Oceanológicas Universidad Autónoma de Baja California, Carr. Tijuana-Ensenada km. 107, Apartado postal 453, C.P. 22890 Ensenada, B.C., México ABSTRACT recognized the biological and ecological significance of Guadalupe Island, off Baja California, México, is Guadalupe Island, and declared it a Biosphere Reserve an important fishing area which also harbors high (SEMARNAT 2005). marine biodiversity. Based on field data, literature Guadalupe Island is isolated, far away from the main- reviews, and scientific collection records, we pres- land and has limited logistic facilities to conduct scien- ent a comprehensive checklist of the local fish fauna, tific studies. -
Fao/Government Cooperative Programme Scientific Basis
FI:GCP/RLA/140/JPN TECHNICAL DOCUMENT No. 4 FAO/GOVERNMENT COOPERATIVE PROGRAMME SCIENTIFIC BASIS FOR ECOSYSTEM-BASED MANAGEMENT IN THE LESSER ANTILLES INCLUDING INTERACTIONS WITH MARINE MAMMALS AND OTHER TOP PREDATORS CRUISE REPORT FOR THE LAPE ECOSYSTEM SURVEY ON RV CELTIC EXPLORER (CE0607) FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Barbados, 2006 FI:GCP/RLA/140/JPN TECHNICAL DOCUMENT No. 4 FAO/GOVERNMENT COOPERATIVE PROGRAMME SCIENTIFIC BASIS FOR ECOSYSTEM-BASED MANAGEMENT IN THE LESSER ANTILLES INCLUDING INTERACTIONS WITH MARINE MAMMALS AND OTHER TOP PREDATORS CRUISE REPORT FOR THE LAPE ECOSYSTEM SURVEY ON RV CELTIC EXPLORER (CE0607) Lesser Antilles Pelagic Ecosystem Project (GCP/RLA/140/JPN) Bridgetown, Barbados FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Barbados, 2006 This technical report is one of a series of reports prepared during the course of the project identified on the title page. The conclusions and recommendations given in the report are those considered appropriate at the time of its preparation. They may be modified in the light of further knowledge gained at subsequent stages of the project. The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries All rights reserved. Reproduction and dissemination of material in this information product for educational or other non-commercial purposes are authorized without any prior written permission from the copyright holders provided the source is fully acknowledged. -
Evolutionary History of Inversions in the Direction of Architecture-Driven
bioRxiv preprint doi: https://doi.org/10.1101/2020.05.09.085712; this version posted May 10, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Evolutionary history of inversions in the direction of architecture- driven mutational pressures in crustacean mitochondrial genomes Dong Zhang1,2, Hong Zou1, Jin Zhang3, Gui-Tang Wang1,2*, Ivan Jakovlić3* 1 Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China. 2 University of Chinese Academy of Sciences, Beijing 100049, China 3 Bio-Transduction Lab, Wuhan 430075, China * Corresponding authors Short title: Evolutionary history of ORI events in crustaceans Abbreviations: CR: control region, RO: replication of origin, ROI: inversion of the replication of origin, D-I skew: double-inverted skew, LBA: long-branch attraction bioRxiv preprint doi: https://doi.org/10.1101/2020.05.09.085712; this version posted May 10, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Abstract Inversions of the origin of replication (ORI) of mitochondrial genomes produce asymmetrical mutational pressures that can cause artefactual clustering in phylogenetic analyses. It is therefore an absolute prerequisite for all molecular evolution studies that use mitochondrial data to account for ORI events in the evolutionary history of their dataset. -
Title First Records of the Snailfish Careproctus Lycopersicus (Cottoidei
First Records of the Snailfish Careproctus lycopersicus Title (Cottoidei: Liparidae) from the Western North Pacific Author(s) Kai, Yoshiaki; Matsuzaki, Koji; Mori, Toshiaki Citation Species Diversity (2019), 24(2): 115-118 Issue Date 2019-07-25 URL http://hdl.handle.net/2433/253532 © 2019 The Japanese Society of Systematic Zoology; 許諾条 Right 件に基づいて掲載しています。 