Educators' Resource Guide

Total Page:16

File Type:pdf, Size:1020Kb

Educators' Resource Guide EDUCATORS' RESOURCE GUIDE Produced and published by 3D Entertainment Distribution Written by Dr. Elisabeth Mantello In collaboration with Jean-Michel Cousteau’s Ocean Futures Society TABLE OF CONTENTS TO EDUCATORS .................................................................................................p 3 III. PART 3. ACTIVITIES FOR STUDENTS INTRODUCTION .................................................................................................p 4 ACTIVITY 1. DO YOU Know ME? ................................................................. p 20 PLANKton, SOURCE OF LIFE .....................................................................p 4 ACTIVITY 2. discoVER THE ANIMALS OF "SECRET OCEAN" ......... p 21-24 ACTIVITY 3. A. SECRET OCEAN word FIND ......................................... p 25 PART 1. SCENES FROM "SECRET OCEAN" ACTIVITY 3. B. ADD color to THE octoPUS! .................................... p 25 1. CHristmas TREE WORMS .........................................................................p 5 ACTIVITY 4. A. WHERE IS MY MOUTH? ..................................................... p 26 2. GIANT BasKET Star ..................................................................................p 6 ACTIVITY 4. B. WHat DO I USE to eat? .................................................. p 26 3. SEA ANEMONE AND Clown FISH ......................................................p 6 ACTIVITY 5. A. WHO eats WHat? .............................................................. p 27 4. GIANT CLAM AND ZOOXANTHELLAE ................................................p 7 ACTIVITY 5. B. DIFFERENT diets AND waYS OF GETTING food .... p 27 5. Arrow CRAB ...............................................................................................p 8 ACTIVITY 6. WHat IS THEIR Place IN THE food CHAIN? ............. p 28 6. BANDED CLEANER SHRIMP ....................................................................p 8 ACTIVITY 7. HOW DO THEY GET FOOD? .................................................. p 29 7. BlacK-SPotted SEA CUCUMBER .......................................................p 9 ACTIVITY 8. DEFENSE TECHNIQUES Crossword ............................ p 29 8. OctoPUS, THE SOFT INTELLIGENCE .................................................p 10 ACTIVITY 9. HELPFUL relationsHIPS .................................................... p 30 9. GOBIES AND BLENNIES ............................................................................p 11 ACTIVITY 10. WHat DO YOU Know ABOUT PLANKton? MINI QUIZ ... p 30 10. SPotted MORAY EEL ..............................................................................p 11 ACTIVITY 11. SECRET OCEAN FUN facts QUIZ .................................... p 30 11. GIANT HERMIT CRAB .................................................................................p 12 12. CARIBBEAN SPINY Lobster ANSWERS TO activities ......................................................................................... p 31 AND SPANISH SLIPPER Lobster ..............................................................p 11 13. SEA HARES .....................................................................................................p 13 14. MARKET SQUID ...........................................................................................p 13 15. Crown-OF-THORNS ................................................................................p 14 16. RED LIONFISH ..............................................................................................p 15 17. Manta RAY ...................................................................................................p 15 PART 2. SURVIVAL STRATEGIES A. A WORD ABOUT THE LINKS BETWEEN ALL ORGANISMS, LARGE AND SMALL ....................................................p 16 B. EATING TO SURVIVE ..................................................................................p 16 1. Phytoplankton and zooplankton 2. A diversified diet: other food sources 3. Detritus and sediment: the diet of reef recyclers C. DEFENSE MECHANISMS AND PROTECTIVE STRATEGIES FOR SURVIVAL .........................................................................p 17 1. Hiding in holes, crevices and caves 2. Chemical weapons 3. Schooling behavior and massive reproduction as protection A WORD ON THE BREAKTHROUGH FILMING TECHNOLOGY 4. Carapaces and shells The images in “Jean-Michel Cousteau’s Secret Ocean” were captured 5. Camouflage thanks to the development of new filming tools that allow underwater 6. The ultimate strategist, the octopus shoots in 3D, Ultra-HD 5K, slow motion, close up, macro, and with D. HELPFUL PARTNERSHIPS .........................................................................p 18 motion control. Three years of research and development were 1. The sea anemone and the clownfish: a win-win collaboration required to obtain these final images. Thanks to these breakthrough 2. The giant clam and its food-producing partners filming techniques, your students will literally dive into this virtually 3. Banded cleaner shrimp, a health service for fish unknown new underwater world as if they were there. 