The Form and Function of the Hypertrophied Tentacle of Deep-Sea Jelly Atolla Spp
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Educators' Resource Guide
EDUCATORS' RESOURCE GUIDE Produced and published by 3D Entertainment Distribution Written by Dr. Elisabeth Mantello In collaboration with Jean-Michel Cousteau’s Ocean Futures Society TABLE OF CONTENTS TO EDUCATORS .................................................................................................p 3 III. PART 3. ACTIVITIES FOR STUDENTS INTRODUCTION .................................................................................................p 4 ACTIVITY 1. DO YOU Know ME? ................................................................. p 20 PLANKton, SOURCE OF LIFE .....................................................................p 4 ACTIVITY 2. discoVER THE ANIMALS OF "SECRET OCEAN" ......... p 21-24 ACTIVITY 3. A. SECRET OCEAN word FIND ......................................... p 25 PART 1. SCENES FROM "SECRET OCEAN" ACTIVITY 3. B. ADD color to THE octoPUS! .................................... p 25 1. CHristmas TREE WORMS .........................................................................p 5 ACTIVITY 4. A. WHERE IS MY MOUTH? ..................................................... p 26 2. GIANT BasKET Star ..................................................................................p 6 ACTIVITY 4. B. WHat DO I USE to eat? .................................................. p 26 3. SEA ANEMONE AND Clown FISH ......................................................p 6 ACTIVITY 5. A. WHO eats WHat? .............................................................. p 27 4. GIANT CLAM AND ZOOXANTHELLAE ................................................p -
Appendix to Taxonomic Revision of Leopold and Rudolf Blaschkas' Glass Models of Invertebrates 1888 Catalogue, with Correction
http://www.natsca.org Journal of Natural Science Collections Title: Appendix to Taxonomic revision of Leopold and Rudolf Blaschkas’ Glass Models of Invertebrates 1888 Catalogue, with correction of authorities Author(s): Callaghan, E., Egger, B., Doyle, H., & E. G. Reynaud Source: Callaghan, E., Egger, B., Doyle, H., & E. G. Reynaud. (2020). Appendix to Taxonomic revision of Leopold and Rudolf Blaschkas’ Glass Models of Invertebrates 1888 Catalogue, with correction of authorities. Journal of Natural Science Collections, Volume 7, . URL: http://www.natsca.org/article/2587 NatSCA supports open access publication as part of its mission is to promote and support natural science collections. NatSCA uses the Creative Commons Attribution License (CCAL) http://creativecommons.org/licenses/by/2.5/ for all works we publish. Under CCAL authors retain ownership of the copyright for their article, but authors allow anyone to download, reuse, reprint, modify, distribute, and/or copy articles in NatSCA publications, so long as the original authors and source are cited. TABLE 3 – Callaghan et al. WARD AUTHORITY TAXONOMY ORIGINAL SPECIES NAME REVISED SPECIES NAME REVISED AUTHORITY N° (Ward Catalogue 1888) Coelenterata Anthozoa Alcyonaria 1 Alcyonium digitatum Linnaeus, 1758 2 Alcyonium palmatum Pallas, 1766 3 Alcyonium stellatum Milne-Edwards [?] Sarcophyton stellatum Kükenthal, 1910 4 Anthelia glauca Savigny Lamarck, 1816 5 Corallium rubrum Lamarck Linnaeus, 1758 6 Gorgonia verrucosa Pallas, 1766 [?] Eunicella verrucosa 7 Kophobelemon (Umbellularia) stelliferum -
8.4 the Significance of Ocean Deoxygenation for Continental Margin Mesopelagic Communities J
8.4 The significance of ocean deoxygenation for continental margin mesopelagic communities J. Anthony Koslow 8.4 The significance of ocean deoxygenation for continental margin mesopelagic communities J. Anthony Koslow Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia and Scripps Institution of Oceanography, University of California, SD, La Jolla, CA 92093 USA. Email: [email protected] Summary • Global climate models predict global warming will lead to declines in midwater oxygen concentrations, with greatest impact in regions of oxygen minimum zones (OMZ) along continental margins. Time series from these regions indicate that there have been significant changes in oxygen concentration, with evidence of both decadal variability and a secular declining trend in recent decades. The areal extent and volume of hypoxic and suboxic waters have increased substantially in recent decades with