NKG2D Ligands in Tumor Immunity
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Enhancing a Natural Killer: Modification of NK Cells for Cancer
cells Review Enhancing a Natural Killer: Modification of NK Cells for Cancer Immunotherapy Rasa Islam 1,2, Aleta Pupovac 1, Vera Evtimov 1, Nicholas Boyd 1, Runzhe Shu 1, Richard Boyd 1 and Alan Trounson 1,2,* 1 Cartherics Pty Ltd., Clayton 3168, Australia; [email protected] (R.I.); [email protected] (A.P.); [email protected] (V.E.); [email protected] (N.B.); [email protected] (R.S.); [email protected] (R.B.) 2 Department of Obstetrics and Gynaecology, Monash University, Clayton 3168, Australia * Correspondence: [email protected] Abstract: Natural killer (NK) cells are potent innate immune system effector lymphocytes armed with multiple mechanisms for killing cancer cells. Given the dynamic roles of NK cells in tumor surveillance, they are fast becoming a next-generation tool for adoptive immunotherapy. Many strategies are being employed to increase their number and improve their ability to overcome cancer resistance and the immunosuppressive tumor microenvironment. These include the use of cytokines and synthetic compounds to bolster propagation and killing capacity, targeting immune-function checkpoints, addition of chimeric antigen receptors (CARs) to provide cancer specificity and genetic ablation of inhibitory molecules. The next generation of NK cell products will ideally be readily available as an “off-the-shelf” product and stem cell derived to enable potentially unlimited supply. However, several considerations regarding NK cell source, genetic modification and scale up first Citation: Islam, R.; Pupovac, A.; need addressing. Understanding NK cell biology and interaction within specific tumor contexts Evtimov, V.; Boyd, N.; Shu, R.; Boyd, will help identify necessary NK cell modifications and relevant choice of NK cell source. -
And NK-Cell Neoplasms
J Hematopathol (2009) 2:65–73 DOI 10.1007/s12308-009-0034-z COMMENT Commentary on the 2008 WHO classification of mature T- and NK-cell neoplasms Megan S. Lim & Laurence de Leval & Leticia Quintanilla-Martinez Received: 29 April 2009 /Accepted: 1 May 2009 /Published online: 27 June 2009 # Springer-Verlag 2009 Abstract In 2008, the World Health Organization (WHO) Introduction published a revised and updated edition of the classification of tumors of the hematopoietic and lymphoid tissues. The The 2008 World Health Organization (WHO) classification aims of the fourth edition of the WHO classification was to of mature thymus (T)- and natural killer (NK)-cell neo- incorporate new scientific and clinical information in order plasms provide clarification regarding diagnostic criteria, to refine diagnostic criteria for previously described neo- etiologic insights, and prognostic information for several plasms and to introduce newly recognized disease entities. new/provisional entities [1]. The recognition that T-cell The recognition that T-cell lymphomas are related to the lymphomas are related to the innate and adaptive immune innate and adaptive immune system, as well as enhanced system, as well as enhanced understanding of other T-cell understanding of other T-cell subsets, such as the regula- subsets, such as the regulatory T-cell and follicular helper tory T-cell and follicular helper T-cells, has contributed to T-cells (TFH), has contributed to our understanding of the our understanding of the morphologic, histologic, and morphologic, histologic, and immunophenotypic features of immunophenotypic features of T- and NK-cell neoplasms. T- and NK-cell neoplasms. New insights regarding immu- The purpose of this review is to highlight major changes in nophenotypic features of large granular lymphocytes and the classification of T- and NK-cell neoplasms and to NK-cells have provided better flow cytometric tools for the explain the rationale for these changes. -