4. The goby, bodyguard to a blind shrimp 5. Manta ray and small fish The film was shot in several underwater environments, including E. A BLUE PLANET WHERE EVERYTHING IS CONNECTED .............p 19 Bimini and other islands in the Bahamas, Fiji and Catalina Island off of Southern California. This Educator’s Guide was written by Dr. Elisabeth Mantello in collaboration with Jean-Michel Cousteau’s Ocean Futures Society Special thanks to Marine Biologist Holly Lohuis and Dr. Richard Murphy Edited by Alison Martin Illustrations by Joëlle Baron for 3D Entertainment Distribution Produced and published by 3D Entertainment Distribution For additional resources, please visit online www.SECRETOCEAN-THEFILM.com 2 JEAN-MICHEL Cousteau’S SECRET OCEAN © 2015 3D ENTERTAINMENT DISTRIBUTION Ltd. - All rights reserved TO EDUCATORS Using breakthrough technology for the filming of Secret“ Ocean”, Jean-Michel Cousteau, son of ocean pioneer Jacques Cousteau, takes you and your students on a unique dive to encounter animals, seldom seen by even the most experienced divers, such as Christmas tree worms, basket stars, banded cleaner shrimp and tiny fish such as gobies and blennies. During your virtual dive with Jean-Michel Cousteau and biologist Holly Lohuis, you and your students will also come close to larger animals such as the giant clam, hammerhead sharks and a manta ray, as well as follow the octopus, an incredibly intelligent invertebrate that Jacques Cousteau used to call “the soft intelligence”. While protecting the large marine animals such as whales, dolphins and sharks is more than ever essential, one should not forget that these great animals represent only the top of the food chain. “Jean-Michel Cousteau’s Secret Ocean” gives your students a bigger conservation picture by helping them discover the crucial importance of protecting this secret world within the ocean that is the bottom of the food chain on which everything else in the ocean and on our planet depends. This Educator’s Guide has been designed to enhance your students’ experience and enjoyment of the film Secret“ Ocean” by discovering and/or becoming more familiar with the sea creatures they will see. We hope your students will then better understand how much their own life depends on the smallest life forms in the ocean. As “people protect what they love,” we hope your students will fall so much in love with these animals that they will help protect them. How to use this Guide: The Educator’s Guide is divided into three distinct parts. Part 1 and Part 2 are dedicated to the educator. Part 1, “SCENES FROM SECRET OCEAN”, introduces seventeen (17) of the animals appearing in the film. It contains a short identification file for each of these animals, briefly outlining its main characteristics and survival strategies. Animals are presented in order of appearance. Part 2, “SURVIVAL STRATEGIES”, outlines some of the survival strategies these animals have developed. It focuses on the creatures’ adaptation to their environment in order to survive, i.e. their type of diet, ways of catching food and ways of protecting themselves from predators. It also describes how two of these animals – the Crown-of-thorns and the red lionfish - have become destructive invaders due to human errors. Finally, it demonstrates how everything in the sea and on our planet is connected. This relates to marine organisms, to all forms of life on the planet and to humans as we significantly impact the environment. The third part, “ACTIVITIES FOR STUDENTS”, provides activities for your students to discover and/or learn more about the animals appearing in the film. They can be done before they see “Secret Ocean” and/or after they have seen the film. The “Copy me” pages are meant to be photocopied and distributed to the students. These activities are intended to lead to meaningful student-based research and interesting discussion in the classroom. The material has been developed for students age 10 to 16. Educators will choose and adapt the activities best suited for their particular class. “… On an isolated riverbank in the Amazon, just as we had released a rescued sea otter named Cacha, my father turned to me, full of emotion, and said, “Jean-Michel, people protect what they love.” That became for me a motto of my father’s work and an emblem of the commitment we all must make to the world that surrounds us.” Jean-Michel Cousteau, “My Father, the Captain,” 2010
Recommended publications
  • Cone Snail Case