significant shoaling of hypoxic boundary layers along continental margins. • The mesopelagic communities in OMZ regions are unique, with the fauna noted for their adaptations to hypoxic and suboxic environments. However, mesopelagic faunas differ considerably, such that deoxygenation and warming could lead to the increased dominance of subtropical and tropical faunas most highly adapted to OMZ conditions. • Denitrifying bacteria within the suboxic zones of the ocean’s OMZs account for about a third of the ocean’s loss of fixed nitrogen. Denitrification in the eastern tropical Pacific has varied by about a factor of 4 over the past 50 years, about half due to variation in the volume of suboxic waters in the Pacific. Continued long- term deoxygenation could lead to decreased nutrient content and hence decreased ocean productivity and decreased ocean uptake of carbon dioxide (CO2). -
Multiple Observations of Bigfin Squid (Magnapinna Sp.) in the Great
PLOS ONE RESEARCH ARTICLE Multiple observations of Bigfin Squid (Magnapinna sp.) in the Great Australian Bight reveal distribution patterns, morphological characteristics, and rarely seen behaviour 1 2 1 3 Deborah OsterhageID *, Hugh MacIntosh , Franziska Althaus , Andrew Ross 1 CSIRO Oceans and Atmosphere, Commonwealth Scientific and Industrial Research Organisation, Hobart, a1111111111 Tasmania, Australia, 2 Museums Victoria, Melbourne, Victoria, Australia, 3 CSIRO Energy, Commonwealth a1111111111 Scientific and Industrial Research Organisation, Australian Resources Research Centre, Kensington, a1111111111 Western Australia, Australia a1111111111 a1111111111 * [email protected] Abstract OPEN ACCESS One of the most remarkable groups of deep-sea squids is the Magnapinnidae, known for Citation: Osterhage D, MacIntosh H, Althaus F, their large fins and strikingly long arm and tentacle filaments. Little is known of their biology Ross A (2020) Multiple observations of Bigfin and ecology as most specimens are damaged and juvenile, and in-situ sightings are sparse, Squid (Magnapinna sp.) in the Great Australian numbering around a dozen globally. As part of a recent large-scale research programme in Bight reveal distribution patterns, morphological the Great Australian Bight, Remotely Operated Vehicles and a towed camera system were characteristics, and rarely seen behaviour. PLoS ONE 15(11): e0241066. https://doi.org/10.1371/ deployed in depths of 946±3258 m resulting in five Magnapinna sp. sightings. These repre- journal.pone.0241066 sent the first records of Bigfin Squid in Australian waters, and more than double the known Editor: Johann Mourier, Institut de recherche pour records from the southern hemisphere, bolstering a hypothesis of cosmopolitan distribution. le developpement, FRANCE As most previous observations have been of single Magnapinna squid these multiple sight- Received: May 9, 2020 ings have been quite revealing, being found in close spatial and temporal proximity of each other. -
Marine Invertebrate Field Guide
Marine Invertebrate Field Guide Contents ANEMONES ....................................................................................................................................................................................... 2 AGGREGATING ANEMONE (ANTHOPLEURA ELEGANTISSIMA) ............................................................................................................................... 2 BROODING ANEMONE (EPIACTIS PROLIFERA) ................................................................................................................................................... 2 CHRISTMAS ANEMONE (URTICINA CRASSICORNIS) ............................................................................................................................................ 3 PLUMOSE ANEMONE (METRIDIUM SENILE) ..................................................................................................................................................... 3 BARNACLES ....................................................................................................................................................................................... 4 ACORN BARNACLE (BALANUS GLANDULA) ....................................................................................................................................................... 4 HAYSTACK BARNACLE (SEMIBALANUS CARIOSUS) .............................................................................................................................................. 4 CHITONS ........................................................................................................................................................................................... -
