ABSTRACT

EVALUATING HOLOCENE PRECIPITATION VARIABILITY IN THE BALTIC REGION USING OXYGEN ISOTOPES OF LACUSTRINE CARBONATE FROM

Carolyn Fortney, M.S. Department of Geology and Environmental Geosciences Northern Illinois University, 2016 Nathan D. Stansell, Director

Oxygen isotopes derived from authigenic carbonate from open lake systems record variations in seasonal precipitation source. This study focuses on the sediment record from

Lake Nuudsaku in southern Estonia to evaluate how winter versus summer precipitation has changed throughout the Holocene as a result of fluctuating North Atlantic Ocean conditions, primarily the North Atlantic Oscillation (NAO). Estonia receives precipitation with a lower

δ18O value from the North Atlantic and Baltic Sea during the winter months. In contrast, during the summer months Estonia receives precipitation with greater δ18O values from warmer North Atlantic waters and from the Mediterranean Sea and Black Sea. Therefore, lower δ18O values in the carbonate record were interpreted as periods of time in which there were increases in the amount of winter precipitation. Oxygen isotope data indicate relatively wet winters during the early Holocene (9960 to 8800 cal yr BP) followed by a shift toward drier winters during the middle of the Holocene (8800 to 4200 cal yr BP). The late Holocene

(4200 cal yr BP to the present) was characterized by the wettest winters recorded in the oxygen isotope record. The periods of increased winter precipitation in the Baltic region generally coincided with periods of increased NAO index between 5200 cal yr BP and 1000 cal yr BP. There was an inverse relationship between winter precipitation and NAO index during the Medieval Climate Anomaly and the Little Ice Age (900 to 100 cal yr BP). The positive relationship between NAO index and winter precipitation in Northern Europe is present once again in the modern setting and has persisted since at least AD 1950. NORTHERN ILLINOIS UNIVERSITY DEKALB, ILLINOIS

AUGUST 2016

EVALUATING HOLOCENE PRECIPITATION VARIABILITY IN THE

BALTIC REGION USING OXYGEN ISOTOPES OF LACUSTRINE

CARBONATE FROM ESTONIA

BY

CAROLYN FORTNEY ©2016 Carolyn Fortney

A THESIS SUBMITTED TO THE GRADUATE SCHOOL IN

PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE

MASTER OF SCIENCE

DEPARTMENT OF GEOLOGY AND ENVIRONMENTAL GEOSCIENCES

Thesis Director: Nathan D. Stansell ACKNOWLEDGEMENTS

I would like to thank my advisor, Nathan Stansell, for providing me the opportunity, knowledge and material to make this project possible. I also thank my committee members

Justin Dodd and Eric Klein for their guidance and support. In addition, I would like to thank

Jaanus Terasmaa, Tanel Vainura, Kristyn Hill, Elizabeth Olson, Anna Buczynska, Matthew

Finkenbinder, Sten Sarap, Evelin Stansell, Luule Lauk and the Paavel family for additional assistance and Northern Illinois University’s Geology and Environmental Geosciences

Department for financial support to complete fieldwork and lab work.