    Cone Snail case Cone snail molecular phylogeny Cone snail video Snail Venom Yields Potent Painkiller, But Delivering The Drug Is Tricky Updated August 4, 201510:52 AM ETPublished August 3, 20153:30 PM ET http://www.npr.org/sections/health-shots/2015/08/03/428990755/snail-venom- yields-potent-painkiller-but-delivering-the-drug-is-tricky Magician’s cone (Conus magus) The magician’s cone, Conus magus, is a fish-hunting, or piscivorous cone snail found in the Western Pacific. It is so common in some of small Pacific islands, especially in the Philippines, that it is routinely sold in the market as food. The magician’s cone attacks its fish prey by sticking out its light yellowish proboscis, from which venom is pushed through a harpoon-like tooth. It hunts by the hook-and-line method and so will engulf its prey after it has been paralyzed. To learn more about hook-and-line hunters, click here. Scientists have analyzed the venom of the magician’s cone and one of its venom components was discovered to have a unique pharmacological activity by blocking a specific calcium channel (N-type). After this venom component was isolated and characterized in a laboratory, researchers realized that it had potential medical application. By blocking N-type calcium channels, the venom blocks channels that when open convey pain from nerve cells. If this is blocked, the brain cannot perceive these pain signals. It was developed as a pain management drug, and is now chemically synthesized and sold under the trade name Prialt. This drug is given to patients who have very severe pain that is not alliviated by morphine.
    [Show full text]
  • American Lobster Settlement Index |Update 2019
    American Lobster Settlement Index | Update 2019 Compiled by: R. Wahle and K. Holmes Participants: ME DMR (K. Reardon, R. Russell), MA DMF (T. Pugh, K. Whitmore), C. Brown (Ready Seafood Co.), J. Drouin (Little River Lobster Co.), RI DFW (S. Olszewski, C. McManus), NH F&G (J. Carloni), DFO Canada (A. Rondeau, N. Asselin, J. Gaudette, P. Lawton, S. Armsworthy, A. Cook), UNB, St. John (R. Rochette), PEIFA (L. Ramsay, M. Giffen), PEI DAF (R. MacMillan), Fishermen & Scientists Research Society (S. Scott-Tibbets), Memorial University (A. Le Bris), http://umaine.edu/wahlelab/current-projects/american-lobster-settlement-index/ Several months now into the COVID-19 pandemic, we can only look back to the 2019 fishing year with some nostalgia. In calendar year 2019, Canadian lobster landings continued to boast near all-time highs. And while US landings have slipped a bit from their own historic highs, much of those losses have been offset by continued high value. That is, until now. All that changed almost overnight with the onset of the pandemic, as demand for lobster plummeted with shuttered restaurants and overseas commerce, dragging down the price of lobster, much to the distress of fishing communities up and down the coast. As we enter the 2020 summer fishing season, the lobster industry grapples to find a new normal as it accommodates health protocols, readjusts markets and scales back revenue expectations. In kind, state and federal marine resource monitoring programs are equally rethinking sampling programs under shrinking tax revenues and new safety standards. Last year’s Update examined how well ALSI predicted trends in the fishery from Fundy to Rhode Island.
    [Show full text]
  • Petition to List the Black Teatfish, Holothuria Nobilis, Under the U.S. Endangered Species Act
    Before the Secretary of Commerce Petition to List the Black Teatfish, Holothuria nobilis, under the U.S. Endangered Species Act Photo Credit: © Philippe Bourjon (with permission) Center for Biological Diversity 14 May 2020 Notice of Petition Wilbur Ross, Secretary of Commerce U.S. Department of Commerce 1401 Constitution Ave. NW Washington, D.C. 20230 Email: [email protected], [email protected] Dr. Neil Jacobs, Acting Under Secretary of Commerce for Oceans and Atmosphere U.S. Department of Commerce 1401 Constitution Ave. NW Washington, D.C. 20230 Email: [email protected] Petitioner: Kristin Carden, Oceans Program Scientist Sarah Uhlemann, Senior Att’y & Int’l Program Director Center for Biological Diversity Center for Biological Diversity 1212 Broadway #800 2400 NW 80th Street, #146 Oakland, CA 94612 Seattle,WA98117 Phone: (510) 844‐7100 x327 Phone: (206) 324‐2344 Email: [email protected] Email: [email protected] The Center for Biological Diversity (Center, Petitioner) submits to the Secretary of Commerce and the National Oceanographic and Atmospheric Administration (NOAA) through the National Marine Fisheries Service (NMFS) a petition to list the black teatfish, Holothuria nobilis, as threatened or endangered under the U.S. Endangered Species Act (ESA), 16 U.S.C. § 1531 et seq. Alternatively, the Service should list the black teatfish as threatened or endangered throughout a significant portion of its range. This species is found exclusively in foreign waters, thus 30‐days’ notice to affected U.S. states and/or territories was not required. The Center is a non‐profit, public interest environmental organization dedicated to the protection of native species and their habitats.
