Role and Regulation of the P53-Homolog P73 in the Transformation of Normal Human Fibroblasts

Total Page:16

File Type:pdf, Size:1020Kb

Role and Regulation of the P53-Homolog P73 in the Transformation of Normal Human Fibroblasts Role and regulation of the p53-homolog p73 in the transformation of normal human fibroblasts Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades der Bayerischen Julius-Maximilians-Universität Würzburg vorgelegt von Lars Hofmann aus Aschaffenburg Würzburg 2007 Eingereicht am Mitglieder der Promotionskommission: Vorsitzender: Prof. Dr. Dr. Martin J. Müller Gutachter: Prof. Dr. Michael P. Schön Gutachter : Prof. Dr. Georg Krohne Tag des Promotionskolloquiums: Doktorurkunde ausgehändigt am Erklärung Hiermit erkläre ich, dass ich die vorliegende Arbeit selbständig angefertigt und keine anderen als die angegebenen Hilfsmittel und Quellen verwendet habe. Diese Arbeit wurde weder in gleicher noch in ähnlicher Form in einem anderen Prüfungsverfahren vorgelegt. Ich habe früher, außer den mit dem Zulassungsgesuch urkundlichen Graden, keine weiteren akademischen Grade erworben und zu erwerben gesucht. Würzburg, Lars Hofmann Content SUMMARY ................................................................................................................ IV ZUSAMMENFASSUNG ............................................................................................. V 1. INTRODUCTION ................................................................................................. 1 1.1. Molecular basics of cancer .......................................................................................... 1 1.2. Early research on tumorigenesis ................................................................................. 3 1.3. Developing cell culture models of tumorigenesis ....................................................... 4 1.4. Key molecules in human cell transformation ............................................................ 6 1.4.1. hTERT .................................................................................................................. 6 1.4.2. H-RasV12 ............................................................................................................. 7 1.4.3. SV40 small t ......................................................................................................... 8 1.4.4. SV40 Large T ....................................................................................................... 8 1.5. Principles of tumor suppression .................................................................................. 9 1.6. p73, a transcription factor of the p53 family ........................................................... 10 1.6.1. Gene and protein organization of p73 ................................................................. 10 1.6.2. p53 family proteins have diverse biological functions ........................................ 11 1.6.3. p73 in cancer development ................................................................................. 12 1.6.4. Regulation of p73 ............................................................................................... 12 1.6.5. Regulation by p73 ............................................................................................... 13 1.7. Scope of the project .................................................................................................... 14 2. MATERIALS AND METHODS .......................................................................... 15 2.1. Materials and Equipment .......................................................................................... 15 2.1.1. Instruments and other technical equipment ......................................................... 15 2.1.2. Glass and plastic ware, consumables .................................................................. 16 2.1.3. Enzymes, PCR reagents and size standards ........................................................ 17 2.1.4. Antibodies........................................................................................................... 17 2.1.5. Oligonucleotides ................................................................................................. 18 2.1.6. Bacterial strains .................................................................................................. 18 2.1.7. Plasmids .............................................................................................................. 19 2.1.8. Eukaryotic cell lines ........................................................................................... 19 2.2. Buffers, media and solutions ..................................................................................... 20 2.2.1. Protein detection ................................................................................................. 20 2.2.2. Flow cytometry ................................................................................................... 21 2.2.3. Cell culture ......................................................................................................... 21 2.2.4. Plasmid isolation from bacteria ........................................................................... 22 2.2.5. Other self-prepared buffers, media and solutions ................................................ 22 I 2.3. Cell culture .................................................................................................................. 23 2.3.1. Cell maintenance ................................................................................................ 23 2.3.2. Tumorigenicity assay .......................................................................................... 23 2.3.3. Growth curves ..................................................................................................... 23 2.3.4. Viability staining ................................................................................................ 24 2.3.5. Transfection ........................................................................................................ 24 2.3.6. Electroporation ................................................................................................... 24 2.3.7. Retroviral transduction ....................................................................................... 