SEDIMENT REMOVAL ACTIVITIES of the SEA CUCUMBERS Pearsonothuria Graeffei and Actinopyga Echinites in TAMBISAN, SIQUIJOR ISLAND, CENTRAL PHILIPPINES

Total Page:16

File Type:pdf, Size:1020Kb

SEDIMENT REMOVAL ACTIVITIES of the SEA CUCUMBERS Pearsonothuria Graeffei and Actinopyga Echinites in TAMBISAN, SIQUIJOR ISLAND, CENTRAL PHILIPPINES Jurnal Pesisir dan Laut Tropis Volume 1 Nomor 1 Tahun 2018 SEDIMENT REMOVAL ACTIVITIES OF THE SEA CUCUMBERS Pearsonothuria graeffei AND Actinopyga echinites IN TAMBISAN, SIQUIJOR ISLAND, CENTRAL PHILIPPINES Lilibeth A. Bucol1, Andre Ariel Cadivida1, and Billy T. Wagey2* 1. Negros Oriental State University (Main Campus I) 2. Faculty of Fisheries and Marine Science, UNSRAT, Manado, Indonesia *e-mail: [email protected] Teripang terkenal mengkonsumsi sejumlah besar sedimen dan dalam proses meminimalkan jumlah lumpur yang negatif dapat mempengaruhi organisme benthic, termasuk karang. Kegiatan pengukuran kuantitas pelepasan sedimen dua spesies holothurians (Pearsonuthuria graeffei dan Actinophyga echites) ini dilakukan di area yang didominasi oleh ganggang dan terumbu terumbu karang di Pulau Siquijor, Filipina. Hasil penelitian menunjukkan bahwa P. graeffei melepaskan sedimen sebanyak 12.5±2.07% sementara pelepasan sedimen untuk A. echinites sebanyak 10.4±3.79%. Hasil penelitian menunjukkan bahwa kedua spesies ini lebih memilih substrat yang didominasi oleh macroalgae, diikuti oleh substrat berpasir dan coralline alga. Kata kunci: teripang, sedimen, Pulau Siquijor INTRODUCTION the central and southern Philippines. These motile species are found in Coral reefs worldwide are algae-dominated coral reef. declining at an alarming rate due to P. graffei occurs mainly on natural and human-induced factors corals and sponge where they appear (Pandolfi et al. 2003). Anthropogenic to graze on epifaunal algal films, while factors include overfishing, pollution, A. echinites is a deposit feeding and agriculture resulting to high holothurian that occurs mainly in sandy sedimentation (Hughes et al. 2003; environments. These two species also Bellwood et al. 2004). Sedimentation is differ on their diel cycle since also a major problem for reef systems A. echinites is observed only at night (Hallock, 2001). Sediments can while P. graffei is active during daytime. smother coral colonies and other reef The main aim of this study was organisms (Rogers 1990), which in turn to evaluate the differences in the may affect marine biodiversity and amount of sediments removed by two fisheries (White et al. 2000). species of sea cucumbers (P. graeffei Sea cucumbers or sand fishes and A. echinites) in a shallow reef are well-known as “vacuum cleaners” of dominated by macroalgae with patches the sea because they consume large of live hard corals. This study is of high quantities of sediment. These significant addition to the growing organisms promote bioturbation and knowledge of the ecology (with recycling of organic material within the emphasis on sediment removal) of sediment (Wheeling et al. 2007). Two these species of sea cucumbers. In holothurians species Pearsonuthuria addition, most studies done on the graffei and Actinopyga echinites, are macroinvertebrates in the study area found throughout the Indo-Pacific focused on abundance (Wagey et al. region (Clark and Rowe, 1971) and are in high abundance in certain areas of 1 Jurnal Pesisir dan Laut Tropis Volume 1 Nomor 1 Tahun 2018 2017) and harvest (Wagey & Bucol, entire reef area is 6.68 hectares but in 2016). this study only the reef flat (2.13 hectares) with depth from 1.5 to 5 MATERIALS AND METHODS meters was visited. The samples were obtained in an algal dominated portion Description of The Study Area of the reef. Two species of sea The study was conducted in cucumbers, P. graffei and A. echinites Bobaboc Reef (9.186558°N, were used in this study. Data were 123.447785°E) located in Sitio Lapac, collected during day (0730-1700) and Brgy. Tambisan, San Juan, Siquijor night (1930-2100) for P. graeffei and A. (Fig. 1). The site is recognizable by a echinites, respectively. limestone outcropping (0.14 ha), also known as an emerged fossil reef. The Figure 1. Locator map showing location of the study site. The Following Hysico-Parameters vs/philippines.php#BoholSea_Philippin were Taken In Situ during The Entire es) from the satellite virtual station for Sampling the entire