    [Show full text]
  • Reef Fish Biodiversity in the Florida Keys National Marine Sanctuary Megan E
    University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School November 2017 Reef Fish Biodiversity in the Florida Keys National Marine Sanctuary Megan E. Hepner University of South Florida, [email protected] Follow this and additional works at: https://scholarcommons.usf.edu/etd Part of the Biology Commons, Ecology and Evolutionary Biology Commons, and the Other Oceanography and Atmospheric Sciences and Meteorology Commons Scholar Commons Citation Hepner, Megan E., "Reef Fish Biodiversity in the Florida Keys National Marine Sanctuary" (2017). Graduate Theses and Dissertations. https://scholarcommons.usf.edu/etd/7408 This Thesis is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. Reef Fish Biodiversity in the Florida Keys National Marine Sanctuary by Megan E. Hepner A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science Marine Science with a concentration in Marine Resource Assessment College of Marine Science University of South Florida Major Professor: Frank Muller-Karger, Ph.D. Christopher Stallings, Ph.D. Steve Gittings, Ph.D. Date of Approval: October 31st, 2017 Keywords: Species richness, biodiversity, functional diversity, species traits Copyright © 2017, Megan E. Hepner ACKNOWLEDGMENTS I am indebted to my major advisor, Dr. Frank Muller-Karger, who provided opportunities for me to strengthen my skills as a researcher on research cruises, dive surveys, and in the laboratory, and as a communicator through oral and presentations at conferences, and for encouraging my participation as a full team member in various meetings of the Marine Biodiversity Observation Network (MBON) and other science meetings.
    [Show full text]
  • SEDIMENT REMOVAL ACTIVITIES of the SEA CUCUMBERS Pearsonothuria Graeffei and Actinopyga Echinites in TAMBISAN, SIQUIJOR ISLAND, CENTRAL PHILIPPINES
    Jurnal Pesisir dan Laut Tropis Volume 1 Nomor 1 Tahun 2018 SEDIMENT REMOVAL ACTIVITIES OF THE SEA CUCUMBERS Pearsonothuria graeffei AND Actinopyga echinites IN TAMBISAN, SIQUIJOR ISLAND, CENTRAL PHILIPPINES Lilibeth A. Bucol1, Andre Ariel Cadivida1, and Billy T. Wagey2* 1. Negros Oriental State University (Main Campus I) 2. Faculty of Fisheries and Marine Science, UNSRAT, Manado, Indonesia *e-mail: [email protected] Teripang terkenal mengkonsumsi sejumlah besar sedimen dan dalam proses meminimalkan jumlah lumpur yang negatif dapat mempengaruhi organisme benthic, termasuk karang. Kegiatan pengukuran kuantitas pelepasan sedimen dua spesies holothurians (Pearsonuthuria graeffei dan Actinophyga echites) ini dilakukan di area yang didominasi oleh ganggang dan terumbu terumbu karang di Pulau Siquijor, Filipina. Hasil penelitian menunjukkan bahwa P. graeffei melepaskan sedimen sebanyak 12.5±2.07% sementara pelepasan sedimen untuk A. echinites sebanyak 10.4±3.79%. Hasil penelitian menunjukkan bahwa kedua spesies ini lebih memilih substrat yang didominasi oleh macroalgae, diikuti oleh substrat berpasir dan coralline alga. Kata kunci: teripang, sedimen, Pulau Siquijor INTRODUCTION the central and southern Philippines. These motile species are found in Coral reefs worldwide are algae-dominated coral reef. declining at an alarming rate due to P. graffei occurs mainly on natural and human-induced factors corals and sponge where they appear (Pandolfi et al. 2003). Anthropogenic to graze on epifaunal algal films, while factors include overfishing, pollution, A. echinites is a deposit feeding and agriculture resulting to high holothurian that occurs mainly in sandy sedimentation (Hughes et al. 2003; environments. These two species also Bellwood et al. 2004). Sedimentation is differ on their diel cycle since also a major problem for reef systems A.