Type Journal Article Textversion publisher Kyoto University Species Diversity 24: 115–118 Published online 25 July 2019 DOI: 10.12782/specdiv.24.115 First Records of the Snailfish Careproctus lycopersicus (Cottoidei: Liparidae) from the Western North Pacific Yoshiaki Kai1,3, Koji Matsuzaki2, and Toshiaki Mori2 1 Maizuru Fisheries Research Station, Field Science Education and Research Center, Kyoto University, Nagahama, Maizuru, Kyoto 625-0086, Japan E-mail: [email protected] 2 Marine Science Museum, Fukushima (Aquamarine Fukushima), Onahama, Iwaki, Fukushima 971-8101, Japan 3 Corresponding author (Received 8 March 2019; Accepted 14 May 2019) Four specimens (168.6–204.4 mm standard length) of Careproctus lycopersicus Orr, 2012, previously recorded from the Bering Sea and eastern Aleutian Islands, were collected from the southern Sea of Okhotsk (the Nemuro Strait, eastern Hokkaido, Japan). These specimens represent the first records of the species from the western North Pacific. A detailed description is provided for the specimens, including the intraspecific variations. The new standard Japanese name “Tomato- kon’nyaku-uo” is proposed for the species. Key Words: Teleostei, Actinopterygii, Sea of Okhotsk, Japan, distribution. Introduction Materials and Methods Snailfishes of the family Liparidae Scopoli, 1777 compose Counts, measurements, and descriptive terminology fol- a large and diverse group in the suborder Cottoidei, hav- low Orr and Maslenikov (2007). -
The 17Th International Colloquium on Amphipoda
Biodiversity Journal, 2017, 8 (2): 391–394 MONOGRAPH The 17th International Colloquium on Amphipoda Sabrina Lo Brutto1,2,*, Eugenia Schimmenti1 & Davide Iaciofano1 1Dept. STEBICEF, Section of Animal Biology, via Archirafi 18, Palermo, University of Palermo, Italy 2Museum of Zoology “Doderlein”, SIMUA, via Archirafi 16, University of Palermo, Italy *Corresponding author, email: [email protected] th th ABSTRACT The 17 International Colloquium on Amphipoda (17 ICA) has been organized by the University of Palermo (Sicily, Italy), and took place in Trapani, 4-7 September 2017. All the contributions have been published in the present monograph and include a wide range of topics. KEY WORDS International Colloquium on Amphipoda; ICA; Amphipoda. Received 30.04.2017; accepted 31.05.2017; printed 30.06.2017 Proceedings of the 17th International Colloquium on Amphipoda (17th ICA), September 4th-7th 2017, Trapani (Italy) The first International Colloquium on Amphi- Poland, Turkey, Norway, Brazil and Canada within poda was held in Verona in 1969, as a simple meet- the Scientific Committee: ing of specialists interested in the Systematics of Sabrina Lo Brutto (Coordinator) - University of Gammarus and Niphargus. Palermo, Italy Now, after 48 years, the Colloquium reached the Elvira De Matthaeis - University La Sapienza, 17th edition, held at the “Polo Territoriale della Italy Provincia di Trapani”, a site of the University of Felicita Scapini - University of Firenze, Italy Palermo, in Italy; and for the second time in Sicily Alberto Ugolini - University of Firenze, Italy (Lo Brutto et al., 2013). Maria Beatrice Scipione - Stazione Zoologica The Organizing and Scientific Committees were Anton Dohrn, Italy composed by people from different countries. -
Updated Checklist of Marine Fishes (Chordata: Craniata) from Portugal and the Proposed Extension of the Portuguese Continental Shelf
European Journal of Taxonomy 73: 1-73 ISSN 2118-9773 http://dx.doi.org/10.5852/ejt.2014.73 www.europeanjournaloftaxonomy.eu 2014 · Carneiro M. et al. This work is licensed under a Creative Commons Attribution 3.0 License. Monograph urn:lsid:zoobank.org:pub:9A5F217D-8E7B-448A-9CAB-2CCC9CC6F857 Updated checklist of marine fishes (Chordata: Craniata) from Portugal and the proposed extension of the Portuguese continental shelf Miguel CARNEIRO1,5, Rogélia MARTINS2,6, Monica LANDI*,3,7 & Filipe O. COSTA4,8 1,2 DIV-RP (Modelling and Management Fishery Resources Division), Instituto Português do Mar e da Atmosfera, Av. Brasilia 1449-006 Lisboa, Portugal. E-mail: [email protected], [email protected] 3,4 CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal. E-mail: [email protected], [email protected] * corresponding author: [email protected] 5 urn:lsid:zoobank.org:author:90A98A50-327E-4648-9DCE-75709C7A2472 6 urn:lsid:zoobank.org:author:1EB6DE00-9E91-407C-B7C4-34F31F29FD88 7 urn:lsid:zoobank.org:author:6D3AC760-77F2-4CFA-B5C7-665CB07F4CEB 8 urn:lsid:zoobank.org:author:48E53CF3-71C8-403C-BECD-10B20B3C15B4 Abstract. The study of the Portuguese marine ichthyofauna has a long historical tradition, rooted back in the 18th Century. Here we present an annotated checklist of the marine fishes from Portuguese waters, including the area encompassed by the proposed extension of the Portuguese continental shelf and the Economic Exclusive Zone (EEZ). The list is based on historical literature records and taxon occurrence data obtained from natural history collections, together with new revisions and occurrences. -
UC San Diego Bulletin of the Scripps Institution of Oceanography