24 2.3.8. Adenoviral transduction ...................................................................................... 25 2.3.9. Cell stock freezing .............................................................................................. 25 2.4. DNA work ................................................................................................................... 25 2.4.1. Cloning ............................................................................................................... 25 2.4.2. Plasmid DNA isolation- Miniprep ...................................................................... 26 2.4.3. Plasmid DNA isolation- Midiprep ...................................................................... 27 2.4.4. Plasmid DNA isolation- Maxiprep ...................................................................... 27 2.4.5. DNA purification- spin columns ......................................................................... 27 2.4.6. DNA purification- phenol-chloroform extraction ............................................... 27 2.4.7. DNA quantification ............................................................................................ 28 2.4.8. DNA sequencing ................................................................................................. 28 2.4.9. Mutagenesis ........................................................................................................ 28 2.5. RNA work ................................................................................................................... 28 2.5.1. RNA isolation ..................................................................................................... 28 2.5.2. RNA quantification ............................................................................................. 29 2.5.3. cDNA preparation ............................................................................................... 29 2.5.4. PCR and semi-quantitative RT-PCR ................................................................... 29 2.5.5. PCR primers and amplicon sizes ......................................................................... 30 2.5.6. Real Time PCR ................................................................................................... 30 2.5.7. DNA microarray ................................................................................................. 31 2.6. Protein work ............................................................................................................... 32 2.6.1. Western Blot ....................................................................................................... 32 2.7. Cell-based assays ........................................................................................................ 32 2.7.1. BrdU incorporation assay ................................................................................... 32 3. RESULTS .......................................................................................................... 34 3.1. Validation of the model system ................................................................................. 34 3.1.1. Western Blot ....................................................................................................... 35 3.1.2. Real Time TRAP ................................................................................................ 35 3.1.3. Soft agar
Recommended publications
  • Gene Expression Polarization
    Transcriptional Profiling of the Human Monocyte-to-Macrophage Differentiation and Polarization: New Molecules and Patterns of Gene Expression This information is current as of September 27, 2021. Fernando O. Martinez, Siamon Gordon, Massimo Locati and Alberto Mantovani J Immunol 2006; 177:7303-7311; ; doi: 10.4049/jimmunol.177.10.7303 http://www.jimmunol.org/content/177/10/7303 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2006/11/03/177.10.7303.DC1 Material http://www.jimmunol.org/ References This article cites 61 articles, 22 of which you can access for free at: http://www.jimmunol.org/content/177/10/7303.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision by guest on September 27, 2021 • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2006 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Transcriptional Profiling of the Human Monocyte-to-Macrophage Differentiation and Polarization: New Molecules and Patterns of Gene Expression1 Fernando O.
    [Show full text]
  • Analysis of Trans Esnps Infers Regulatory Network Architecture
    Analysis of trans eSNPs infers regulatory network architecture Anat Kreimer Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2014 © 2014 Anat Kreimer All rights reserved ABSTRACT Analysis of trans eSNPs infers regulatory network architecture Anat Kreimer eSNPs are genetic variants associated with transcript expression levels. The characteristics of such variants highlight their importance and present a unique opportunity for studying gene regulation. eSNPs affect most genes and their cell type specificity can shed light on different processes that are activated in each cell. They can identify functional variants by connecting SNPs that are implicated in disease to a molecular mechanism. Examining eSNPs that are associated with distal genes can provide insights regarding the inference of regulatory networks but also presents challenges due to the high statistical burden of multiple testing. Such association studies allow: simultaneous investigation of many gene expression phenotypes without assuming any prior knowledge and identification of unknown regulators of gene expression while uncovering directionality. This thesis will focus on such distal eSNPs to map regulatory interactions between different loci and expose the architecture of the regulatory network defined by such interactions. We develop novel computational approaches and apply them to genetics-genomics data in human. We go beyond pairwise interactions to define network motifs, including regulatory modules and bi-fan structures, showing them to be prevalent in real data and exposing distinct attributes of such arrangements. We project eSNP associations onto a protein-protein interaction network to expose topological properties of eSNPs and their targets and highlight different modes of distal regulation.