    [Show full text]
  • American Eel (Anguilla Rostrata)
    Indiana Division of Fish and Wildlife’s Animal Information Series American Eel (Anguilla rostrata) Do they have any other names? The names “glass eel” or “elver” are used to describe young, developing eels. Why are they called American eels? The closest relatives to the American eel are other freshwater eels found in Europe and Asia; therefore they are called American eels because they are only in America. Anguilla is the Latin name for eel and rostrata is Latin for “beaked,” in reference to the snout. What do they look like? American eels are a brownish-colored fish with a slender, snake-like body and a small, pointed head. The body appears smooth and mucousy; however there are small scales present. They have a long dorsal fin that is more than half the length of the body and attached to the tail and anal fins. American eels do not have pelvic fins, but do have pectoral fins (on the sides near the head). The lower jaw projects farther than the upper jaw and they have many small teeth. Photo Credit: Duane Raver/USFWS 2012-MLC Page 1 Where do they live in Indiana? American eels are rare in Indiana and are found in large streams and rivers. They can sometimes be found in ponds or lakes that are not connected to a river, although this seldom happens. What kind of habitat do they need? American eels are found in large streams or rivers with continuous flow and clear water. During the day eels like to stay near logs, boulders, or other cover.
    [Show full text]
  • Traditional Ecological Knowledge in Andavadoaka, Southwest Madagascar
    BLUE VENTURES CONSERVATION REPORT Josephine M. Langley Vezo Knowledge: Traditional Ecological Knowledge in Andavadoaka, southwest Madagascar 52 Avenue Road, London N6 5DR [email protected] Tel: +44 (0) 208 341 9819 Fax: +44 (0) 208 341 4821 BLUE VENTURES CONSERVATION REPORT Andavadoaka, 2006 © Blue Ventures 2006 Copyright in this publication and in all text, data and images contained herein, except as otherwise indicated, rests with Blue Ventures. Recommended citation: Langley, J. (2006). Vezo Knowledge: Traditional Ecological Knowledge in Andavadoaka, southwest Madagascar. BLUE VENTURES CONSERVATION REPORT Summary Many fisheries and marine conservation management (ii) Knowledge of marine resources is passed orally from projects throughout the world have been dogged by generation to generation failure as a result of a lack of acceptance of (iii) Traditional laws, taboos and ceremonies are commonly management interventions by local communities. used in natural resource management Evaluation of these failed studies has produced (iv) Lifestyle, food security and housing are all dependent extensive guidelines, manuals and new fields of study on natural resources and the use of coastal and marine (Bunce and Pomeroy, 2004). Community engagement, resources form an essential part of this participatory research, and promoting the use of local (v) The arrival of the Catholic Mission has reduced the knowledge have repeatedly emerged as steps necessary proportion of villagers adhering to traditional ancestor to address the problem of managing the development of worship people and their economies while simultaneously (vi) There has been a change in recent years from a barter protecting the environment (Berkes et al, 2001; Bunce and subsistence economy to a market-driven cash- based economy and Pomeroy, 2004; Wibera et al, 2004; Scholz et al, (vii) Increased income for some members of the 2004).