A Link to the Report Hv 2021-22
HV 2021-22 ISSN 2298-9137 HAF- OG VATNARANNSÓKNIR MARINE AND FRESHWATER RESEARCH IN ICELAND Sampling for the MEESO project during the International Ecosystem Summer Survey in Nordic Seas on the R/V Arni Fridriksson in July 2020 Ástþór Gíslason, Klara Jakobsdóttir, Kristinn Guðmundsson, Svanhildur Egilsdóttir, Teresa Silva HAFNARFJÖRÐUR - MAÍ 2021 Sampling for the MEESO project during the International Ecosystem Summer Survey in Nordic Seas on the R/V Arni Fridriksson in July 2020 Ástþór Gíslason, Klara Jakobsdóttir, Kristinn Guðmundsson, Svanhildur Egilsdóttir, Teresa Silva Haf‐ og vatnarannsóknir Marine and Freshwater Research in Iceland Upplýsingablað Titill: Sampling for the MEESO project during the International Ecosystem Summer Survey in Nordic Seas on the R/V Arni Fridriksson in July 2020 Höfundar: Ástþór Gíslason, Klara Jakobsdóttir, Kristinn Guðmundsson, Svanhildur Egilsdóttir, Teresa Silva Skýrsla nr: Verkefnisstjóri: Verknúmer: HV‐2021‐22 Ástþór Gíslason 12471 ISSN Fjöldi síðna: Útgáfudagur: 2298‐9137 26 7. maí 2021 Unnið fyrir: Dreifing: Yfirfarið af: Hafrannsóknastofnun Opin Anna Heiða Ólafsdóttir Ágrip Gagnasöfnun fyrir alþjóðlegt rannsóknaverkefni um lífríki miðsjávarlaga (MEESO), sem styrkt er af Evrópusambandinu, fór fram í rannsóknaleiðangri Hafrannsóknastofnunar á uppsjávarvistkerfi norðurhafa að sumarlagi sumarið 2020. Tilgangurinn var að rannsaka magn, dreifingu og samsetningu miðsjávarfánu í tengslum við umhverfisþætti og vöxt og viðgang plöntsvifs. Meginsvæði rannsóknarinnar fylgdi sniði sem liggur nokkurn veginn eftir 61°50’N‐breiddarbaug, frá 38°49’V og að 16°05’V, þ.e. frá Grænlandshafi yfir Reykjaneshrygg og inn í Suðurdjúp, sem og á stöð í Grindavíkurdýpi. Eftir endilöngu sniðinu var u.þ.b. 50 m þykkt blöndunarlag sem svifgróður virtist dafna í. Samkvæmt bergmálsmælingum voru tvö meginlög miðsjávarlífvera. -
The Pelagic Oceanic Assemblages of the Sargasso Sea Around Bermuda Martin V
The Pelagic Oceanic Assemblages of the Sargasso Sea Around Bermuda Martin V. Angel Number 1 Sargasso Sea Alliance Science Report Series When referenced this report should be referred to as: Angel, M.V. 2011. The Pelagic Ocean Assemblages of the Sargasso Sea Around Bermuda. Sargasso Sea Alliance Science Report Series, No 1, 25 pp. ISBN 978-0-9847520-1-0 The Sargasso Sea Alliance is led by the Bermuda Government and aims to promote international awareness of the importance of the Sargasso Sea and to mobilise support from a wide variety of national and international organisations, governments, donors and users for protection measures for the Sargasso Sea. Further details: Dr David Freestone, Executive Director, Sargasso Sea Alliance, Suite 300, 1630 Connecticut Avenue NW, Washington D.C., 20009, USA. Email: [email protected] Kate K. Morrison, Deputy Director, at the same address Email: [email protected] The Secretariat of the Sargasso Sea Alliance is hosted by the Washington D.C. Office of the International Union for the Conservation of Nature (IUCN). Website is www.sargassoalliance.org This case is being produced with generous support of donors to the Sargasso Sea Alliance: Ricardo Cisneros, Erik H. Gordon, JM Kaplan Fund, Richard Rockefeller, David E. Shaw, and the Waitt Foundation. Additional support provided by: WWF Sweden and the Pew Environment Group. Cover photo: Porbeagle shark, A. Murch. ISBN 978-0-9847520-1-0 The Pelagic Oceanic Assemblages of the Sargasso Sea Around Bermuda Martin V. Angel Research Fellow National Oceanography Centre Southampton, UK Summary Science and Supporting Evidence Case Foreword etween 2010 AND 2012 a large number of authors from seven different countries and B 26 separate organisations developed a scientific case to establish the global importance of the Sargasso Sea. -
Structure and Trophic Ecology of a Low Latitude Midwater Decapod and Mysid Assemblage