TABLE OF CONTENTS

Page

LIST OF FIGURES ...... vi

Chapter

1. INTRODUCTION ...... 1

Site Description ...... 4

Chemical Environment of Lake Nuudsaku ...... 9

2. METHODS ...... 11

Fieldwork ...... 11

Analytical Work ...... 12

Age Model ...... 12

Physical and Chemical Composition ...... 15

Delta Notation ...... 17

Water Isotopes ...... 17

Calcite Isotopes ...... 18

Paleo-Water Isotopes ...... 19

3. RESULTS ...... 21

Physical Changes in Lake Nuudsaku ...... 21

Age Model ...... 21

X-Ray Diffraction Results ...... 24

Principal Component Analysis ...... 24 iv Chapter Page

SEM Images ...... 24

Biogenic Silica ...... 28

Loss on Ignition ...... 28

Water Chemistry Data ...... 28

Bathymetric Profile ...... 30

Modern Water Isotopes ...... 30

Calcite Isotopes ...... 31

Calculated Paleo-Water Composition ...... 34

4. DISCUSSION ...... 37

North Atlantic Influence ...... 37

North Atlantic Oscillation ...... 37

Applications of Paleolimnology ...... 38

Calcite Precipitation ...... 39

Sediment Constituents ...... 41

Lake Hydrology ...... 42

Relationship Between δ13C and δ18O ...... 42

Global Meteoric Water Line ...... 43

δ18O Drivers in Lake Nuudsaku ...... 44

Temperature ...... 44

Seasonal Precipitation Changes ...... 46

Paleo-water Composition ...... 47

Oxygen Isotope Record ...... 48 v Chapter Page

9963 to 8800 cal yr BP ...... 48

8800 to 4200 cal yr BP ...... 48

4200 to 1200 cal yr BP ...... 48

1200 cal yr BP to Present ...... 49

Regional Climate Reconstructions ...... 49

NAO Reconstructions ...... 52

NAO Between 5200 and 300 cal yr BP ...... 52

NAO Between 900 and -65 cal yr BP ...... 54

Deviations from NAO Index Records ...... 55

Other Baltic Region Climate Drivers ...... 57

Societal Importance ...... 58

5. CONCLUSIONS ...... 59

REFERENCES ...... 61

APPENDIX ...... 68

LAKE NUUDSAKU DATA ...... 68

LIST OF FIGURES

Figure Page

1. Seasonal changes in precipitation source and 18O values in Estonia ...... 2

2. Location of Estonia in the Baltic Region ...... 5

3. Temperature variations in Tartu and -Nuia ...... 6

4. Precipitation variations in Tartu and Karksi-Nuia ...... 7

5. Bathymetric profile of Lake Nuudsaku ...... 8

6. Water chemistry data from August 2014 ...... 10

7. Water chemistry data from May 2015 ...... 10

8. Images of sediment cores from Lake Nuudsaku ...... 13

9. Temperature and lake level changes in Lake Nuudsaku ...... 22

10. Age-depth model of Lake Nuudsaku’s sediment core ...... 23

11. Intensities measured using X-Ray diffraction...... 25

12. Principal Component 2 plotted against Ca and Zn ...... 26

13. SEM image of calcite and diatoms from Lake Nuudsaku ...... 27

14. Biogenic silica, organic matter, calcium carbonate and bulk density variations with

time ...... 29

15. Water 18O and 2H values from Estonia ...... 32

16. Calcite 18O values ...... 33

17. Calcite 18O vs. 13C values ...... 35

18. Calculated paleo-water 18O values ...... 36 vii Figure Page

19. Holocene atmospheric temperature reconstruction from the Baltic region ...... 45

20. Lake Nuudsaku δ18O values compared to NAO index since 5200 cal yr BP ...... 53

21. Lake Nuudsaku δ18O values compared to NAO index since 900 cal yr BP ...... 56 CHAPTER 1

INTRODUCTION

The North Atlantic Oscillation (NAO) is the dominant driver of the regional distribution of winter precipitation in Europe (Hurrell 1995; Hurrell and van Loon, 1997).

NAO indices are currently positively correlated with winter precipitation in Northern Europe

(Bladé et al., 2012). Recent intensification of the positive mean state of the NAO correlates with increased winter precipitation in Estonia since 1951 (Jaagus, 2006). Climate models predict that the Baltic region will continue to experience wetter winters in the future (IPCC,

2014), which could be amplified by further persistence of positive mean state NAO conditions in the coming decades (López-Moreno et al., 2011).

The primary sources of precipitation in Estonia are from the North Atlantic Ocean and the Baltic Sea (Fig. 1), which supply the Baltic region with precipitation all year (Gimeno et al., 2010). Estonia also receives precipitation from a southern source (Mediterranean Sea) during the summer months (Gimeno et al., 2010). Precipitation transported from the North

Atlantic Ocean and the Baltic Sea has much lower δ18O values than precipitation transported from the Mediterranean Sea (Bowen, 2002). The seasonal changes in precipitation δ18O values drive changes in the mean oxygen isotopic composition of water (Talbot, 1990) in

Lake Nuudsaku, a hydrologically open, groundwater-fed lake in Southern Estonia. As a result, authigenic calcite in equilibrium with the lake water also records changes in precipitation

δ18O (McKenzie et al., 1985; Gasse et al., 1987). 2

(A) 19°E 60°N

Baltic Sea Tallinn

Estonia Russia

Nuudsaku Lake

Latvia January (B) 19°E 60°N Baltic Sea Tallinn

Estonia

Nuudsaku Lake

Latvia July 18O of Seasonal Precipitation (‰)

-9.9 to-8.9 -9 to-7.9 -8 to-6.9 -7 to -6 -18.9 -17.9to -18 to-16.9 -17-15.9 to -16-14.9 to -15 to-13.9 -14 to-12.9 -13 -11.9to -12 -10.9to -11 to -10 Figure 1: Seasonal change in precipitation source and 18O values in Estonia. (A) Distribution of 18O values of January precipitation in Estonia (modified from Bowen, 2013). Arrows depict source of winter precipitation (North Atlantic and Baltic Sea); (B) Distribution of 18O values of July precipitation in Estonia (modified from Bowen, 2013). Arrows depict source of summer precipitation (Mediterranean Sea and Black Sea in addition to North Atlantic and Baltic Sea). 3

The first goal of this study was to utilize the 18O values of authigenic calcite from the sediment record of Lake Nuudsaku to reconstruct variations in the relative amounts of winter and summer precipitation since 9960 calibrated years before present (cal yr BP), relative to

AD 1950. Because average winter precipitation 18O values are much lower (-14.6‰) than average summer precipitation 18O values (-6.1‰), decreases in calcite 18O values from

Lake Nuudsaku were interpreted as relative increases in winter precipitation relative to summer precipitation. The modern 18O value of calcite (-12.5‰) is lower than much of the previous 18O values from the sediment record, indicating that Estonia is currently receiving more winter precipitation than it has since at least 9960 cal yr BP. These changes in seasonal precipitation were compared to other regional paleoclimate reconstructions to assess the spatial variation in precipitation throughout the Baltic region since 9960 cal yr BP.