UC San Diego Bulletin of the Scripps Institution of Oceanography Title Systematics, Variation, Distribution, And Biology Of Rockfishes Of The Subgenus Sebastomus (Pisces, Scorpaenidae, Sebastes) Permalink https://escholarship.org/uc/item/3g86j50t Author Chen, Lo-Chai Publication Date 1971-06-18 Peer reviewed eScholarship.org Powered by the California Digital Library University of California SYSTEMATICS, VARIATION, DISTRIBUTION, AND BIOLOGY OF ROCKFISHES OF THE SUBGENUS SEBASTOMUS (PISCES, SCORPAENIDAE, SEBASTES) BY LO-CHAI CHEN BULLETIN OF THE SCRIPPS INSTITUTION OF OCEANOGRAPHY UNIVERSITY OF CALIFORNIA, SAN DIEGO LA JOLLA, CALIFORNIA Vol ume 18 UNIVERSITY OF CALIFORNIA PRESS BULLETIN OF THE SCRIPPS INSTTTUTION OF OCEANOGRAPHY OF THE UNIVERSITY OF CALIFORNIA LA JOLLA, CALIFORNIA ADVISORY EDITORS: G. O. S. ARRHENIUS, C. S. Cox, E. W. FACER, C. H. HAND, TODD NEWBERRY, M. B. SCHAEFER, E. L. WINTERER Approved for publication May 15, 1970 Issued June 18, 1971 UNIVERSITY OF CALIFORNIA PRESS BERKELEY AND LOS ANGELES CALIFORNIA UNIVERSITY OF CALIFORNIA PRESS, LTD. LONDON, ENGLAND ISBN: 0-520-093-70-4 LIBRARY OF CONGRESS CATALOG CARD NUMBER: 70–631857 [CONTRIBUTION FROM THE SCRIPPS INSTITUTION OF OCEANOGRAPHY, NEW SERIES] © 1971 BY THE REGENTS OF THE UNIVERSITY OF CALIFORNIA PRINTED IN THE UNITED STATES OF AMERICA CONTENTS Abstract 1 Introduction 1 Acknowledgments 2 Materials and Methods 3 Taxonomy 4 Genus Sebastes Cuvier, 1829 4 Subgenus Sebastomus Gill, 1864 6 Key to north Pacific species referred to subgenus 8 Sebastomus Sebastes constellatus (Jordan and Gilbert, 1880) 9 Sebastes rosaceus Girard, 1854 11 Sebastes helvomaculatus Ayres, 1859 14 Sebastes simulator, sp. nov. 16 Sebastes ensifer, sp. nov. 19 Sebastes notius, sp. -
Hexasterophoran Glass Sponges of New Zealand (Porifera: Hexactinellida: Hexasterophora): Orders Hexactinosida, Aulocalycoida and Lychniscosida
Hexactinellida: Hexasterophora): Orders Hexactinosida, Aulocalycoida and Lychniscosida Aulocalycoida and Lychniscosida Hexactinellida: Hexasterophora): Orders Hexactinosida, The Marine Fauna of New Zealand: Hexasterophoran Glass Sponges Zealand (Porifera: ISSN 1174–0043; 124 Henry M. Reiswig and Michelle Kelly The Marine Fauna of New Zealand: Hexasterophoran Glass Sponges of New Zealand (Porifera: Hexactinellida: Hexasterophora): Orders Hexactinosida, Aulocalycoida and Lychniscosida Henry M. Reiswig and Michelle Kelly NIWA Biodiversity Memoir 124 COVER PHOTO Two unidentified hexasterophoran glass sponge species, the first possibly Farrea onychohexastera n. sp. (frilly white honeycomb sponge in several bushy patches), and the second possibly Chonelasma lamella, but also possibly C. chathamense n. sp. (lower left white fan), attached to the habitat-forming coral Solenosmilia variabilis, dominant at 1078 m on the Graveyard seamount complex of the Chatham Rise (NIWA station TAN0905/29: 42.726° S, 179.897° W). Image captured by DTIS (Deep Towed Imaging System) onboard RV Tangaroa, courtesy of NIWA Seamounts Programme (SFAS103), Oceans2020 (LINZ, MFish) and Rob Stewart, NIWA, Wellington (Photo: NIWA). This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ NATIONAL INSTITUTE OF WATER AND ATMOSPHERIC RESEARCH (NIWA) The Marine Fauna of New Zealand: Hexasterophoran Glass Sponges of New Zealand (Porifera: Hexactinellida: -
Morphology and Mathematics. by D'arcy Wentworth Thompson. The
( 857 ) XXVII.—Morphology and Mathematics. By D'Arcy Wentworth Thompson. (Read December 7, 1914. MS. received February 1, 1915. Issued separately June 22, 1915.) The study of Organic Form, which we call by GOETHE'S name of Morphology, is but a portion of that wider Science of Form which deals with the forms assumed by matter under all aspects and conditions, and, in a still wider sense, with Forms which are theoretically imaginable. The study of Form may be descriptive merely, or it may become analytical. We begin by describing the shape of an object in the simple words of common speech : we end by denning it in the precise language of mathematics ; and the one method tends to follow the other in strict scientific order and historical continuity. Thus, fer instance, the form of the earth, of a raindrop or a rainbow, the shape of the hanging chain, or the path of a stone thrown up into the air, may all be described, however inadequately, in common words ; but when we have learned to comprehend and to define the sphere, the catenary, or the parabola, we have made a wonderful and perhaps a manifold advance. The mathematical definition of a "form" has a quality of precision which was quite lacking in our earlier stage of mere description ; it is expressed in few words, or in still briefer symbols, and these words or symbols are so pregnant with meaning that thought itself is economised ; we are brought by means of it in touch with GALILEO'S aphorism, that " the Book of Nature is written in characters of Geometry." Next, we soon reach through mathematical analysis to mathematical synthesis ; we discover homologies or identities which were not obvious before, and which our descriptions obscured rather than revealed : as, for instance, when we learn that, however we hold our chain, or however we fire our bullet, the contour of the one or the path of the other is always mathematically homologous. -