MARINE ECOLOGY PROGRESS SERIES Vol. 109: 143-156,1994 Published June 23 Mar. Ecol. Prog. Ser. l Structure and trophic ecology of a low latitude midwater decapod and mysid assemblage Thomas L. Hopkinsl, Mark E. lock^, John V. Gartner ~r~,Joseph J. ~orres' 'Department of Marine Science, 140 Seventh Avenue South. University of South Florida, St. Petersburg, Florida 33701-5016, USA Florida Marine Research Institute. Department of Environmental Protection. 100 8th Street S.E., St. Petersburg, Florida 33701, USA 3~t.Petersburg Junior College. Natural Science, 6605 5th Avenue N., St. Petersburg. Florida 33710. USA ABSTRACT: The micronektonic crustacean assemblage in the eastern Gulf of Mexico is an extension of the low latitude Atlantic and Caribbean faunas. Species showed highly varying die1 distribution pat- terns ranging from a strong vertical migration to the epipelagic zone to absence of any migration result- ing in a permanent residence deep in the mesopelagic zone. As in other low latitude areas, decapod species with variegated pigment patterns centered above 650 m during the day, whereas 'all-red' spe- cies centered below this depth. Standmg stocks were estimated at 0.18 g dry wt m-2 and 3 ind. m-2 in the upper 1000 m. Diet analysis revealed that crustaceans dominate as the main food biomass of sergestids (e.g. copepods, ostracods, euphausiids) while aristeids (Gennadas spp.) and carideans feed heavily on both fish and crustaceans. Among mysids, Gnathophausia ingens ingests mostly fish while eucopiids are primarily copepod feeders. Other common diet items of the micronektonic crustacean assemblage are chaetognaths, molluscs (pteropods, heteropods) and large phaeodarian radiolarians. -
A Case Study with the Monospecific Genus Aegina
MARINE BIOLOGY RESEARCH, 2017 https://doi.org/10.1080/17451000.2016.1268261 ORIGINAL ARTICLE The perils of online biogeographic databases: a case study with the ‘monospecific’ genus Aegina (Cnidaria, Hydrozoa, Narcomedusae) Dhugal John Lindsaya,b, Mary Matilda Grossmannc, Bastian Bentlaged,e, Allen Gilbert Collinsd, Ryo Minemizuf, Russell Ross Hopcroftg, Hiroshi Miyakeb, Mitsuko Hidaka-Umetsua,b and Jun Nishikawah aEnvironmental Impact Assessment Research Group, Research and Development Center for Submarine Resources, Japan Agency for Marine- Earth Science and Technology (JAMSTEC), Yokosuka, Japan; bLaboratory of Aquatic Ecology, School of Marine Bioscience, Kitasato University, Sagamihara, Japan; cMarine Biophysics Unit, Okinawa Institute of Science and Technology (OIST), Onna, Japan; dDepartment of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA; eMarine Laboratory, University of Guam, Mangilao, USA; fRyo Minemizu Photo Office, Shimizu, Japan; gInstitute of Marine Science, University of Alaska Fairbanks, Alaska, USA; hDepartment of Marine Biology, Tokai University, Shizuoka, Japan ABSTRACT ARTICLE HISTORY Online biogeographic databases are increasingly being used as data sources for scientific papers Received 23 May 2016 and reports, for example, to characterize global patterns and predictors of marine biodiversity and Accepted 28 November 2016 to identify areas of ecological significance in the open oceans and deep seas. However, the utility RESPONSIBLE EDITOR of such databases is entirely dependent on the quality of the data they contain. We present a case Stefania Puce study that evaluated online biogeographic information available for a hydrozoan narcomedusan jellyfish, Aegina citrea. This medusa is considered one of the easiest to identify because it is one of KEYWORDS very few species with only four large tentacles protruding from midway up the exumbrella and it Biogeography databases; is the only recognized species in its genus. -
CNIDARIA Corals, Medusae, Hydroids, Myxozoans
FOUR Phylum CNIDARIA corals, medusae, hydroids, myxozoans STEPHEN D. CAIRNS, LISA-ANN GERSHWIN, FRED J. BROOK, PHILIP PUGH, ELLIOT W. Dawson, OscaR OcaÑA V., WILLEM VERvooRT, GARY WILLIAMS, JEANETTE E. Watson, DENNIS M. OPREsko, PETER SCHUCHERT, P. MICHAEL HINE, DENNIS P. GORDON, HAMISH J. CAMPBELL, ANTHONY J. WRIGHT, JUAN A. SÁNCHEZ, DAPHNE G. FAUTIN his ancient phylum of mostly marine organisms is best known for its contribution to geomorphological features, forming thousands of square Tkilometres of coral reefs in warm tropical waters. Their fossil remains contribute to some limestones. Cnidarians are also significant components of the plankton, where large medusae – popularly called jellyfish – and colonial forms like Portuguese man-of-war and stringy siphonophores prey on other organisms including small fish. Some of these species are justly feared by humans for their stings, which in