Bohol Sea. Water temperature data during Sediment Removal by Sea the sampling were determined using a Cucumbers field thermometer (atmospheric and subsurface). Salinity, on the other hand, Specimens of P. graffei and A. was determined with the use of hand echinites were selected within the held refractometer. Depth was research area. The animal was measured using a dive computer carefully moved not to disturbed the (Suunto®). Aside from an in situ sediment. All sediments within an area measurement of sea surface of 25cm or 5cm x 5cm quadrat (each temperature (SST), additional data on immediately before the mouth and after SST for the entire year was the anus) were removed using a downloaded (freely accessible at suction generated by 60 ml syringes. http://coralreefwatch.noaa.gov/satellite/ Typically 3-4 syringes were suctioned and were placed in labeled plastic 2 Jurnal Pesisir dan Laut Tropis Volume 1 Nomor 1 Tahun 2018 Figure 2. A sample photo of sea cucumber P. graeffei measured using the software Optimas. bottles. All the samples obtained were filtered using a filter paper and the transported to the Biology Laboratory of filtrate oven-dried for 24-48 h to Negros Oriental State University constant weight. After which dried mass (NORSU), Main Campus I in were determined for each sample using Dumaguete City. The sample the following equation: sediments from each quadrat were Measurement of Length using the image analysis software (Optimas). To determine length (in cm) of the sea cucumbers without disturbing RESULTS (most sea cucumbers retract when touched or disturbed) them while Physico-Chemical Parameters feeding, underwater photograph was During the sampling in March taken for each individual. A plastic slate 14-15, 2015, the following data on (used to record other field data with physic-chemical parameters were attached ruler) was placed about 5-7cm taken, consistent with at least three away from the sea cucumber to serve readings. Atmospheric temperatures as calibration for further measurement 3 Jurnal Pesisir dan Laut Tropis Volume 1 Nomor 1 Tahun 2018 Figure 3. Substrate preference (in % cover) of the two sea cucumber species in the study site. Error bars indicate standard error (SE) from the mean. ranged from 26-27°C while sub-surface sand (23±11.2%) appears second as temperature ranged from 26-27°C. preferred substrate for A. echinites. These values were similar to the This might be due to the burrowing satellite readings by the NOAA habit of this species on sand at daytime (National Oceanographic and and emerged at night time among Atmospheric Administration) during the macroalgae to feed. days of the sampling. Following months from March to Sediment Removal early May 2015 indicate warming sea Figures 3 and 4 show the surface temperatures. Salinity readings sediment removed (expressed in mean (33-35‰) were typical of marine waters ± %) by the two sea cucumber species. without any influence from freshwater P. graeffei removed as much as source. The nearest freshwater outflow 12.5±2.07% while A. echinites removed is located about 5 kilometers away in 10.4±3.79% of sediment. These values Poblacion, San Juan and has very were notably lower compared to those relatively low volume flow to influence reported by Nestler et al. (2014) for P. the study site. graeffei in Agan-an Marine Reserve, Sibulan, Negros Oriental. Unlike most Substrate Preference of the coral reefs in the western side of By examining the substrate type Siquijor, including our study site, it underneath each of the sea cucumbers should be noted that Nestler’s site is subjected to this study, fleshy proximate to dense population and river macroalgae (70.8±8.7% Standard Error discharges. For this reason, the or SE althroughout this report for P. sediments located before the mouth of graeffei and 64.3±15% for A. echinites) the two sea cucumber species reached were the most dominant substrate 20 mg/cm2. According to Nestler (Figure 3). The rest of the substrates (2014), as little as 12 mg/cm2 amount of (live coral, rock, etc) were less sediment can have damaging effects on preferred by both species, although the coral. 