NKG2D Signaling Within the Pancreatic Islets Reduces NOD Diabetes and Increases Protective Central Memory CD81 T-Cell Numbers
Diabetes Volume 69, August 2020 1749 NKG2D Signaling Within the Pancreatic Islets Reduces NOD Diabetes and Increases Protective Central Memory CD81 T-Cell Numbers Andrew P. Trembath,1 Kelsey L. Krausz,1 Neekun Sharma,1 Ivan C. Gerling,2 Clayton E. Mathews,3 and Mary A. Markiewicz1 Diabetes 2020;69:1749–1762 | https://doi.org/10.2337/db19-0979 NKG2D is implicated in autoimmune diabetes. How- The immune receptor NKG2D, expressed by natural killer ever, the role of this receptor in diabetes pathogenesis (NK) cells and subsets of T cells (1–5), is implicated in type IMMUNOLOGY AND TRANSPLANTATION is unclear owing to conflicting results with studies in- 1 diabetes development. However, its role in disease pro- volving global inhibition of NKG2D signaling. We found gression remains unclear, with conflicting reports describ- that NKG2D and its ligands are present in human pan- ing pathogenic (6,7), nonpathogenic (8), and protective (9) creata, with expression of NKG2D and its ligands in- effects of NKG2D signaling. creased in the islets of patients with type 1 diabetes. NKG2D recognizes multiple NKG2D ligands in both To directly assess the role of NKG2D in the pancreas, we humans and mice. These are endogenous ligands, which generated NOD mice that express an NKG2D ligand in are all distantly related to MHC class I in sequence, and are b-islet cells. Diabetes was reduced in these mice. The generally believed to be functionally redundant (10,11). reduction corresponded with a decrease in the effector 1 NKG2D ligands are considered stress ligands, with their to central memory CD8 T-cell ratio. -
Delineation of Natural Killer Cell Differentiation from Myeloid Progenitors in Human
Delineation of Natural Killer Cell Differentiation from Myeloid Progenitors in Human The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Chen, Qingfeng, Weijian Ye, Wei Jian Tan, Kylie Su Mei Yong, Min Liu, Shu Qi Tan, Eva Loh, et al. “Delineation of Natural Killer Cell Differentiation from Myeloid Progenitors in Human.” Scientific Reports 5 (October 12, 2015): 15118. As Published http://dx.doi.org/10.1038/srep15118 Publisher Nature Publishing Group Version Final published version Citable link http://hdl.handle.net/1721.1/100500 Terms of Use Creative Commons Attribution Detailed Terms http://creativecommons.org/licenses/by/4.0/ www.nature.com/scientificreports OPEN Delineation of Natural Killer Cell Differentiation from Myeloid Progenitors in Human Received: 01 July 2015 1,* 2,3,* 2 1 1 4 Accepted: 16 September 2015 Qingfeng Chen , Weijian Ye , Wei Jian Tan , Kylie Su Mei Yong , Min Liu , Shu Qi Tan , 5 5,6 4,6 2,3 2,7 Published: 12 October 2015 Eva Loh , Kenneth TE Chang , Thiam Chye Tan , Peter R Preiser & Jianzhu Chen Understanding of natural killer (NK) cell development in human is incomplete partly because of limited access to appropriate human tissues. We have developed a cytokine-enhanced humanized mouse model with greatly improved reconstitution and function of human NK cells. Here we report the presence of a cell population in the bone marrow of the cytokine-treated humanized mice that express both NK cell marker CD56 and myeloid markers such as CD36 and CD33. The CD56+CD33+CD36+ cells are also found in human cord blood, fetal and adult bone marrow. -
Orderly and Nonstochastic Acquisition of CD94/NKG2 Receptors by Developing NK Cells Derived from Embryonic Stem Cells in Vitro1