    [Show full text]
  • PRODUCT SPECIFICATION Prest Antigen ACRV1 Product
    PrEST Antigen ACRV1 Product Datasheet PrEST Antigen PRODUCT SPECIFICATION Product Name PrEST Antigen ACRV1 Product Number APrEST80590 Gene Description acrosomal vesicle protein 1 Alternative Gene D11S4365, SP-10, SPACA2 Names Corresponding Anti-ACRV1 (HPA038718) Antibodies Description Recombinant protein fragment of Human ACRV1 Amino Acid Sequence Recombinant Protein Epitope Signature Tag (PrEST) antigen sequence: TSSQPNELSGSIDHQTSVQQLPGEFFSLENPSDAEALYETSSGLNTLSEH GSSEHGSSKHTVAEHTSGEHAE Fusion Tag N-terminal His6ABP (ABP = Albumin Binding Protein derived from Streptococcal Protein G) Expression Host E. coli Purification IMAC purification Predicted MW 25 kDa including tags Usage Suitable as control in WB and preadsorption assays using indicated corresponding antibodies. Purity >80% by SDS-PAGE and Coomassie blue staining Buffer PBS and 1M Urea, pH 7.4. Unit Size 100 µl Concentration Lot dependent Storage Upon delivery store at -20°C. Avoid repeated freeze/thaw cycles. Notes Gently mix before use. Optimal concentrations and conditions for each application should be determined by the user. Product of Sweden. For research use only. Not intended for pharmaceutical development, diagnostic, therapeutic or any in vivo use. No products from Atlas Antibodies may be resold, modified for resale or used to manufacture commercial products without prior written approval from Atlas Antibodies AB. Warranty: The products supplied by Atlas Antibodies are warranted to meet stated product specifications and to conform to label descriptions when used and stored properly. Unless otherwise stated, this warranty is limited to one year from date of sales for products used, handled and stored according to Atlas Antibodies AB's instructions. Atlas Antibodies AB's sole liability is limited to replacement of the product or refund of the purchase price.
    [Show full text]
  • Further Delineation of Chromosomal Consensus Regions in Primary
    Leukemia (2007) 21, 2463–2469 & 2007 Nature Publishing Group All rights reserved 0887-6924/07 $30.00 www.nature.com/leu ORIGINAL ARTICLE Further delineation of chromosomal consensus regions in primary mediastinal B-cell lymphomas: an analysis of 37 tumor samples using high-resolution genomic profiling (array-CGH) S Wessendorf1,6, TFE Barth2,6, A Viardot1, A Mueller3, HA Kestler3, H Kohlhammer1, P Lichter4, M Bentz5,HDo¨hner1,PMo¨ller2 and C Schwaenen1 1Klinik fu¨r Innere Medizin III, Zentrum fu¨r Innere Medizin der Universita¨t Ulm, Ulm, Germany; 2Institut fu¨r Pathologie, Universita¨t Ulm, Ulm, Germany; 3Forschungsdozentur Bioinformatik, Universita¨t Ulm, Ulm, Germany; 4Abt. Molekulare Genetik, Deutsches Krebsforschungszentrum, Heidelberg, Germany and 5Sta¨dtisches Klinikum Karlsruhe, Karlsruhe, Germany Primary mediastinal B-cell lymphoma (PMBL) is an aggressive the expression of BSAP, BOB1, OCT2, PAX5 and PU1 was extranodal B-cell non-Hodgkin’s lymphoma with specific clin- added to the spectrum typical of PMBL features.9 ical, histopathological and genomic features. To characterize Genetically, a pattern of highly recurrent karyotype alterations further the genotype of PMBL, we analyzed 37 tumor samples and PMBL cell lines Med-B1 and Karpas1106P using array- with the hallmark of chromosomal gains of the subtelomeric based comparative genomic hybridization (matrix- or array- region of chromosome 9 supported the concept of a unique CGH) to a 2.8k genomic microarray. Due to a higher genomic disease entity that distinguishes PMBL from other B-cell non- resolution, we identified altered chromosomal regions in much Hodgkin’s lymphomas.10,11 Together with less specific gains on higher frequencies compared with standard CGH: for example, 2p15 and frequent mutations of the SOCS1 gene, a notable þ 9p24 (68%), þ 2p15 (51%), þ 7q22 (32%), þ 9q34 (32%), genomic similarity to classical Hodgkin’s lymphoma was þ 11q23 (18%), þ 12q (30%) and þ 18q21 (24%).