4 Jurnal Pesisir dan Laut Tropis Volume 1 Nomor 1 Tahun 2018 In this study, the sediments above, these sea cucumbers ingested before the mouth only had mean mass about 10-12 % of the sediment, which of 9.8±1.75 mg/cm2 and 7.9±0.7 might also explain the reduced mg/cm2, for P. graeffei and A. echinites, sediment mass after the anus of most respectively. In addition, as shown of our samples (Figure 5). Figure 4. Mean % removed sediment of P. graeffei (N=22) and A. echinites (N=10). Figure 5. Mean sediment mass (mg/cm2) before the mouth and after the anus of P. graeffei (N=22) and A. echinites (N=10). 5 Jurnal Pesisir dan Laut Tropis Volume 1 Nomor 1 Tahun 2018 DISCUSSION CONCLUSION AND RECOMMENDATIONS The two species included in this study (P. graeffei and A. echinites) are This study provides some relatively common in the algal beds information on the sediment removal throughout their range in the Indo- ability of two sea cucumber species Pacific region (www.sealifebase.org, (one active during day time, P. graeffei 2015). While P. graeffei have been and one active at night time, A. regarded to feed on excess sediment in echinites) in an algae-dominated reef in the coral-dominated reef (Nestler et al. Tambisan, San Juan, Siquijor. Although 2014), thereby benefitting corals in the P. graeffei has been regarded as reef process, very little is known about its species, this study documented that sediment-removal impact in algae- this species prefers fleshy macroalgae dominated reef. It should be noted that as substrate. It is highly possible that an algal-dominated state of coral reefs the individuals encountered were is expected to occur on a global scale mostly juveniles.
Recommended publications
  • Educators' Resource Guide
    EDUCATORS' RESOURCE GUIDE Produced and published by 3D Entertainment Distribution Written by Dr. Elisabeth Mantello In collaboration with Jean-Michel Cousteau’s Ocean Futures Society TABLE OF CONTENTS TO EDUCATORS .................................................................................................p 3 III. PART 3. ACTIVITIES FOR STUDENTS INTRODUCTION .................................................................................................p 4 ACTIVITY 1. DO YOU Know ME? ................................................................. p 20 PLANKton, SOURCE OF LIFE .....................................................................p 4 ACTIVITY 2. discoVER THE ANIMALS OF "SECRET OCEAN" ......... p 21-24 ACTIVITY 3. A. SECRET OCEAN word FIND ......................................... p 25 PART 1. SCENES FROM "SECRET OCEAN" ACTIVITY 3. B. ADD color to THE octoPUS! .................................... p 25 1. CHristmas TREE WORMS .........................................................................p 5 ACTIVITY 4. A. WHERE IS MY MOUTH? ..................................................... p 26 2. GIANT BasKET Star ..................................................................................p 6 ACTIVITY 4. B. WHat DO I USE to eat? .................................................. p 26 3. SEA ANEMONE AND Clown FISH ......................................................p 6 ACTIVITY 5. A. WHO eats WHat? .............................................................. p 27 4. GIANT CLAM AND ZOOXANTHELLAE ................................................p
    [Show full text]
  • SPC Beche-De-Mer Information Bulletin #39 – March 2019
    ISSN 1025-4943 Issue 39 – March 2019 BECHE-DE-MER information bulletin v Inside this issue Editorial Towards producing a standard grade identification guide for bêche-de-mer in This issue of the Beche-de-mer Information Bulletin is well supplied with Solomon Islands 15 articles that address various aspects of the biology, fisheries and S. Lee et al. p. 3 aquaculture of sea cucumbers from three major oceans. An assessment of commercial sea cu- cumber populations in French Polynesia Lee and colleagues propose a procedure for writing guidelines for just after the 2012 moratorium the standard identification of beche-de-mer in Solomon Islands. S. Andréfouët et al. p. 8 Andréfouët and colleagues assess commercial sea cucumber Size at sexual maturity of the flower populations in French Polynesia and discuss several recommendations teatfish Holothuria (Microthele) sp. in the specific to the different archipelagos and islands, in the view of new Seychelles management decisions. Cahuzac and others studied the reproductive S. Cahuzac et al. p. 19 biology of Holothuria species on the Mahé and Amirantes plateaux Contribution to the knowledge of holo- in the Seychelles during the 2018 northwest monsoon season. thurian biodiversity at Reunion Island: Two previously unrecorded dendrochi- Bourjon and Quod provide a new contribution to the knowledge of rotid sea cucumbers species (Echinoder- holothurian biodiversity on La Réunion, with observations on two mata: Holothuroidea). species that are previously undescribed. Eeckhaut and colleagues P. Bourjon and J.-P. Quod p. 27 show that skin ulcerations of sea cucumbers in Madagascar are one Skin ulcerations in Holothuria scabra can symptom of different diseases induced by various abiotic or biotic be induced by various types of food agents.