some cases can be fatal. Certainly, most New Zealanders will have encountered cnidarians when rambling along beaches and fossicking in rock pools where sea anemones and diminutive bushy hydroids abound. In New Zealand’s fiords and in deeper water on seamounts, black corals and branching gorgonians can form veritable trees five metres high or more. In contrast, inland inhabitants of continental landmasses who have never, or rarely, seen an ocean or visited a seashore can hardly be impressed with the Cnidaria as a phylum – freshwater cnidarians are relatively few, restricted to tiny hydras, the branching hydroid Cordylophora, and rare medusae. Worldwide, there are about 10,000 described species, with perhaps half as many again undescribed. All cnidarians have nettle cells known as nematocysts (or cnidae – from the Greek, knide, a nettle), extraordinarily complex structures that are effectively invaginated coiled tubes within a cell. -
Articles and Plankton
Ocean Sci., 15, 1327–1340, 2019 https://doi.org/10.5194/os-15-1327-2019 © Author(s) 2019. This work is distributed under the Creative Commons Attribution 4.0 License. The Pelagic In situ Observation System (PELAGIOS) to reveal biodiversity, behavior, and ecology of elusive oceanic fauna Henk-Jan Hoving1, Svenja Christiansen2, Eduard Fabrizius1, Helena Hauss1, Rainer Kiko1, Peter Linke1, Philipp Neitzel1, Uwe Piatkowski1, and Arne Körtzinger1,3 1GEOMAR, Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany 2University of Oslo, Blindernveien 31, 0371 Oslo, Norway 3Christian Albrecht University Kiel, Christian-Albrechts-Platz 4, 24118 Kiel, Germany Correspondence: Henk-Jan Hoving ([email protected]) Received: 16 November 2018 – Discussion started: 10 December 2018 Revised: 11 June 2019 – Accepted: 17 June 2019 – Published: 7 October 2019 Abstract. There is a need for cost-efficient tools to explore 1 Introduction deep-ocean ecosystems to collect baseline biological obser- vations on pelagic fauna (zooplankton and nekton) and es- The open-ocean pelagic zones include the largest, yet least tablish the vertical ecological zonation in the deep sea. The explored habitats on the planet (Robison, 2004; Webb et Pelagic In situ Observation System (PELAGIOS) is a 3000 m al., 2010; Ramirez-Llodra et al., 2010). Since the first rated slowly (0.5 m s−1) towed camera system with LED il- oceanographic expeditions, oceanic communities of macro- lumination, an integrated oceanographic sensor set (CTD- zooplankton and micronekton have been sampled using nets O2) and telemetry allowing for online data acquisition and (Wiebe and Benfield, 2003). Such sampling has revealed a video inspection (low definition). -
New Record of Nausithoe Werneri (Scyphozoa, Coronatae
ZooKeys 984: 1–21 (2020) A peer-reviewed open-access journal doi: 10.3897/zookeys.984.56380 RESEARCH ARTICLE https://zookeys.pensoft.net Launched to accelerate biodiversity research New record of Nausithoe werneri (Scyphozoa, Coronatae, Nausithoidae) from the Brazilian coast and a new synonymy for Nausithoe maculata Clarissa Garbi Molinari1, Maximiliano Manuel Maronna1, André Carrara Morandini1,2 1 Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, travessa 14, n. 101, Cidade Universitária, São Paulo, SP, 05508-090, Brazil 2 Centro de Biologia Marinha, Universidade de São Paulo, Rodovia Manuel Hypólito do Rego km 131.5, São Sebastião, SP, 11600-000, Brazil Corresponding author: Clarissa G. Molinari ([email protected]) Academic editor: B.W. Hoeksema | Received 10 July 2020 | Accepted 20 September 2020 | Published 4 November 2020 http://zoobank.org/22EB0B21-7A27-43FB-B902-58061BA59B73 Citation: Molinari CG, Maronna MM, Morandini AC (2020) New record of Nausithoe werneri (Scyphozoa, Coronatae, Nausithoidae) from the Brazilian coast and a new synonymy for Nausithoe maculata. ZooKeys 984: 1–21. https://doi.org/10.3897/zookeys.984.56380 Abstract The order Coronatae (Scyphozoa) includes six families, of which Nausithoidae Haeckel, 1880 is the most diverse with 26 species. Along the Brazilian coast, three species of the genus Nausithoe Kölliker, 1853 have been recorded: Nausithoe atlantica Broch, 1914, Nausithoe punctata Kölliker, 1853, and Nausithoe aurea Silveira & Morandini, 1997. Living polyps (n = 9) of an unidentified nausithoid were collected in September 2002 off Arraial do Cabo (Rio de Janeiro, southeastern Brazil) at a depth of 227 m, and have been kept in culture since then.