*REVISED Manuscript (text UNmarked) Click here to view linked References ANGPTL3 deficiency alters the lipid profile and metabolism of cultured hepatocytes and human lipoproteins 1,2,3 1 4 1 Hanna Ruhanen , Nidhina Haridas P.A. , Ilenia Minicocci , Juuso H. Taskinen , Francesco Palmas5, Alessia di Costanzo4, Laura D’Erasmo4, Jari Metso1, Jennimari Partanen1, Jesmond Dalli5,6, You Zhou7, Marcello Arca4, Matti Jauhiainen1, Reijo Käkelä2,3 & Vesa M. Olkkonen1,8,* 1Minerva Foundation Institute for Medical Research, Helsinki, Finland; 2Molecular and Integrative Biosciences, University of Helsinki, Helsinki, Finland; 3Helsinki University Lipidomics Unit (HiLIPID), Helsinki Institute for Life Science (HiLIFE), Helsinki, Finland; 4Department of Translational and Precision Medicine, Sapienza University of Rome, Italy, 5Lipid Mediator Unit, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom; 6Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, London, UK; 7Systems Immunity University Research Institute and Division of Infection & Immunity, Cardiff University, Cardiff, United Kingdom, 8Department of Anatomy, University of Helsinki, Finland. *Corresponding author at: Minerva Foundation Institute for Medical Research, Biomedicum 2U, Tukholmankatu 8, FI-00290 Helsinki, Finland; Tel +358-2-94125705, e-mail
[email protected] 1 ABSTRACT Loss-of-function (LOF) mutations in ANGPTL3, an inhibitor of lipoprotein lipase (LPL), cause a drastic reduction of serum lipoproteins and protect against the development of atherosclerotic cardiovascular disease. Therefore, ANGPTL3 is a promising therapy target. We characterized the impacts of ANGPTL3 depletion on the immortalized human hepatocyte (IHH) transcriptome, lipidome and human plasma lipoprotein lipidome. The transcriptome of ANGPTL3 knock-down (KD) cells showed altered expression of several pathways related to lipid metabolism.