    [Show full text]
  • AC22 Inf. 1 (English Only/Únicamente En Inglés/Seulement En Anglais)
    AC22 Inf. 1 (English only/Únicamente en inglés/Seulement en anglais) CONVENTION ON INTERNATIONAL TRADE IN ENDANGERED SPECIES OF WILD FAUNA AND FLORA ___________________ Twenty-second meeting of the Animals Committee Lima (Peru), 7-13 July 2006 SUMMARY OF FAO AND CITES WORKSHOPS ON SEA CUCUMBERS: MAJOR FINDINGS AND CONCLUSIONS 1. This document has been submitted by the Secretariat and was prepared by Verónica Toral-Granda, Charles Darwin Foundation, Galapagos Islands (Email: [email protected]) Advances in Sea Cucumber Aquaculture and Management (ASCAM), convened by the Food and Agriculture Organization of the United Nations (FAO); 14-18 October 2003, Dalian, China 2. In October 2003, FAO gathered in Dalian, China, 11 local and 37 international experts from 20 countries on sea cucumbers biology, ecology, fisheries and aquaculture in the “Advances in sea cucumber aquaculture and management (ASCAM)” workshop. This workshop was organized because of the intense fishing effort for many sea cucumber species all over the world, the ever increasing market pressure for harvesting these species and recent technological developments on fishery management, aquaculture and stock enhancement techniques. 3. The workshop had three sessions focusing on: (i) Status of sea cucumber and utilization; (ii) Sea cucumber resources management; and (iii) Aquaculture advances. As a whole, the workshop presented up-to-date information on the status of different sea cucumber populations around the world. It also emphasized the experience of each participating country in management and identified information gaps that needed to be addressed. Additionally, it devoted one session to the advances of artificial reproduction, aquaculture and farming of selected sea cucumber species, with special emphasis on Apostichopus japonicus.
    [Show full text]
  • Biological and Taxonomic Perspective of Triterpenoid Glycosides of Sea Cucumbers of the Family Holothuriidae (Echinodermata, Holothuroidea)
    Comparative Biochemistry and Physiology, Part B 180 (2015) 16–39 Contents lists available at ScienceDirect Comparative Biochemistry and Physiology, Part B journal homepage: www.elsevier.com/locate/cbpb Review Biological and taxonomic perspective of triterpenoid glycosides of sea cucumbers of the family Holothuriidae (Echinodermata, Holothuroidea) Magali Honey-Escandón a,⁎, Roberto Arreguín-Espinosa a, Francisco Alonso Solís-Marín b,YvesSamync a Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, C.P. 04510 México, D. F., Mexico b Laboratorio de Sistemática y Ecología de Equinodermos, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Apartado Postal 70-350, C.P. 04510 México, D. F., Mexico c Scientific Service of Heritage, Invertebrates Collections, Royal Belgian Institute of Natural Sciences, Vautierstraat 29, B-1000 Brussels, Belgium article info abstract Article history: Since the discovery of saponins in sea cucumbers, more than 150 triterpene glycosides have been described for Received 20 May 2014 the class Holothuroidea. The family Holothuriidae has been increasingly studied in search for these compounds. Received in revised form 18 September 2014 With many species awaiting recognition and formal description this family currently consists of five genera and Accepted 18 September 2014 the systematics at the species-level taxonomy is, however, not yet fully understood. We provide a bibliographic Available online 28 September 2014 review of the triterpene glycosides that has been reported within the Holothuriidae and analyzed the relationship of certain compounds with the presence of Cuvierian tubules. We found 40 species belonging to four genera and Keywords: Cuvierian tubules 121 compounds.