An Integrative Systematic Framework Helps to Reconstruct Skeletal
Dohrmann et al. Frontiers in Zoology (2017) 14:18 DOI 10.1186/s12983-017-0191-3 RESEARCH Open Access An integrative systematic framework helps to reconstruct skeletal evolution of glass sponges (Porifera, Hexactinellida) Martin Dohrmann1*, Christopher Kelley2, Michelle Kelly3, Andrzej Pisera4, John N. A. Hooper5,6 and Henry M. Reiswig7,8 Abstract Background: Glass sponges (Class Hexactinellida) are important components of deep-sea ecosystems and are of interest from geological and materials science perspectives. The reconstruction of their phylogeny with molecular data has only recently begun and shows a better agreement with morphology-based systematics than is typical for other sponge groups, likely because of a greater number of informative morphological characters. However, inconsistencies remain that have far-reaching implications for hypotheses about the evolution of their major skeletal construction types (body plans). Furthermore, less than half of all described extant genera have been sampled for molecular systematics, and several taxa important for understanding skeletal evolution are still missing. Increased taxon sampling for molecular phylogenetics of this group is therefore urgently needed. However, due to their remote habitat and often poorly preserved museum material, sequencing all 126 currently recognized extant genera will be difficult to achieve. Utilizing morphological data to incorporate unsequenced taxa into an integrative systematics framework therefore holds great promise, but it is unclear which methodological approach best suits this task. Results: Here, we increase the taxon sampling of four previously established molecular markers (18S, 28S, and 16S ribosomal DNA, as well as cytochrome oxidase subunit I) by 12 genera, for the first time including representatives of the order Aulocalycoida and the type genus of Dactylocalycidae, taxa that are key to understanding hexactinellid body plan evolution. -
The Form and Function of the Hypertrophied Tentacle of Deep-Sea Jelly Atolla Spp
The Form and Function of the Hypertrophied Tentacle of Deep-Sea Jelly Atolla spp. Alexis Walker, University of California Santa Cruz Mentors: Bruce Robison, Rob Sherlock, Kristine Walz, and Henk-Jan Hoving, George Matsumoto Summer 2011 Keywords: Atolla, tentacle, histology, SEM, hypertrophied ABSTRACT In situ observations and species collection via remotely operated vehicle, laboratory observations, and structural microscopy were used with the objective to shed light on the form and subsequently the function of the hypertrophied tentacle exhibited by some Atolla species. Based upon the density of nematocysts, length, movement, and ultrastructure of the hypertrophied tentacle, the function of the tentacle is likely reproductive, sensory, and/or utilized in food acquisition. INTRODUCTION The meso- and bathypelagic habitats are of the largest and least known on the planet. They are extreme environments, characterized by high atmospheric pressure, zero to low light levels, scarcity of food sources, and cold water that is low in oxygen content. Animals that live and even thrive in these habitats exhibit unique characteristics enabling them to survive in such seemingly inhospitable conditions. One such organism, the deep- sea medusa of the genus Atolla, trails a singular elongated tentacle, morphologically 1 distinct from the marginal tentacles. This structure, often referred to as a trailing or hypertrophied tentacle, is unique within the cnidarian phylum. Ernst Haeckel described the first species of this deep pelagic jelly, Atolla wyvillei, during the 1872-1876 HMS Challenger Expedition. In the subsequent 135 years, the genus Atolla has expanded to several species not yet genetically established, which have been observed in all of the worlds oceans (Russell 1970).