    [Show full text]
  • Biomarker Discovery for Chronic Liver Diseases by Multi-Omics
    www.nature.com/scientificreports OPEN Biomarker discovery for chronic liver diseases by multi-omics – a preclinical case study Daniel Veyel1, Kathrin Wenger1, Andre Broermann2, Tom Bretschneider1, Andreas H. Luippold1, Bartlomiej Krawczyk1, Wolfgang Rist 1* & Eric Simon3* Nonalcoholic steatohepatitis (NASH) is a major cause of liver fbrosis with increasing prevalence worldwide. Currently there are no approved drugs available. The development of new therapies is difcult as diagnosis and staging requires biopsies. Consequently, predictive plasma biomarkers would be useful for drug development. Here we present a multi-omics approach to characterize the molecular pathophysiology and to identify new plasma biomarkers in a choline-defcient L-amino acid-defned diet rat NASH model. We analyzed liver samples by RNA-Seq and proteomics, revealing disease relevant signatures and a high correlation between mRNA and protein changes. Comparison to human data showed an overlap of infammatory, metabolic, and developmental pathways. Using proteomics analysis of plasma we identifed mainly secreted proteins that correlate with liver RNA and protein levels. We developed a multi-dimensional attribute ranking approach integrating multi-omics data with liver histology and prior knowledge uncovering known human markers, but also novel candidates. Using regression analysis, we show that the top-ranked markers were highly predictive for fbrosis in our model and hence can serve as preclinical plasma biomarkers. Our approach presented here illustrates the power of multi-omics analyses combined with plasma proteomics and is readily applicable to human biomarker discovery. Nonalcoholic fatty liver disease (NAFLD) is the major liver disease in western countries and is ofen associated with obesity, metabolic syndrome, or type 2 diabetes.
    [Show full text]
  • TCTE1 Is a Conserved Component of the Dynein Regulatory Complex and Is Required for Motility and Metabolism in Mouse Spermatozoa
    TCTE1 is a conserved component of the dynein regulatory complex and is required for motility and metabolism in mouse spermatozoa Julio M. Castanedaa,b,1, Rong Huac,d,1, Haruhiko Miyatab, Asami Ojib,e, Yueshuai Guoc,d, Yiwei Chengc,d, Tao Zhouc,d, Xuejiang Guoc,d, Yiqiang Cuic,d, Bin Shenc, Zibin Wangc, Zhibin Huc,f, Zuomin Zhouc,d, Jiahao Shac,d, Renata Prunskaite-Hyyrylainena,g,h, Zhifeng Yua,i, Ramiro Ramirez-Solisj, Masahito Ikawab,e,k,2, Martin M. Matzuka,g,i,l,m,n,2, and Mingxi Liuc,d,2 aDepartment of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030; bResearch Institute for Microbial Diseases, Osaka University, Suita, Osaka 5650871, Japan; cState Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, People’s Republic of China; dDepartment of Histology and Embryology, Nanjing Medical University, Nanjing 210029, People’s Republic of China; eGraduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 5650871, Japan; fAnimal Core Facility of Nanjing Medical University, Nanjing 210029, People’s Republic of China; gCenter for Reproductive Medicine, Baylor College of Medicine, Houston, TX 77030; hFaculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu FI-90014, Finland; iCenter for Drug Discovery, Baylor College of Medicine, Houston, TX 77030; jWellcome Trust Sanger Institute, Hinxton CB10 1SA, United Kingdom; kThe Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 1088639, Japan; lDepartment of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030; mDepartment of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030; and nDepartment of Pharmacology, Baylor College of Medicine, Houston, TX 77030 Contributed by Martin M.