    [Show full text]
  • Community Structure, Diversity, and Distribution Patterns of Sea Cucumber
    Community structure, diversity, and distribution patterns of sea cucumber (Holothuroidea) in the coral reef area of Sapeken Islands, Sumenep Regency, Indonesia 1Abdulkadir Rahardjanto, 2Husamah, 2Samsun Hadi, 1Ainur Rofieq, 2Poncojari Wahyono 1 Biology Education, Postgraduate Directorate, Universitas Muhammadiyah Malang, Malang, East Java, Indonesia; 2 Biology Education, Faculty of Teacher Training and Education, Universitas Muhammadiyah Malang, Malang, Indonesia. Corresponding author: A. Rahardjanto, [email protected] Abstract. Sea cucumbers (Holothuroidea) are one of the high value marine products, with populations under very critical condition due to over exploitation. Data and information related to the condition of sea cucumber communities, especially in remote islands, like the Sapeken Islands, Sumenep Regency, East Java, Indonesia, is still very limited. This study aimed to determine the species, community structure (density, frequency, and important value index), species diversity index, and distribution patterns of sea cucumbers found in the reef area of Sapeken Islands, using a quantitative descriptive study. This research was conducted in low tide during the day using the quadratic transect method. Data was collected by making direct observations of the population under investigation. The results showed that sea cucumbers belonged to 11 species, from 2 orders: Aspidochirotida, with the species Holothuria hilla, Holothuria fuscopunctata, Holothuria impatiens, Holothuria leucospilota, Holothuria scabra, Stichopus horrens, Stichopus variegates, Actinopyga lecanora, and Actinopyga mauritiana and order Apodida, with the species Synapta maculata and Euapta godeffroyi. The density ranged from 0.162 to 1.37 ind m-2, and the relative density was between 0.035 and 0.292 ind m-2. The highest density was found for H. hilla and the lowest for S.
    [Show full text]
  • Phylogeny of Labidodemas and the Holothuriidae (Holothuroidea: Aspidochirotida) As Inferred from Morphology
    Blackwell Science, LtdOxford, UKZOJZoological Journal of the Linnean Society0024-4082The Lin- nean Society of London, 2005? 2005 144? 103120 Original Article PHYLOGENY OF THE HOLOTHURIIDAEY. SAMYN ET AL . Zoological Journal of the Linnean Society, 2005, 144, 103–120. With 6 figures Phylogeny of Labidodemas and the Holothuriidae (Holothuroidea: Aspidochirotida) as inferred from morphology YVES SAMYN1*, WARD APPELTANS1† and ALEXANDER M. KERR2‡ 1Unit for Ecology & Systematics, Free University Brussels (VUB), Pleinlaan 2, B-1050 Brussels, Belgium 2Department of Ecology and Evolutionary Biology, Osborn Zoölogical Laboratories, Yale University, New Haven CT 06520, USA Received July 2003; accepted for publication November 2004 The Holothuriidae is one of the three established families within the large holothuroid order Aspidochirotida. The approximately 185 recognized species of this family are commonly classified in five nominal genera: Actinopyga, Bohadschia, Holothuria, Pearsonothuria and Labidodemas. Maximum parsimony analyses on morphological char- acters, as inferred from type and nontype material of the five genera, revealed that Labidodemas comprises highly derived species that arose from within the genus Holothuria. The paraphyletic status of the latter, large (148 assumed valid species) and morphologically diverse genus has recently been recognized and is here confirmed and discussed. Nevertheless, we adopt a Darwinian or eclectic classification for Labidodemas, which we retain at generic level within the Holothuriidae. We compare our phylogeny
    [Show full text]
  • High-Value Components and Bioactives from Sea Cucumbers for Functional Foods—A Review