The Journal of Immunology Orderly and Nonstochastic Acquisition of CD94/NKG2 Receptors by Developing NK Cells Derived from Embryonic Stem Cells In Vitro1 Rebecca H. Lian,2* Motoi Maeda,2* Stefan Lohwasser,* Marc Delcommenne,† Toru Nakano,§ Russell E. Vance,¶ David H. Raulet,¶ and Fumio Takei3*‡ In mice there are two families of MHC class I-specific receptors, namely the Ly49 and CD94/NKG2 receptors. The latter receptors recognize the nonclassical MHC class I Qa-1b and are thought to be responsible for the recognition of missing-self and the maintenance of self-tolerance of fetal and neonatal NK cells that do not express Ly49. Currently, how NK cells acquire individual CD94/NKG2 receptors during their development is not known. In this study, we have established a multistep culture method to induce differentiation of embryonic stem (ES) cells into the NK cell lineage and examined the acquisition of CD94/NKG2 by NK cells as they differentiate from ES cells in vitro. ES-derived NK (ES-NK) cells express NK cell-associated proteins and they kill certain tumor cell lines as well as MHC class I-deficient lymphoblasts. They express CD94/NKG2 heterodimers, but not Ly49 molecules, and their cytotoxicity is inhibited by Qa-1b on target cells. Using RT-PCR analysis, we also report that the acquisition of these individual receptor gene expressions during different stages of differentiation from ES cells to NK cells follows a prede- termined order, with their order of acquisition being first CD94; subsequently NKG2D, NKG2A, and NKG2E; and finally, NKG2C. Single-cell RT-PCR showed coexpression of CD94 and NKG2 genes in most ES-NK cells, and flow cytometric analysis also detected CD94/NKG2 on most ES-NK cells, suggesting that the acquisition of these receptors by ES-NK cells in vitro is nonstochastic, orderly, and cumulative. -
An Interface-Based Prediction of Membrane Protein-Protein Interactions
bioRxiv preprint doi: https://doi.org/10.1101/871590; this version posted July 3, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. TransINT: an interface-based prediction of membrane protein-protein interactions Khazen, G.1,*, Gyulkhandanian, A.2, Issa, T.1 and Maroun, R.C. 2,* 1 Computer Science and Mathematics Department, Lebanese American University, Byblos-Lebanon 2 Inserm U1204/ Université d’Evry/Université Paris-Saclay/ Structure-Activité des Biomolécules Normales et Pathologiques 91025 Evry France. ABSTRACT Membrane proteins account for about one-third of the proteomes of organisms and include structural proteins, channels, and receptors. The mutual interactions they establish in the membrane play crucial roles in organisms, as they are behind many processes such as cell signaling and protein function. Because of their number and diversity, these proteins and their macromolecular complexes, along with their physical interfaces represent potential pharmacological targets par excellence for a variety of diseases, with very important implications for the design and discovery of new drugs or peptides modulating or inhibiting the interaction. Yet, structural data coming from experiments is very scarce for this family of proteins and the study of those proteins at the molecular level goes necessarily through extraction from cell membranes, a step that reveals itself noxious/harmful for their structure and function. To overcome this problem, we propose a computational approach for the prediction of alpha-helical transmembrane protein higher-order structures through data mining, sequence analysis, motif search, extraction, identification and characterization of the amino acid residues at the interface of the complexes. -
ULBP2 (NM 025217) Human Tagged ORF Clone Product Data
OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for RG204506 ULBP2 (NM_025217) Human Tagged ORF Clone Product data: Product Type: Expression Plasmids Product Name: ULBP2 (NM_025217) Human Tagged ORF Clone Tag: TurboGFP Symbol: ULBP2 Synonyms: ALCAN-alpha; N2DL2; NKG2DL2; RAET1H; RAET1L Vector: pCMV6-AC-GFP (PS100010) E. coli Selection: Ampicillin (100 ug/mL) Cell Selection: Neomycin ORF Nucleotide >RG204506 representing NM_025217 Sequence: Red=Cloning site Blue=ORF Green=Tags(s) TTTTGTAATACGACTCACTATAGGGCGGCCGGGAATTCGTCGACTGGATCCGGTACCGAGGAGATCTGCC GCCGCGATCGCC ATGGCAGCAGCCGCCGCTACCAAGATCCTTCTGTGCCTCCCGCTTCTGCTCCTGCTGTCCGGCTGGTCCC GGGCTGGGCGAGCCGACCCTCACTCTCTTTGCTATGACATCACCGTCATCCCTAAGTTCAGACCTGGACC ACGGTGGTGTGCGGTTCAAGGCCAGGTGGATGAAAAGACTTTTCTTCACTATGACTGTGGCAACAAGACA GTCACACCTGTCAGTCCCCTGGGGAAGAAACTAAATGTCACAACGGCCTGGAAAGCACAGAACCCAGTAC TGAGAGAGGTGGTGGACATACTTACAGAGCAACTGCGTGACATTCAGCTGGAGAATTACACACCCAAGGA ACCCCTCACCCTGCAGGCCAGGATGTCTTGTGAGCAGAAAGCTGAAGGACACAGCAGTGGATCTTGGCAG TTCAGTTTCGATGGGCAGATCTTCCTCCTCTTTGACTCAGAGAAGAGAATGTGGACAACGGTTCATCCTG GAGCCAGAAAGATGAAAGAAAAGTGGGAGAATGACAAGGTTGTGGCCATGTCCTTCCATTACTTCTCAAT GGGAGACTGTATAGGATGGCTTGAGGACTTCTTGATGGGCATGGACAGCACCCTGGAGCCAAGTGCAGGA GCACCACTCGCCATGTCCTCAGGCACAACCCAACTCAGGGCCACAGCCACCACCCTCATCCTTTGCTGCC TCCTCATCATCCTCCCCTGCTTCATCCTCCCTGGCATC ACGCGTACGCGGCCGCTCGAG - GFP Tag - GTTTAA This product is to be used for laboratory only. -
The Journal of Experimental Medicine
Published November 15, 2004 NKG2D Recognition and Perforin Effector Function Mediate Effective Cytokine Immunotherapy of Cancer Mark J. Smyth,1 Jeremy Swann,1 Janice M. Kelly,1 Erika Cretney,1 Wayne M. Yokoyama,2 Andreas Diefenbach,3 Thomas J. Sayers,4 and Yoshihiro Hayakawa1 1Cancer Immunology Program, Trescowthick Laboratories, Peter MacCallum Cancer Centre, East Melbourne, 8006 Victoria, Australia 2Howard Hughes Medical Institute, Washington University School of Medicine, St Louis, MO 63110 3Skirball Institute of Biomolecular Medicine, New York University Medical Center, New York, NY 10016 4Basic Research Program, SAIC-Frederick Inc., National Cancer Institute, Frederick, MD 21702 Abstract Downloaded from Single and combination cytokines offer promise in some patients with advanced cancer. Many spontaneous and experimental cancers naturally express ligands for the lectin-like type-2 trans- membrane stimulatory NKG2D immunoreceptor; however, the role this tumor recognition pathway plays in immunotherapy has not been explored to date. Here, we show that natural ex- pression of NKG2D ligands on tumors provides an effective target for some cytokine-stimulated NK cells to recognize and suppress tumor metastases. In particular, interleukin (IL)-2 or IL-12 jem.rupress.org suppressed tumor metastases largely via NKG2D ligand recognition and perforin-mediated cyto- toxicity. By contrast, IL-18 required tumor sensitivity to Fas ligand (FasL) and surprisingly did not depend on the NKG2D–NKG2D ligand pathway. A combination of IL-2 and IL-18 stimulated both perforin and FasL effector mechanisms with very potent effects. Cytokines that stimulated perforin-mediated cytotoxicity appeared relatively more effective against tumor metastases ex- pressing NKG2D ligands. These findings indicate that a rational choice of cytokines can be on March 23, 2015 made given the known sensitivity of tumor cells to perforin, FasL, and tumor necrosis factor– related apoptosis-inducing ligand and the NKG2D ligand status of tumor metastases. -
Analysis of the Indacaterol-Regulated Transcriptome in Human Airway