    [Show full text]
  • Miyako Letter
    NY MUTUAL TRADING INC, NO. 132 77 Metro Way Secaucus NJ 07094 MIYAKO LETTER Tel.:201-933-9555, 212-564-4094 02/01/18 HIGHLIGHT OF FEBRUARY SNOW CRAB COMBO MEAT RED KING CRAB LEGS “KEGANI” HAIRY CRABS If you are looking for a The Kegani (Horsehair 1 decadent flavor and savory Crab) are bountiful around taste for that very special Hokkaido. They are very occasion, then look no sweet and their meat is further!! Nothing is more tender. Ke-gani is smaller Meat is hand-picked to ensure larger whole pieces and then impressive than these in size and it has little 2 is vacuum sealed to ensure optimal freshness and packed in Alaskan Red King Crab Legs. meat; however, the flavor separate layers of leg, body and claw meat. This combo meat Caught during the winter is full-bodied and it has contains less sodium than similar products in the market. Its months in the frigid and great kani-miso (crab guts) meat is snowy white and has a moist, tender texture with a pristine waters of Alaska, the which is a very popular delicate, sweet flavor. Perfetct for making fried rice, salad, egg quality is incomparable and Japanese delicacy. Winter foo young, crab croquet, chawan-mushi and more. will be enjoyed by all who is the best time of year to tuck into the tasty 1 #73557 F-SNOW CRAB COMBO MEAT, KY 6/5lbs. #73897 F-RED KING crustacean. 2 CRAB CLUSTERS 40lbs. #71484 F-BOILED HAIR CRAB,KEGANI #73558 F-PREMIUM SNOW CRAB COMBO MEAT 6/5lbs.
    [Show full text]
  • Preliminary Mass-Balance Food Web Model of the Eastern Chukchi Sea
    NOAA Technical Memorandum NMFS-AFSC-262 Preliminary Mass-balance Food Web Model of the Eastern Chukchi Sea by G. A. Whitehouse U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Marine Fisheries Service Alaska Fisheries Science Center December 2013 NOAA Technical Memorandum NMFS The National Marine Fisheries Service's Alaska Fisheries Science Center uses the NOAA Technical Memorandum series to issue informal scientific and technical publications when complete formal review and editorial processing are not appropriate or feasible. Documents within this series reflect sound professional work and may be referenced in the formal scientific and technical literature. The NMFS-AFSC Technical Memorandum series of the Alaska Fisheries Science Center continues the NMFS-F/NWC series established in 1970 by the Northwest Fisheries Center. The NMFS-NWFSC series is currently used by the Northwest Fisheries Science Center. This document should be cited as follows: Whitehouse, G. A. 2013. A preliminary mass-balance food web model of the eastern Chukchi Sea. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-AFSC-262, 162 p. Reference in this document to trade names does not imply endorsement by the National Marine Fisheries Service, NOAA. NOAA Technical Memorandum NMFS-AFSC-262 Preliminary Mass-balance Food Web Model of the Eastern Chukchi Sea by G. A. Whitehouse1,2 1Alaska Fisheries Science Center 7600 Sand Point Way N.E. Seattle WA 98115 2Joint Institute for the Study of the Atmosphere and Ocean University of Washington Box 354925 Seattle WA 98195 www.afsc.noaa.gov U.S. DEPARTMENT OF COMMERCE Penny. S. Pritzker, Secretary National Oceanic and Atmospheric Administration Kathryn D.
    [Show full text]
  • (Mobula Alfredi) Feeding Habitat in the Dampier Strait, Raja Ampat, West Papua, Indonesia 1Adi I
    Plankton abundance and community structure in reef manta ray (Mobula alfredi) feeding habitat in the Dampier Strait, Raja Ampat, West Papua, Indonesia 1Adi I. Thovyan, 1,2Ricardo F. Tapilatu, 1,2Vera Sabariah, 3,4Stephanie K. Venables 1 Environmental Science Master Program, Graduate School University of Papua (UNIPA) Manokwari, Papua Barat, Indonesia; 2 Research Center of Pacific Marine Resources and Faculty of Fisheries and Marine Science, University of Papua (UNIPA), Manokwari, Papua Barat, Indonesia; 3 Marine Megafauna Foundation, Truckee, California, USA; 4 Centre for Evolutionary Biology, University of Western Australia, Crawley, Australia. Corresponding author: R. F. Tapilatu, [email protected] Abstract. Reef manta rays (Mobula alfredi) are pelagic filter feeders, primarily feeding on zooplankton. Plankton plays an important role in marine food webs and can be used as a bioindicator to evaluate water quality and primary productivity. This study aimed to determine the community structure and abundance of zooplankton and phytoplankton at a M. alfredi feeding habitat in the Dampier Strait region of Raja Ampat, West Papua, Indonesia. Plankton samples were collected and environmental conditions were recorded during two sampling sessions, in March and in July 2017, respectively, from five M. alfredi feeding sites using a 20 μm plankton tow net. Plankton richness was found to be higher in March (272 ind L-1±342) than in July (31 ind L-1±11), which may be due to seasonal variations in ocean current patterns in the Dampier Strait. Copepods (Phylum Arthropoda) were the dominant zooplankton found in samples in both sampling periods. Microplastics were also present in tows from both sampling periods, presenting a cause for concern regarding the large filter feeding species, including M.