    Mar. Drugs 2011, 9, 1761-1805; doi:10.3390/md9101761 OPEN ACCESS Marine Drugs ISSN 1660-3397 www.mdpi.com/journal/marinedrugs Review High-Value Components and Bioactives from Sea Cucumbers for Functional Foods—A Review Sara Bordbar 1, Farooq Anwar 1,2 and Nazamid Saari 1,* 1 Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia; E-Mails: [email protected] (S.B.); [email protected] (F.A.) 2 Department of Chemistry and Biochemistry, University of Agriculture, Faisalabad 38040, Pakistan * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +60-389-468-385; Fax: +60-389-423-552. Received: 3 August 2011; in revised form: 30 August 2011 / Accepted: 8 September 2011 / Published: 10 October 2011 Abstract: Sea cucumbers, belonging to the class Holothuroidea, are marine invertebrates, habitually found in the benthic areas and deep seas across the world. They have high commercial value coupled with increasing global production and trade. Sea cucumbers, informally named as bêche-de-mer, or gamat, have long been used for food and folk medicine in the communities of Asia and Middle East. Nutritionally, sea cucumbers have an impressive profile of valuable nutrients such as Vitamin A, Vitamin B1 (thiamine), Vitamin B2 (riboflavin), Vitamin B3 (niacin), and minerals, especially calcium, magnesium, iron and zinc. A number of unique biological and pharmacological activities including anti-angiogenic, anticancer, anticoagulant, anti-hypertension, anti-inflammatory, antimicrobial, antioxidant, antithrombotic, antitumor and wound healing have been ascribed to various species of sea cucumbers. Therapeutic properties and medicinal benefits of sea cucumbers can be linked to the presence of a wide array of bioactives especially triterpene glycosides (saponins), chondroitin sulfates, glycosaminoglycan (GAGs), sulfated polysaccharides, sterols (glycosides and sulfates), phenolics, cerberosides, lectins, peptides, glycoprotein, glycosphingolipids and essential fatty acids.
    [Show full text]
  • Identification and Distribution of Sea Cucumber Exploited in Lampung, Indonesia
    BIODIVERSITAS ISSN: 1412-033X Volume 19, Number 2, March 2018 E-ISSN: 2085-4722 Pages: 726-732 DOI: 10.13057/biodiv/d190247 Identification and distribution of sea cucumber exploited in Lampung, Indonesia ANA SETYASTUTI♥, ISMILIANA WIRAWATI, MARINDAH YULIA ISWARI Research Center for Oceanography, Indonesian Institute of Sciences. Jl. Pasir Putih I, Ancol Timur, Jakarta Utara 14430, Jakarta, Indonesia. Tel.: +62- 21-64713850, Fax.: +62-21- 64711948, ♥email: [email protected] Manuscript received: 18 December 2017. Revision accepted: 29 March 2018. Abstract. Setyastuti A, Wirawati I, Iswari MY. 2018. Identification and distribution of sea cucumber exploited in Lampung, Indonesia. Biodiversitas 19: 726-732. Recently approx. 54 species of sea cucumbers were successfully listed that still being exploited from Indonesian waters. However, out of those only 33 species were taxonomically confirmed because the identification of remaining 21 species need to be verified. Inventory on commercial sea cucumber in Bakaheuni water, Lampung was conducted to bridge the gap in fisheries data by addressing the understanding of the diversity of species exploited for trade. Eight commercially important species of sea cucumber were discovered viz. Actinopyga echinites, A. mauritiana, Holothuria (Halodeima) atra, Holothuria (Thymiosycia) impatiens, Holothuria (Acanthotrapeza) coluber, Pearsonothuria graeffei, Stichopus ocellatus and Stichopus vastus during the present study. Two most interesting species namely Actinopyga mauritiana was one of the species that fortuitously confirmed its utilization status as commercial species through this study, and Stichopus ocellatus is newly reported species in Indonesia, not only from fisheries point of view but also taxonomical studies. Hence, the findings of the present study will prove best for the updating of the list of sea cucumber species fished in Indonesia for trade purpose.