Supplemental material to this article can be found at: http://jpet.aspetjournals.org/content/suppl/2018/04/13/jpet.118.249292.DC1 1521-0103/366/1/220–236$35.00 https://doi.org/10.1124/jpet.118.249292 THE JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS J Pharmacol Exp Ther 366:220–236, July 2018 Copyright ª 2018 by The American Society for Pharmacology and Experimental Therapeutics Analysis of the Indacaterol-Regulated Transcriptome in Human Airway Epithelial Cells Implicates Gene Expression Changes in the s Adverse and Therapeutic Effects of b2-Adrenoceptor Agonists Dong Yan, Omar Hamed, Taruna Joshi,1 Mahmoud M. Mostafa, Kyla C. Jamieson, Radhika Joshi, Robert Newton, and Mark A. Giembycz Departments of Physiology and Pharmacology (D.Y., O.H., T.J., K.C.J., R.J., M.A.G.) and Cell Biology and Anatomy (M.M.M., R.N.), Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada Received March 22, 2018; accepted April 11, 2018 Downloaded from ABSTRACT The contribution of gene expression changes to the adverse and activity, and positive regulation of neutrophil chemotaxis. The therapeutic effects of b2-adrenoceptor agonists in asthma was general enriched GO term extracellular space was also associ- investigated using human airway epithelial cells as a therapeu- ated with indacaterol-induced genes, and many of those, in- tically relevant target. Operational model-fitting established that cluding CRISPLD2, DMBT1, GAS1, and SOCS3, have putative jpet.aspetjournals.org the long-acting b2-adrenoceptor agonists (LABA) indacaterol, anti-inflammatory, antibacterial, and/or antiviral activity. Numer- salmeterol, formoterol, and picumeterol were full agonists on ous indacaterol-regulated genes were also induced or repressed BEAS-2B cells transfected with a cAMP-response element in BEAS-2B cells and human primary bronchial epithelial cells by reporter but differed in efficacy (indacaterol $ formoterol . -
Signal Adaptor DAP10 Associates with MDL-1 and Triggers Osteoclastogenesis in Cooperation with DAP12
Signal adaptor DAP10 associates with MDL-1 and triggers osteoclastogenesis in cooperation with DAP12 Masanori Inuia,1, Yuki Kikuchia,1, Naoko Aokib, Shota Endoa, Tsutomu Maedaa, Akiko Sugahara-Tobinaia, Shion Fujimuraa, Akira Nakamuraa, Atsushi Kumanogohc, Marco Colonnad, and Toshiyuki Takaia,2 aDepartment of Experimental Immunology, Institute of Development, Aging and Cancer, Tohoku University, Seiryo 4-1, Sendai 980-8575, Japan; bDepartment of Pathology, Asahikawa Medical College, Higashi 2-1-1, Midorigaoka, Asahikawa 078-8510, Japan; cDepartment of Immunopathology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan; and dDepartment of Pathology and Immunology, Washington University School of Medicine, 660 South Euclid, St. Louis, MO 63110 Communicated by Jeffrey V. Ravetch, The Rockfeller University, New York, NY, January 22, 2009 (received for review May 14, 2008) Osteoclasts, cells of myeloid lineage, play a unique role in bone the Ig superfamily or C-type lectin family. They primarily mediate resorption, maintaining skeletal homeostasis in concert with bone- a Src-family kinase-initiated activation signal, leading to a series of producing osteoblasts. Osteoclast development and maturation (os- events including Syk kinase recruitment, triggering of calcium teoclastogenesis) is driven by receptor activator of NF-B ligand and signaling mediated by phospholipase C␥ (PLC␥), and activation of macrophage-colony stimulating factor and invariably requires a sig- the MAPK cascade, culminating in cell proliferation and cytokine nal initiated by immunoreceptor tyrosine-based activation motif production as the output of cellular responses. In osteoclast pre- (ITAM)-harboring Fc receptor common ␥ chain or DNAX-activating cursor cells, FcR␥ and DAP12 associate with several cognate protein (DAP)12 (also referred to as KARAP or TYROBP) that associates cell-surface immunoreceptors (9) such as osteoclast-associated with the cognate immunoreceptors. -