    [Show full text]
  • ACRV1 (NM 020069) Human Tagged ORF Clone Product Data
    OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for RC214263 ACRV1 (NM_020069) Human Tagged ORF Clone Product data: Product Type: Expression Plasmids Product Name: ACRV1 (NM_020069) Human Tagged ORF Clone Tag: Myc-DDK Symbol: ACRV1 Synonyms: D11S4365; SP-10; SPACA2 Vector: pCMV6-Entry (PS100001) E. coli Selection: Kanamycin (25 ug/mL) Cell Selection: Neomycin ORF Nucleotide >RC214263 representing NM_020069 Sequence: Red=Cloning site Blue=ORF Green=Tags(s) TTTTGTAATACGACTCACTATAGGGCGGCCGGGAATTCGTCGACTGGATCCGGTACCGAGGAGATCTGCC GCCGCGATCGCC ATGAACAGGTTTCTCTTGCTAATGAGTCTTTATCTGCTTGGATCTGCCAGAGGAACATCAAGTCAGCCTA ATGAGCTTTCTGGCTCCATAGATCATCAAACTTCAGTTCAGCAACTTCCAGGTGAGTTCTTTTCACTTGA AAACCCTTCTGATGCTGAGGCTTTATATGAGACTTCTTCAGGCCTGAACACTTTAAGTGAGCATGGTTCC AGTGAGCATGGTTCAAGCAAGCACACTGTGGCCGAGCACACTTCTGGAGAACATGCTGAGAGTGAGCATG CTTCAGGTGAGCCCGCTGCGACTGAACATGCTGAAGGTGAGCATACTGTAGGTGAGCAGCCTTCAGGAGA ACAGCCTTCAGGTGAACACCTCTCCGGAGAACAGCCTTTGAGTGAGCTTGAGTCAGGTGAACAGCCTTCA GATGAACAGCCTTCAGGTGAACATGGCTCCGGTGAACAGCCTTCTGGTGAGCAGGCCTCGGGTGAACAGC CTTCAGGCACAATATTAAATTGCTACACATGTGCTTATATGAATGATCAAGGAAAATGTCTTCGTGGAGA GGGAACCTGCATCACTCAGAATTCCCAGCAGTGCATGTTAAAGAAGATCTTTGAAGGTGGAAAACTCCAA TTCATGGTTCAAGGGTGTGAGAACATGTGCCCATCTATGAACCTCTTCTCCCATGGAACGAGGATGCAAA TTATATGCTGTCGAAATCAATCTTTCTGCAATAAGATC ACGCGTACGCGGCCGCTCGAGCAGAAACTCATCTCAGAAGAGGATCTGGCAGCAAATGATATCCTGGATT ACAAGGATGACGACGATAAGGTTTAA This product is
    [Show full text]
  • Genotyping of Breech Flystrike Resource – Update
    Project No: ON-00515 Contract No: PO4500010753 AWI Project Manager: Bridget Peachey Contractor Name: CSIRO Agriculture and Food Prepared by: Dr Sonja Dominik Publication Date: July 2019 Genotyping of breech flystrike resource – update Published by Australian Wool Innovation Limited, Level 6, 68 Harrington Street, THE ROCKS, NSW, 2000 This publication should only be used as a general aid and is not a substitute for specific advice. To the extent permitted by law, we exclude all liability for loss or damage arising from the use of the information in this publication. AWI invests in research, development, innovation and marketing activities along the global supply chain for Australian wool. AWI is grateful for its funding, which is primarily provided by Australian woolgrowers through a wool levy and by the Australian Government which provides a matching contribution for eligible R&D activities © 2019 Australian Wool Innovation Ltd. All rights reserved. Contents Executive Summary .................................................................................................................... 3 1 Introduction/Hypothesis .................................................................................................... 5 2 Literature Review ............................................................................................................... 6 3 Project Objectives .............................................................................................................. 8 4 Success in Achieving Objectives ........................................................................................