    [Show full text]
  • Description a Sea Cucumber Species Holothuria Atra Jaeger, 1833 from Kish Island Iran (Echinodermata: Holothuroidea)
    J. Basic. Appl. Sci. Res., 2(12)12660-12664, 2012 ISSN 2090-4304 Journal of Basic and Applied © 2012, TextRoad Publication Scientific Research www.textroad.com Description a Sea Cucumber Species Holothuria atra Jaeger, 1833 from Kish Island Iran (Echinodermata: Holothuroidea) Akram Tehranifard, M.R. Rahimibashar Department of Marine Biology, Lahijan branch .Islamic Azad University Lahijan, Iran ABSTRACT As each new species evolved, the ossicles changed with it, so each species has uniquely shaped ossicles. Examination of gross morphology and microscopic ossicles showed that this species is Holothoria atra. Color uniformly black or dark brown; when alive body usually covered with sand coating of sand which may also serve to keep it cool by protecting it from the sun's rays. , except for several pairs bare patches dorsally; tables with reduced but sometimes spinose disc. The importance of detailed reproductive biological studies on Holothuria atra are necessary due to its important role in the conservation of the marine environment. This species found on subtidal sand and grassbed, 3to 4 m depth at Kish Island. Distributed throughout most of the tropical Indo-Pacific area. Holothoria atra, is a holothurian of order Aspidochirotes belonging to the family Holothuriidae genus Holothuria. It is deposit-feeder and is mainly found on sandy bottom of fringing reefs surrounding the Kish island. Holothoria atra, is a holothurian of order Aspidochirotes belonging to the family Holothuriidae genus Holothuria. Holothuria atra is an omnivore, sifting through the sediment with its tentacles and feeding on detritus and other organic matter. It ingests sand at the same time and digests the biofilm on the sand grains before ejecting them through its anus.
    [Show full text]
  • Spawning and Larval Rearing of Sea Cucumber Holothuria (Theelothuria) Spiniferatheel P.S.Asha1 and P
    SPC Beche-de-mer Information Bulletin #16 – April 2002 11 Kerr, A.M., E.M. Stoffel and R.L. Yoon. 1993. SPC. 1994. Sea cucumbers and beche-de-mer of the Abundance distribution of holothuroids tropical Pacific: a handbook for fishers. South (Echinodermata: Holothuroidea) on a wind- Pacific Commission Handbook no.18. 52 p. ward and leeward fringing coral reef, Guam, Mariana Islands. Bull. Mar. Sci. 52(2):780–791. SPC. 1997. Improved utilisation and marketing of marine resources from the Pacific region. Preston, G.L. 1993. Beche-de-mer. In: A. Wright and Beche-de-mer, shark fins and other cured ma- L. Hill, eds. Nearshore marine resources of the rine products purchased by Chinese and Asian South Pacific, Suva: Institute of Pacific traders. 36 p. Studies, Honiara: FFA and Halifax: International Centre for Ocean Development. Smith, R.O. 1947. Survey of the fisheries of the for- 371–407. mer Japanese Mandated Islands. USFWS Fishery Leaflet 273. 106 p. Richmond, R. 1995. Introduction and overview. In: A regional management plan for a sustainable Veikila, C.V and F. Viala. 1990. Shrinkage and sea cucumber fishery for Micronesia, March weight loss of nine commercial holothurian 3–5, 1993. 2–6. species from Fijian waters. Fiji Fisheries Division unpublished report. 9 p. Rowe, F.W.E. and J.E. Doty. 1977. The shallow- water holothurians of Guam. Micronesica Zoutendyk, D. 1989. Trial processing and market- 13(2):217–250. ing of surf redfish (Actinopyga mauritiana) beche-de-mer on Rarotonga, and its export po- Rowe, F.W.E. and J. Gates.
