PP2A-B′ Holoenzyme Substrate Recognition, Regulation and Role in Cytokinesis
OPEN Citation: Cell Discovery (2017) 3, 17027; doi:10.1038/celldisc.2017.27 ARTICLE www.nature.com/celldisc PP2A-B′ holoenzyme substrate recognition, regulation and role in cytokinesis Cheng-Guo Wu1,2,8, Hui Chen1,8, Feng Guo1,8,9, Vikash K Yadav3,8, Sean J Mcilwain4, Michael Rowse1, Alka Choudhary5, Ziqing Lin6, Yitong Li1, Tingjia Gu1, Aiping Zheng1,10, Qingge Xu6, Woojong Lee1, Eduard Resch7, Benjamin Johnson1, Jenny Day1, Ying Ge6, Irene M Ong4, Mark E Burkard5, Ylva Ivarsson3,*, Yongna Xing1,2,* 1McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin at Madison, School of Medicine and Public Health, Madison, WI, USA; 2Biophysics Program, University of Wisconsin at Madison, Madison, WI, USA; 3Department of Chemistry—BMC, Uppsala University, Uppsala, Sweden; 4Biostatistics and Medical Informatics, Wisconsin Institutes of Medical Research, University of Wisconsin at Madison, School of Medicine and Public Health, Madison, WI, USA; 5Department of Medicine, Hematology/Oncology, UW Carbone Cancer Center, University of Wisconsin at Madison, School of Medicine and Public Health, Madison, WI, USA; 6Department of Cell and Regenerative Biology, Human Proteomic Program, School of Medicine and Public Health, Madison, WI, USA; 7Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine and Pharmacology TMP, Frankfurt am Main, Germany Protein phosphatase 2A (PP2A) is a major Ser/Thr phosphatase; it forms diverse heterotrimeric holoenzymes that counteract kinase actions. Using a peptidome that tiles the disordered regions of the human proteome, we identified proteins containing [LMFI]xx[ILV]xEx motifs that serve as interaction sites for B′-family PP2A regulatory subunits and holoenzymes.
[Show full text]