A disease-linked ULBP6 polymorphism inhibits NKG2D-mediated target cell killing by enhancing the stability of NKG2D-ligand binding Jianmin Zuo,1* Carrie R. Willcox,1* Fiyaz Mohammed,1* Martin Davey,1 Stuart Hunter,1 Kabir Khan,1 Ayman Antoun,2 Poonam Katakia,1 Joanne Croudace,1 Charlotte Inman,1 Helen Parry,1,4 David Briggs,3 Ram Malladi,1,4 Benjamin E. Willcox,1*† Paul Moss1,4*† 1Cancer Immunology and Immunotherapy Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Vincent Drive, Edgbaston, Birmingham, B15 2TT, UK. 2School of Pharmacy, Faculty of Sciences and Engineering, University of Wolverhampton, WV1 1LY, UK. 3National Health Service Blood and Transplant, Birmingham, B15 2SG, UK. 4Department of Haematology, University Hospital Birmingham, B15 2TH, Birmingham, UK. *These authors contributed equally to this study. †Corresponding author. Email:
[email protected] (P.M.);
[email protected] (B.E.W.) This is the author's version of the work. It is posted here by permission of the AAAS for personal use, not for redistribution. The definitive version was published in Science Signaling, VOL 10, issue 481 30 May 2017, DOI: 10.1126/scisignal.aai8904. ABSTRACT NKG2D (natural killer group 2, member D) is an activating receptor found on the surface of immune cells, including natural killer (NK) cells, which regulates innate and adaptive immunity through recognition of the stress-induced ligands ULBP1 to ULBP6 and MICA/B. Similar to class I human leukocyte antigen (HLA), these NKG2D ligands possess a major histocompatibility complex (MHC)-like fold and exhibit pronounced polymorphism, which influences human disease susceptibility.