The second goal of this study was to increase the spatial resolution of proxy records in the Baltic region and to better understand, qualitatively, how atmospheric circulation patterns attributed to NAO variability have driven past changes in winter precipitation in the Baltic region by comparing the 18O record from Lake Nuudsaku to existing NAO index reconstructions (Trouet et al., 2009; Olsen et al., 2012). Presently, the mean positive state of the NAO provides the Lake Nuudsaku sediment record with lower 18O values, associated with increased winter precipitation relative to summer precipitation in the Baltic region.

Better understanding the relationship between NAO indices and Baltic region climate in the past will allow for more accurate predictions of future changes in regional precipitation. All raw data collected during this study are presented in Appendix. 4

Site Description

Estonia is located in the Baltic region of subarctic Northern European (Fig. 2) and receives warm, maritime air from the North Atlantic, resulting in a temperate climate.

Average (between AD 2000 and 2012) temperatures (Fig. 3) in Tartu (~100 km northwest of

Lake Nuudsaki) ranged from -3.5°C in the winter months (DJF) to 16.3°C in the summer months (JJA) and average precipitation amounts (Fig. 4) range from 44.2 mm per month in the winter to 76.7 mm per month in the summer (World Weather Online). Weather station data recorded in Karksi Nuia (~12 km south of Lake Nuudsaku) between June 2015 and May

2016 revealed that average temperature ranged between -2.1°C in the winter of 2016 and

16.4°C in the summer of 2015 and precipitation ranged from 53.8 mm per month in the summer of 2015 and 59.6 mm per month in the winter of 2016 (Fig. 3; Fig. 4).

Lake Nuudsaku is located in County in south-central Estonia (58° 11’ 47” N,

25° 37’ 34” E) at an elevation of ~100 m above sea level. The lake reaches a maximum depth of 5.1m and is ~500 m long by ~160 m wide. There are two streams that connect Lake

Nuudsaku to other lakes in the region, such as Lake Müüri (Fig. 5). There is a hill on the southeast side of the lake, but most of the topography around Lake Nuudsaku is relatively flat, which likely gives the lake a relatively small watershed. Agricultural fields cover the region immediately surrounding Lake Nuudsaku.

Lake Nuudsaku rests in Quaternary-aged glacial and fluvioglacial deposits associated with till formations from numerous glacial periods throughout the Quaternary (Raukas and

Kajak, 1995). The Scandinavian Ice Sheet receded from Estonia by 12,000 cal yr BP, ending the most recent glacial period (Kalm, 2006; Rinterknecht et al., 2006), which resulted in the North Atlantic Ocean

Baltic Sea

Figure 2: Location of Estonia in the Baltic Region. Lake Nuudsaku’s location is highlighed by the star. 5

emperature T 5 in Tartu (°C)

vg. Daily

A A vg. Daily in Karksi-Nuia (°C)

T emperature

July Aug Sept Oct Nov Dec Jan Feb Mar Apr May Month

Figure 3: Temperature variations in Tartu and Karksi-Nuia. Tartu temperature data were recorded 6 Avg. Monthly Precipitation in Tartu (mm) between 2000and2012Karksi-Nuiaprecipitation datawererecordedbetween2015and2016. recorded were data precipitation TartuKarksi-Nuia. and Tartuin variations Precipitation 4: Figure 20 40 60 80 0 J A SONDJFM A M Month

Monthly Precipitation in Karksi-Nuia (mm) 20 40 60 80 0 J A SONDJFM A M

Month 7 25 37 28 E 25 37 36 E 25 37 44 E 25 37 52 E

0.5 Lake Nuudsaku 1.5 Karksi Parish , Viljandi Coun ty 2.5 58 3.5 11 55 N 4.5 Muuri Lake 4.7 +

5.1 + 58 11 50 N

5.0

0 30 60 9090 120 150 Meters

Lake Nuudsaku is located 11.25 km 4.2 58 + north-northeast of the town of 11 Karksi-Nuia. The lake covers an 45 area of 8.3 hectares and has a N maximum depth of 5.1 meters. 4.0 3.0 All depths are in meters 1.0 2.0 Coordinate information is given in degrees-minutes-seconds. .

Figure 5: Bathymetric profile of Lake Nuudsaku. Contour lines are given in 0.5 m intervals. 8 9 formation of kettle lakes throughout Estonia. It is likely that Lake Nuudsaku was formed through this process. The glacial deposits are underlain by Devonian sandstone and siltstone bedrock (Raukas and Kajak, 1995).