    [Show full text]
  • Genome-Wide Analysis of ATP-Binding
    Tian et al. BMC Genomics (2017) 18:330 DOI 10.1186/s12864-017-3706-6 RESEARCH ARTICLE Open Access Genome-wide analysis of ATP-binding cassette (ABC) transporters in the sweetpotato whitefly, Bemisia tabaci Lixia Tian1, Tianxue Song2, Rongjun He1, Yang Zeng1, Wen Xie1, Qingjun Wu1, Shaoli Wang1, Xuguo Zhou3* and Youjun Zhang1* Abstract Background: ABC transporter superfamily is one of the largest and ubiquitous groups of proteins. Because of their role in detoxification, insect ABC transporters have gained more attention in recent years. In this study, we annotated ABC transporters from a newly sequenced sweetpotato whitefly genome. Bemisia tabaci Q biotype is an emerging global invasive species that has caused extensive damages to field crops as well as ornamental plants. Results: A total of 55 ABC transporters containing all eight described subfamilies (A to H) were identified in the B. tabaci Q genome, including 8 ABCAs, 3 ABCBs, 6 ABCCs, 2 ABCDs, 1 ABCE, 3 ABCFs, 23 ABCGs and 9 ABCHs. In comparison to other species, subfamilies G and H in both phloem- and blood-sucking arthropods are expanded. The temporal expression profiles of these 55 ABC transporters throughout B. tabaci developmental stages and their responses to imidacloprid, a neonicotinoid insecticide, were investigated using RNA-seq analysis. Furthermore, the mRNA expression of 24 ABC transporters (44% of the total) representing all eight subfamilies was confirmed by the quantitative real-time PCR (RT-qPCR). Furthermore, mRNA expression levels estimated by RT-qPCR and RNA-seq analyses were significantly correlated (r =0.684,p <0.01). Conclusions: It is the first genome-wide analysis of the entire repertoire of ABC transporters in B.
    [Show full text]
  • The Flagellar Arginine Kinase in Trypanosoma Brucei Is Important for Infection in Tsetse Flies
    RESEARCH ARTICLE The Flagellar Arginine Kinase in Trypanosoma brucei Is Important for Infection in Tsetse Flies Cher-Pheng Ooi1¤, Brice Rotureau1, Simonetta Gribaldo2, Christina Georgikou1, Daria Julkowska1, Thierry Blisnick1, Sylvie Perrot1, Ines Subota1, Philippe Bastin1* 1 Trypanosome Cell Biology Unit, INSERM U1201, Institut Pasteur, 25 Rue du Docteur Roux, 75015, Paris, France, 2 Molecular Biology of Gene in Extremophiles Unit, Department of Microbiology, Institut Pasteur, 25 rue du Docteur Roux, 75015, Paris, France ¤ Current address: Department of Life Sciences, Sir Alexander Fleming Building, Imperial College-South Kensington, London, SW7 2AZ, United Kingdom * [email protected] Abstract OPEN ACCESS African trypanosomes are flagellated parasites that cause sleeping sickness. Parasites are Citation: Ooi C-P, Rotureau B, Gribaldo S, Georgikou C, Julkowska D, Blisnick T, et al. (2015) transmitted from one mammalian host to another by the bite of a tsetse fly. Trypanosoma The Flagellar Arginine Kinase in Trypanosoma brucei brucei possesses three different genes for arginine kinase (AK) including one (AK3) that Is Important for Infection in Tsetse Flies. PLoS ONE encodes a protein localised to the flagellum. AK3 is characterised by the presence of a 10(7): e0133676. doi:10.1371/journal.pone.0133676 unique amino-terminal insertion that specifies flagellar targeting. We show here a phyloge- Editor: Frank Voncken, University of Hull, UNITED netic analysis revealing that flagellar AK arose in two independent duplication events in KINGDOM T. brucei and T. congolense, the two species of African trypanosomes that infect the tsetse Received: April 11, 2015 midgut. In T. brucei, AK3 is detected in all stages of parasite development in the fly (in the Accepted: June 29, 2015 midgut and in the salivary glands) as well as in bloodstream cells, but with predominance at Published: July 28, 2015 insect stages.