Natural Killer Cell Lymphoma Shares Strikingly Similar Molecular Features
Leukemia (2011) 25, 348–358 & 2011 Macmillan Publishers Limited All rights reserved 0887-6924/11 www.nature.com/leu ORIGINAL ARTICLE Natural killer cell lymphoma shares strikingly similar molecular features with a group of non-hepatosplenic cd T-cell lymphoma and is highly sensitive to a novel aurora kinase A inhibitor in vitro J Iqbal1, DD Weisenburger1, A Chowdhury2, MY Tsai2, G Srivastava3, TC Greiner1, C Kucuk1, K Deffenbacher1, J Vose4, L Smith5, WY Au3, S Nakamura6, M Seto6, J Delabie7, F Berger8, F Loong3, Y-H Ko9, I Sng10, X Liu11, TP Loughran11, J Armitage4 and WC Chan1, for the International Peripheral T-cell Lymphoma Project 1Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA; 2Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA; 3Departments of Pathology and Medicine, University of Hong Kong, Queen Mary Hospital, Hong Kong, China; 4Division of Hematology and Oncology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA; 5College of Public Health, University of Nebraska Medical Center, Omaha, NE, USA; 6Departments of Pathology and Cancer Genetics, Aichi Cancer Center Research Institute, Nagoya University, Nagoya, Japan; 7Department of Pathology, University of Oslo, Norwegian Radium Hospital, Oslo, Norway; 8Department of Pathology, Centre Hospitalier Lyon-Sud, Lyon, France; 9Department of Pathology, Samsung Medical Center, Sungkyunkwan University, Seoul, Korea; 10Department of Pathology, Singapore General Hospital, Singapore and 11Penn State Hershey Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA, USA Natural killer (NK) cell lymphomas/leukemias are rare neo- Introduction plasms with an aggressive clinical behavior. -
Heiyoun Jung Doctoral Thesis
UC Berkeley UC Berkeley Electronic Theses and Dissertations Title Expression of Ligands for the NKG2D Activating Receptor are Linked to Proliferative Signals Permalink https://escholarship.org/uc/item/0bf4c1f4 Author Jung, Heiyoun Publication Date 2011 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California Expression of Ligands for the NKG2D Activating Receptor are Linked to Proliferative Signals by Heiyoun Jung A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Molecular and Cell Biology in the Graduate Division of the University of California, Berkeley Committee in charge: Professor David H. Raulet, Chair Professor Mark S. Schlissel Professor Stuart Linn Professor Gertrude Buehring ABSTRACT Expression of Ligands for the NKG2D Activating Receptor is Linked to Proliferative Signals By Heiyoun Jung Doctor of Philosophy in Molecular and Cell Biology University of California, Berkeley Professor David H. Raulet, Chair NKG2D is a stimulatory receptor expressed by natural killer cells and subsets of T cells. The receptor recognizes a set of self-encoded cell surface proteins that are usually not displayed on the surface of healthy cells but are often induced in transformed and infected cells. NKG2D engagement activates or enhances the cell killing function and cytokine production programs of NK cells and certain T cells. Emerging evidence suggests that different ligands are to some extent regulated by distinct signals associated with disease states, thus enabling the immune system to respond to a broad range of disease-associated stimuli via a single activating receptor. The research presented in this thesis demonstrated that at least one of the murine NKG2D ligands, RAE-1 ε (gene: Raet1e), is transcriptionally activated by signals associated with cell proliferation.