Chemical Environment of Lake Nuudsaku

Lake Nuudsaku exhibited a peak in dissolved oxygen in the stratified thermocline during August of 2014 (Fig. 6), but not in May of 2015 (Fig. 7). This is a common feature known as a positive heterograde curve and is the result of photosynthetic oxygen production by algal communities in the metalimnion (Wetzel, 2001). The solubility of oxygen increases as temperature decreases so dissolved oxygen should increase with depth in the lake.

However, in more productive lakes, oxygen is depleted from the hypolimnion so temperature and dissolved oxygen both decrease with depth (Wetzel, 2001). The positive heterograde curve suggests that Lake Nuudsaku is a moderately productive, slightly eutrophic lake.

Lake Nuudsaku also had a slightly alkaline composition (260 mg/L) and a high average specific conductance during the 2014 (0.51 mS/cm) and 2015 (0.47 mS/cm) field seasons (Fig.6; Fig. 7). The high specific conductance implies that Lake Nuudsaku has a high salinity and a high concentration of dissolved ions, likely as a result of exchange between groundwater and soil (Wetzel, 2001). Open lakes in temperate zones are dominated by calcium and carbonate ions (Rodhe, 1949). The abundance of these ions and the alkaline conditions in Lake Nuudsaku likely favor the precipitation and preservation of calcite within the sediment record. 10

0 0

1 1 Depth (m) 2 2

3 3 Depth (m)

4 4

5 5 12 16 20 24 7.0 7.5 8.0 24680.50 0.60 0.70 Temperature (°C) pH Dissolved O Specific Conductivity (mg/L) (mS/cm)

Figure 6: Water chemistry data from August 2014. Measurements were taken every 0.5 m of depth.

0 0

1 1 Depth (m) 2 2

3 3 Depth (m) 4 4

5 5 8 9 10 11 7.6 7.8 8.0 8.2 8.4 6 8 10 12 0.46 0.47 0.48 Temperature (°C) pH Dissolved O Specific Conductivity (mg/L) (mS/cm)

Figure 7: Water chemistry data from May 2015. Measurements were taken every 0.5 m between 0 and 2 m of depth and every 1 m between 2 and 4 m of depth. CHAPTER 2

METHODS

Fieldwork

During the summer of 2014, a 651 cm-long sediment core was collected from Lake

Nuudsaku at a depth of 5.1 m with a Livingston piston corer. A 71 cm-long piston core of surface sediment was also collected from the lake and extruded in the field at 0.25 cm intervals to a depth of 21.3 cm.

A weather station and lake level logger were installed to collect additional data to better understand annual weather patterns and the modern lake system. A HOBO weather station was installed in Karksi Nuia to record regional temperature and precipitation amounts between June 2015 and May 2016 (Fig. 3; Fig. 4). A Solinst Data Logger was installed in

Lake Nuudsaku to record changes in water temperature and lake level between May 2015 and

May 2016.

Over the course of three field seasons, water samples from various sources throughout southern Estonia were collected to quantify isotopic variations in meteoric water. Water samples were collected in 15 mL polyethylene bottles without any air pockets to ensure that water could not equilibrate with the isotopic composition of any atmospheric gases. Water samples were collected from Lake Nuudsaku during the winter (n=1) of 2014 and the summers (n=6) of 2014 and 2015. Regional precipitation samples were also collected during the winter (n=5) of 2014 and the summers (n=10) of 2014 and 2015 to investigate changes in 12 the isotopic composition of precipitation due to seasonal source change. Other lakes (n=63) throughout southern Estonia were sampled, as well, to determine which lakes were evaporatively enriched and which were not (Craig, 1961). Additionally, water samples from streams (n=8) and bogs (n=22) in Estonia were collected during the winter of 2014 and the summers of 2014 and 2015.

To better understand chemical and physical properties of the modern lake system, additional data from the lake and surrounding region were measured during the 2014 and

2015 field seasons. A Hydrolab Multi-Probe Meter was used to measure changes in temperature, pH, specific conductivity, and dissolved oxygen down the water column in

August 2014 and May 2015 (Fig. 6; Fig. 7). The depth throughout Lake Nuudsaku was measured via echo sounding with a Garmin Fishfinder GPS. Eric Wienckowski at the

University of Minnesota graphed these depths with lake position to create a bathymetric profile of the lake (Fig. 5).

Analytical Work

The cores were split along their vertical axes in the lab and photographed at high resolution using a Smartcube camera image scanner smartCIS (Fig. 8). One half of each core was packaged and stored as an archive and the other half was used to sample for all of the analyses.