    [Show full text]
  • Advancing a Clinically Relevant Perspective of the Clonal Nature of Cancer
    Advancing a clinically relevant perspective of the clonal nature of cancer Christian Ruiza,b, Elizabeth Lenkiewicza, Lisa Eversa, Tara Holleya, Alex Robesona, Jeffrey Kieferc, Michael J. Demeurea,d, Michael A. Hollingsworthe, Michael Shenf, Donna Prunkardf, Peter S. Rabinovitchf, Tobias Zellwegerg, Spyro Moussesc, Jeffrey M. Trenta,h, John D. Carpteni, Lukas Bubendorfb, Daniel Von Hoffa,d, and Michael T. Barretta,1 aClinical Translational Research Division, Translational Genomics Research Institute, Scottsdale, AZ 85259; bInstitute for Pathology, University Hospital Basel, University of Basel, 4031 Basel, Switzerland; cGenetic Basis of Human Disease, Translational Genomics Research Institute, Phoenix, AZ 85004; dVirginia G. Piper Cancer Center, Scottsdale Healthcare, Scottsdale, AZ 85258; eEppley Institute for Research in Cancer and Allied Diseases, Nebraska Medical Center, Omaha, NE 68198; fDepartment of Pathology, University of Washington, Seattle, WA 98105; gDivision of Urology, St. Claraspital and University of Basel, 4058 Basel, Switzerland; hVan Andel Research Institute, Grand Rapids, MI 49503; and iIntegrated Cancer Genomics Division, Translational Genomics Research Institute, Phoenix, AZ 85004 Edited* by George F. Vande Woude, Van Andel Research Institute, Grand Rapids, MI, and approved June 10, 2011 (received for review March 11, 2011) Cancers frequently arise as a result of an acquired genomic insta- on the basis of morphology alone (8). Thus, the application of bility and the subsequent clonal evolution of neoplastic cells with purification methods such as laser capture microdissection does variable patterns of genetic aberrations. Thus, the presence and not resolve the complexities of many samples. A second approach behaviors of distinct clonal populations in each patient’s tumor is to passage tumor biopsies in tissue culture or in xenografts (4, 9– may underlie multiple clinical phenotypes in cancers.
    [Show full text]
  • The Capacity of Long-Term in Vitro Proliferation of Acute Myeloid
    The Capacity of Long-Term in Vitro Proliferation of Acute Myeloid Leukemia Cells Supported Only by Exogenous Cytokines Is Associated with a Patient Subset with Adverse Outcome Annette K. Brenner, Elise Aasebø, Maria Hernandez-Valladares, Frode Selheim, Frode Berven, Ida-Sofie Grønningsæter, Sushma Bartaula-Brevik and Øystein Bruserud Supplementary Material S2 of S31 Table S1. Detailed information about the 68 AML patients included in the study. # of blasts Viability Proliferation Cytokine Viable cells Change in ID Gender Age Etiology FAB Cytogenetics Mutations CD34 Colonies (109/L) (%) 48 h (cpm) secretion (106) 5 weeks phenotype 1 M 42 de novo 241 M2 normal Flt3 pos 31.0 3848 low 0.24 7 yes 2 M 82 MF 12.4 M2 t(9;22) wt pos 81.6 74,686 low 1.43 969 yes 3 F 49 CML/relapse 149 M2 complex n.d. pos 26.2 3472 low 0.08 n.d. no 4 M 33 de novo 62.0 M2 normal wt pos 67.5 6206 low 0.08 6.5 no 5 M 71 relapse 91.0 M4 normal NPM1 pos 63.5 21,331 low 0.17 n.d. yes 6 M 83 de novo 109 M1 n.d. wt pos 19.1 8764 low 1.65 693 no 7 F 77 MDS 26.4 M1 normal wt pos 89.4 53,799 high 3.43 2746 no 8 M 46 de novo 26.9 M1 normal NPM1 n.d. n.d. 3472 low 1.56 n.d. no 9 M 68 MF 50.8 M4 normal D835 pos 69.4 1640 low 0.08 n.d.
    [Show full text]