    [Show full text]
  • SPC Beche-De-Mer Information Bulletin #39 – March 2019
    ISSN 1025-4943 Issue 39 – March 2019 BECHE-DE-MER information bulletin v Inside this issue Editorial Towards producing a standard grade identification guide for bêche-de-mer in This issue of the Beche-de-mer Information Bulletin is well supplied with Solomon Islands 15 articles that address various aspects of the biology, fisheries and S. Lee et al. p. 3 aquaculture of sea cucumbers from three major oceans. An assessment of commercial sea cu- cumber populations in French Polynesia Lee and colleagues propose a procedure for writing guidelines for just after the 2012 moratorium the standard identification of beche-de-mer in Solomon Islands. S. Andréfouët et al. p. 8 Andréfouët and colleagues assess commercial sea cucumber Size at sexual maturity of the flower populations in French Polynesia and discuss several recommendations teatfish Holothuria (Microthele) sp. in the specific to the different archipelagos and islands, in the view of new Seychelles management decisions. Cahuzac and others studied the reproductive S. Cahuzac et al. p. 19 biology of Holothuria species on the Mahé and Amirantes plateaux Contribution to the knowledge of holo- in the Seychelles during the 2018 northwest monsoon season. thurian biodiversity at Reunion Island: Two previously unrecorded dendrochi- Bourjon and Quod provide a new contribution to the knowledge of rotid sea cucumbers species (Echinoder- holothurian biodiversity on La Réunion, with observations on two mata: Holothuroidea). species that are previously undescribed. Eeckhaut and colleagues P. Bourjon and J.-P. Quod p. 27 show that skin ulcerations of sea cucumbers in Madagascar are one Skin ulcerations in Holothuria scabra can symptom of different diseases induced by various abiotic or biotic be induced by various types of food agents.
    [Show full text]
  • MANTA RAYS Giant Manta (Manta Birostris), Reef Manta (Manta Alfredi), and Manta Cf
    MANTA RAYS Giant manta (Manta birostris), reef manta (Manta alfredi), and Manta cf. birostris proposed for Annex 3 The largest genus of rays with an especially conservative life history Overview The giant manta ray and the reef manta ray, with a third putative species endemic to the Caribbean region, are the largest ray species attaining sizes over five meters disk width. They have especially conservative life histories, rendering them vulnerable to depletion. Despite evidence for long migrations, regional populations appear to be small, sparsely distributed, and fragmented, meaning localized declines are unlikely mitigated by immigration. Two manta ray species have recently been reassessed for the IUCN Red List and both are considered to be ‘Vulnerable’ on this listing. Giant mantas were also recently listed on Appendix I and II under the Convention on Migratory Species (CMS), and both species are listed in Appendix II of the Convention on International Trade of Endangered Species (CITES). Listing of manta rays in Annex 3 of SPAW would thus be consistent with international agreements and would be compliant with criteria 4 (IUCN), 5 (CITES) and 6 (regional cooperation). Criterion 1 is met due to the decline and fragmentation of the populations. • Exceptionally vulnerable rays due to extremely slow reproduction • Regional small, sparsely distributed, and fragmented populations • Subject to overfishing due to increasing demand for gill plates for Chinese medicine • Included on the IUCN Red List of Threatened Species as “Vulnerable” • Listed on Appendix II of CITES, Appendix I of CMS, and the CMS MoU sharks © FAO Biology and distribution Manta rays are migratory The giant manta and reef manta can reach disc widths of 700 cm and 500 cm, respectively.
    [Show full text]