Age Model

Radiometric dating of 210Pb (half-life=22.3 years) and 14C (half-life=5,730 years)

(Olsson, 1986) was utilized to calculate ages for the Lake Nuudsaku sediment core. Surface 13 Surface Drive 1 Drive 2 Drive 3 Drive 4 Core 210 290

60 30 140 220 300

70 40 150 230 310

Depth (cm) 80 50 160 240 320

90 60 170 250 330

100 70 180 260 340

110 190 270 350

120 200 280 360

130 210 290 370

140 220 300 380

150 230 310

Figure 8: Images of sediment cores from Lake Nuudsaku. (Continued on the following page). 14

Drive 5 Drive 6 Drive 7 Drive 8

370

460 540 630 380

470 550 640 390

480 560 650 400

490 570 660 410

500 580 670 420 Depth (cm) 510 590 680 430

520 600 690 440

530 610 700 450

540 620 710 460

550 630 720 470 Figure 8: (Continued). 15 sediments (n=3) were dated, using 210Pb measured at the University of Pittsburgh following the methods of Finkenbinder et al. (2014). Charcoal (n=5), wood (n=1), and a birch leaf (n=1) from the sediment core, were dated using 14C. To prepare these samples, sediment from the core was disaggregated using 7% H2O2, and wet sieved through a 63µm screen. Carbon-based terrestrial material was collected from the remaining large fraction using a binocular microscope and prepared using an acid-base-acid procedure (Abbott and Stafford Jr., 1996).

The prepared samples were sent to the University of California-Irvine where radiocarbon ages were calculated in the W.M. Keck Carbon Cycle Accelerator Mass Spectrometry Laboratory.

The age-depth model for the sediment record was created using BACON software

(v2.2) for R. BACON applies Bayesian statistics and Markov Chain Monte Carlo (MCMC) algorithms to estimate the most probable accumulation rates for a given deposit (Blaauw and

Christén, 2013). The BACON software was instructed to divide the cores into 5cm, vertical sections and to apply one million MCMC iterations to calculate the accumulation rate

(cm/year) for each vertical section within one standard deviation error (Blaauw and Christén,

2013). The age-depth model was constrained using the calibrated radiocarbon age from the birch leaf taken from the base of the core (722 cm) and the modern age of -64 cal yr BP for the surface (0 cm). The IntCal13 calibration curve was applied for the 14C dates (Reimer et al.,

2013). The ages are presented in cal yr BP, relative to AD 1950.

Physical and Chemical Composition

Lab analyses were conducted to better understand the elemental composition of the lake sediments. A theta-2 theta scan was conducted on five sediment samples (0 cm, 252 cm,

416 cm, 617 cm, 695 cm) between 20 and 70° 2θ on a Rigaku D/Max 2200V Powder X-ray 16 diffractometer at Northern Illinois University to identify the type of carbonate being analyzed.

An Olympus DELTA Family handheld X-Ray Fluorescence (XRF) Analyzer was used to measure the elemental composition of samples at 4 cm intervals. A principal component analysis (PCA) was created using Systat software to express the data with fewer coordinates.

The first and second principal components (PC1 and PC2) were plotted versus the abundance of each element present in the lake sediment to determine the coefficient of determination (r2) between the principal components and each element (including Si, Ca, Zn, Fe, P, Mn and K).

The r2 value was used to explain the amount of variability of each element that is explained by each PC. The elements that had an r2 value of > 0.5 with PC1 were interpreted as having a relationship with each other. Similarly, the elements that had an r2 value of > 0.5 with PC2 were interpreted as having a relationship with each other.

Biogenic silica (BSi) was measured every 4 cm using the method by Mortlock and

Froelich (1989). To prepare the samples for analyses, sediment was freeze-dried, homogenized, soaked in 30% H2O2 to remove organic material and soaked in 1M HCl to remove any carbonate. A 10% Na2CO3 solution was used to extract the BSi so it could be measured using molybdate blue spectrophotometry at 812 nm (Mortlock and Froelich, 1989) on a Thermo Scientific Evolution 60s UV-Visible Spectrophotometer.!

Additional analyses were used to measure other physical and chemical changes in the sediment. The sediment samples were examined using a scanning electron microscope (SEM) at 1,500 times magnification to examine the calcite at a higher resolution. Loss-on-ignition methods (Dean Jr., 1974) were used to determine the change in the amount (%) of organic matter and calcium carbonate throughout the sediment record every 4 cm. Bulk density 17

(g/cm3) was measured at 1cm intervals by freeze-drying one cubic centimeter of wet sediment and weighing the dried material.

Delta Notation

The data for oxygen, carbon, and hydrogen isotope compositions are presented in delta notation. Delta notation is the ratio of the heavier isotope to the lighter isotope, standardized to a global standard. The equation used to calculate isotopic composition is:

! − ! ! = ! !"# !1000 !!"#

where R is the ratio of the abundance of the heavy isotope to the light isotope, x denotes the sample, and std denotes the standard (McKinney et al., 1950). All delta notation data are presented in per mil units (‰).

Water Isotopes

Hydrogen and oxygen isotopic composition of the modern water samples were measured at University of Alaska-Anchorage’s Stable Isotope Laboratory on a Picarro wavelength scanned cavity ring-down spectrometer. Water isotope measurements are presented in standard delta notation, relative to Vienna Standard Mean Ocean Water

(VSMOW).