    [Show full text]
  • Zootaxa, Actinopyga (Holothuroidea: Aspidochirotida: Holothuriidae)
    Zootaxa 1138: 53–68 (2006) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA 1138 Copyright © 2006 Magnolia Press ISSN 1175-5334 (online edition) A new Indo-West Pacific species of Actinopyga (Holothuroidea: Aspidochirotida: Holothuriidae) YVES SAMYN1, DIDIER VANDENSPIEGEL2 & CLAUDE MASSIN3 1Belgian National Focal Point to the Global Taxonomy Initiative, Royal Belgian Institute of Natural Sciences, Vautierstraat 29, B-1000 Brussels, Belgium. E-mail: [email protected] 2Department of Invertebrates, Royal Museum for Central Africa, Leuvensesteenweg 13, B-3080 Tervuren, Belgium 3Department of Invertebrates,Section Malacology, Royal Belgian Institute of Natural Sciences, Vautierstraat 29, B-1000 Brussels, Belgium Abstract Actinopyga is one of the five genera commonly recognised in the family Holothuriidae. This small genus has sixteen species currently considered valid. The present paper describes a new Indo-West Pacific species, Actinopyga caerulea, of which the most striking character is its bluish coloration. The ossicle assemblage of the new species resembles mostly that of A. bannwarthi Panning, 1944 and A. flammea Cherbonnier, 1979. Key words: Echinodermata, Holothuroidea, Actinopyga, new species, Indo-Pacific Introduction Recent expeditions (in 2003 and 2004) to the Union des Comores, an archipelago in the northern Mozambique Channel, yielded several specimens of a species that had previously been photographed at several localities in the Pacific Ocean (Erhardt & Moosleitner 1995; Erhardt & Baensch 1998; Lane pers. comm.; Myers pers. comm.; Colin pers. comm.; see also plate 1). Cherbonnier & Féral (1984) recorded, and later Féral and Cherbonnier (1986) published a photograph of a specimen from New Caledonia which they identified incorrectly as Actinopyga crassa Panning, 1944. Other specimens have been photographed and no voucher material collected, making definitive identification impossible.
    [Show full text]
  • Beche-De-Mer Resource Management Studies in Guam
    Page 8 SPC Bêche-de-mer Information Bulletin # 1 January 1990 Potential Market for Frozen Beche-de-mer in New Zealand By-Pro Marketing (P.O. Box 38679, Petone, New Zealand), is trying to establish itself as a beche-de-mer Species NZ$/kg NZ$/kg middleman in the Cook Islands, as well as other South dried frozen Pacific nations. By-Pro's field representative and co- Thelenota ananas 5 3-4 owner, Raymond Joe, has met with Cook Islands Ma- Holothuria nobilis 4-5 3-4 rine Resources to discuss the market potential of its beche-de-mer. Besides wanting to deal in the normal Actinopyga mauritiana 2-3 2 smoked/sun dried product, he claims that By-Pro has Bohadschia argus 2-3 located a market for frozen beche-de-mer that has sim- By-Pro Marketing is seeking as much beche-de-mer as ply been gutted, or gutted and then boiled, depending it can get, and has proposed setting up a sea freight on the species. Another interesting claim is that be- container/freezer, for storing beche-de-mer produced sides for any of the established commercial species, he in the Cook Islands, and then shipping it off when full. has found a market for gutted/frozen leopard fish If By-Pro Marketing's claim pan out, beche-de-mer (Bohadschia argus), which is traditionally not a com- processing in areas with freezers may become much mercial species. The species found in the Cooks that simpler, and for those who also have commercial they wish to buy, and rough prices for the different quantities of B.
    [Show full text]