The precipitation data were plotted as δ2H vs. δ18O against the global meteoric water line (GMWL), which is represented in the equation below (Craig, 1961). The precipitation 18 isotope data were plotted with the GMWL to compare the local relationship between δ18O and

δ2H with the global relationship. The surface water isotope data were plotted with a trend line that represents the regional evaporation line (REL).

!" = 8!!"! + 10

Calcite Isotopes

Sediment samples (0.5 cm-thick) were collected from the core at 1 cm intervals to measure the isotopic composition of oxygen and carbon within the calcite from the sediment.

The sediments were disaggregated in 7% H2O2 and wet sieved through a 63µm screen to remove detrital material and other large particles. The fine material (<63µm) was soaked in a

50% bleach solution to remove the remaining organic matter. After eight hours, the samples were rinsed a minimum of three times using deionized water. The remaining material was frozen and freeze-dried for at least eight hours, and then each sample was homogenized by hand using a mortar and pestle.

To prepare the calcite to be measured in the mass spectrometer, the samples (n=452) and duplicates (n=20) were weighed into ~150 µg aliquots into curved-bottom, 15ml borosilicate Exetainer vials. The vials were flushed with He to remove atmospheric contaminants (e.g. CO2), manually injected with ~5µl of 103% phosphoric acid, and allowed to react at 20°C for ~24 hours, to evolve CO2 gas from the sample. CO2 gas from each vial was transferred to a Thermo Finnigan Gas Bench II, connected to a Thermo MAT253 stable isotope ratio mass spectrometer, via continuous flow of a He stream. International standards

NBS-18 (δ18O = -23.2 ± 0.1‰; δ13C = -5.014 ± 0.035‰; n = 8) and NBS-19 (δ18O = -2.20 19

‰; δ13C = +1.95 ‰; n = 8) were used to calibrate δ18O and δ13C values. Calcite isotopic compositions are presented in standard delta notation relative to Vienna Pee Dee Belemnite

(VPDB).

The δ18O values of the duplicates were averaged to determine the best δ18O value for each sample. Two duplicate samples (59 cm and 69 cm) were considered to be unreliable because, they were missing δ13C data, and were not included in the averages.

Paleo-Water Isotopes

To calculate the composition of the lake water from which the calcite was precipitated

18 18 (δ Opaleo), the δ O values of the calcite were converted from VPDB to VSMOW using the equation:

!" !" ! !!"#$ !"#$% = 1.0391 × ! !!"#$ !"#$ + 30.91 (Coplen et al., 1988).

The fractionation factor, α, of calcite to water was calculated using the equation:

! !! 1000!"!(!"#!$%&!!"#$%) = 18.03(10 ! ) – 32.42 (Kim and O’Neil, 1997).

A temperature (T) of 16°C was used because that is the average temperature in early summer when calcite precipitation should peak (Thompson et al., 1997). Once the fractionation factor was known, the δ18O value of the water, from which the calcite precipitated, was calculated using the equation by Friedman and O’Neil (1977): 20

!" !" (! !!"#$(!"#$%) + 1000) ! !!"#$% !"#$% = ( ) − 1000 ! !"#!$%&!!"#$% CHAPTER 3

RESULTS

Physical Changes in Lake Nuudsaku

The level logger data indicated that Lake Nuudsaku had an average summer (JJA) temperature of 19.5°C in 2015 and average winter (DJF) temperature of 4.8°C in 2016 (Fig.

9). The temperature in the lake peaked in July 2015 at 22.3°C and began decreasing between

September 2015 and December 2015, when it reached the coldest temperature (2.4°C).

Temperature began increasing once again in March 2016. Lake level fluctuations were minimal (0.17 cm) in Lake Nuudsaku between May 2015 and May 2016 (Fig. 9).

Age Model

Dating of 210Pb and 14C was used to constrain the time period recorded in the sediment core. The three surface sediments had ages between -51 and -8 cal yr BP and the dated terrigenous material had ages ranging from 735 to 8960 cal yr BP. BACON created an age- depth model (Fig. 10) by interpolating the minimum, maximum, median and weighted mean for the possible age (cal yr BP) for each centimeter of the core. The points in Figure 10 represent the estimated radiocarbon and 210Pb ages. The shaded area represents the minimum and maximum 95% confidence ranges for ages and the line in the center of the shaded region is the weighted mean. The basal age of the core was determined to be 9960 cal yr BP at a Avg. Daily Temperature (°C) 10 15 20 5 iue :Tmeaue n lk lvl hne i Lk Nusk. aa were Data recorded betweenJune2015andMay2016. Nuudsaku. Lake in changes level lake and Temperature 9: Figure ueJl u etOtNvDcJnFbMrArMay Apr Mar Feb Jan Dec Nov Oct Sept Aug July June Month

0.00 0.05 0.10 0.15 Lake Level Change (cm) Change Level Lake 22 23 24 depth of 722 cm below the sediment-water interface. One age at a depth of 386 cm could not be resolved by BACON and it was considered as an outlier.

X-Ray Diffraction Results

The five sediment samples analyzed in the X-ray diffractometer all exhibited intensity peaks at the same 2 (°) values (Fig. 11). All five samples exhibited the highest intensity peak at 30° 2 . There were comparatively smaller intensity peaks at 36, 40, 44, 47, and 49° 2 . No major intensity peaks occurred after 50° 2 .

Principal Component Analysis

All of the elements that had r2 values > 0.5 with PC1 (PC2) were interpreted as having a relationship with each other (Fig. 12). Fe, Mn and K had significant r2 values (0.83, 0.57, and 0.57, respectively) with PC1, which implies that there was a relationship between these elements. Ca and Zn had significant r2 values (0.51 and 0.61, respectively) with PC2, indicating that there was a relationship between these two elements. However, the correlation coefficient, r, between PC2 and Ca was 0.71 and between PC2 and Zn was -0.78, indicating that there was a negative relationship between the two elements. Si and P had no significant r2 values with PC1 or PC2.

SEM Images

SEM images revealed the presence of trigonal-rhombohedral calcite crystals (Fig. 13).

The calcite crystals were not fractured or altered in any of the images. In addition to the calcite crystals there were also well-preserved diatoms in the lake sediments. 25 2 Theta (°) (A) 20 30 40 50 60 70 5000

4000 Calcite peak 3000 Intensity (cps) 2000

1000 (B) 3000 2500 Intensity (cps) 2000 1500 1000 (C) 1600 500 1400 1200 1000

Intensity (cps) 800 7000 600 6000 400 (D) 5000 Intensity (cps) 4000 3000 2000 1000 (E) 6000 5000 4000 3000 Intensity(cps) 2000 1000

20 30 40 50 60 70 2 Theta (°) Figure 11: Intensities measured using X-ray diffraction. The peak at 30° is indicative of calcite. Samples were measured at the following depths: (A) 0 cm; (B) 252 cm; (C) 416 cm; (D) 617 cm; (E) 695 cm. 26

20 r2 = 0.51 15

Ca (%) 10 5

02 PC2

0.007 0.005

Zn (%) 0.003 r2 = 0.61 0.001

02 PC2

Figure 12: Principal Component 2 plotted against Ca and Zn. 27

Figure 13: SEM image of calcite and diatoms from Lake Nuudsaku. The black box highlights calcite crystals. 28

Biogenic Silica

The amount of BSi (%) present in the core ranged from 2 to 16% (Fig. 14). BSi tracks organic matter between 9960 and 1000 cal yr BP. However, there are notable increases in BSi from 5600 to 5500 cal yr BP and 4900 to 4800 cal yr BP without an increase in organic matter. After 1000 cal yr BP, BSi increases with calcium carbonate while organic matter decreases.

Loss on Ignition

Calcium carbonate (%) and organic matter (%) exhibit an inverse relationship (r2 =

0.83) (Fig. 14). These data suggest that calcium carbonate and organic matter are both dominant components in the core, but are highly variable. Calcium carbonate was abundant

(20-33%) in the early part of the record, until 5300 cal yr BP, when values decreased.

Calcium carbonate was at its lowest abundance between 5000 and 2800 cal yr BP (0-14%) and generally increased between 2800 cal yr BP and the present (3-27%). Organic matter was at its lowest abundance between 9960 and 5300 cal yr BP (10-25%) and its greatest between

5300 and 1000 cal yr BP (18-55%). There has been a general decrease in the presence of organic matter since 1000 cal yr BP (21-35%).

Water Chemistry Data

The Hydrolab measurements show different trends for temperature (°C), pH, dissolved oxygen (mg/L) and specific conductivity (mS/cm) between August 2014 and May 2015 (Fig.

6; Fig. 7). The entire water column had a higher average temperature in August 2014 (19.6°C) 29

Age (cal yr BP) 10000 9000 8000 7000 6000 5000 4000 3000 2000 1000 0 16 14 12 10 8 6 Biogenic Silica (%) 4 50 2 Organic Matter (%) 40

30

20

10 30 25 20

15 0.6 10 0.5 Bulk Density (g/cm

Calcium Carbonate (%) 5 0 0.4

0.3 3 0.2 )

0.1 10000 9000 8000 7000 6000 5000 4000 3000 2000 1000 0 Age (cal yr BP) Figure 14: Biogenic silica, organic matter, calcium carbonate, and bulk density variations with time. 30 than it did in May (10.5°C). There was an increase in average pH from August 2014 (7.8) to

May 2015 (8.1) and in average dissolved oxygen from August 2014 (6.0 mg/L) to May 2015

(8.8 mg/L) and a decrease in average specific conductivity from August 2014 (0.51 mS/cm) to

May 2015 (0.47 mS/cm).

In August 2014, temperature and pH decreased as water depth increased and specific conductivity increased. Dissolved oxygen increased until a depth of 2.5 m, where it peaked, and then decreased. Lake Nuudsaku displayed no thermocline or chemocline during the summer months because the greater atmospheric temperatures and the relatively shallow nature of the lake (~5 m) allowed the entire water column to become heated throughout during this time.

In May 2015, temperature, pH, and specific conductivity all showed little to no change for the upper two meters of the water column. After two meters there was a thermocline and chemocline as temperature, pH, and specific conductivity all experienced the greatest rate of change. Dissolved oxygen decreased for the entire length of the water column.

Bathymetric Profile

The bathymetric profile (Fig. 5) revealed that Lake Nuudsaku has a surface area of 8.3 hectares and a maximum depth of 5.1 m. The lake is flat–bottomed and the littoral zone is comparatively steep.

Modern Water Isotopes

The δ18O and δ2H values of the water from Lake Nuudsaku plotted on the GMWL

(Craig, 1961) (Fig. 15). The δ18O value from the winter was -10.9‰ and the value from the 31 summer months ranged from -10.9 to -9.8‰. The other surface water samples (lakes and bogs) had a wide range of δ18O values (-11.6 to -4.4‰) compared to streams and rivers (-12.0 to -9.6‰). Winter precipitation plotted near the GMWL, with lower δ18O values (-19.0 to -

9.9‰) than any other water sample. The summer precipitation samples also plotted near the

GMWL and had greater δ18O values (-10.2 to -0.9‰) than most of the other water samples.

Calcite Isotopes

18 The δ Ocarb values (Fig. 16) ranged between -15.0 and -9.4‰ (average = -11.2‰)

VPDB. The value of calcite from the uppermost centimeter of the sediment record was -

12.5‰ VPDB and is considered to be the modern day composition of calcite. Each 0.5 cm sample represents ~7 years of time. The average temporal resolution of the record between

9960 and 1000 cal yr BP is ~24 years and the average resolution of the record between 1000 cal yr BP and the present is ~12 years.

The δ18O values between 9960 and 8800 are relatively low, but generally increase from -13.2‰ to -10.4‰ VPDB. The highest average δ18O values in the record occur between

8800 and 5300 cal yr BP, with values that range from -13.1‰ to -9.6‰ VPDB. The δ18O record is highly variable (-13.1 to -9.4‰ VPDB) between 5300 and 4200 cal yr BP with overall high values. There is a decrease in δ18O values between 4200 and 2700 cal yr BP, but variability is still high (-15.0 to -9.4‰ VPDB). Variability decreases between 2700 and 1200 cal yr BP with δ18O values that vary between -12.6 and -9.6‰ VPDB. The δ18O values continue to decrease overall between 2700 and 1200 cal yr BP. The period between 1200 cal 32

2 18 -40 H = 8× O + 10 Summer Precipitation

-50

-60 REL GMWL -70

-80

-90 Winter Precipitation -100 H (‰ VSMOW) 2

-110 Lake Nuudsaku -120 Surface Water

-130 Winter Precipitation

Summer Precipitation -140

-18 -16 -14 -12 -10 -8 -6

18O (‰ VSMOW)

Figure 15: Water 18O and 2H values from Estonia. The isotope data are plotted relative to the GMWL (Craig, 1961) and the REL.

Modern 18O value = -12.5‰

O (‰ VPDB) 18

10000 9000 8000 7000 6000 5000 4000 3000 2000 1000 0 Age (cal yr BP)

Figure 16: Calcite 18O values. Modern calcite 18O value is highlighted by the black line. 33 34 yr BP and the present experienced the lowest average δ18O values in the record (-13.7 to -

10.1‰ VPDB).

The δ18O values from calcite were plotted against their respective δ13C values to determine whether or not the two isotope systems covaried (Fig. 17). The δ18O and δ13C values were not correlated (r2 = <0.0001).

Calculated Paleo-Water Composition

18 The δ Opaleo values of the water ranged from -14.7 to -9.0‰ VSMOW (Fig. 18) with

18 an average δ Opaleo value of -10.8‰ VSMOW. These data show the same trend as the

18 δ Ocarb values because they were calculated using those data points. -10 r2 = <0.0001

-11

-12 O (‰ VPDB) 18 -13

-14

-9.5 -9.0 -8.5 -8.0 -7.5 -7.0 -6.5 13C (‰ VPDB)

Figure 17: Calcite 18O vs. 13C values. 35 Avg. Summer Precip. 18O

Avg. Modern Lake Water 18O ‰ VSMOW) ‰ ( paleo

O 18

Avg. Winter Precip. 18O

10000 9000 8000 7000 6000 5000 4000 3000 2000 1000 0 Age (cal yr BP)

Figure 18: Calculated paleo-water 18O values. Average summer precipitation 18O (-6.1‰ VSMOW) is highlighted by the red line and average winter precipitation 18O (-14.6‰ VSMOW) is highlighted by the blue line. Average modern lake water 18O (-10.8‰ VSMOW) is highlighted by the black line. 36 CHAPTER 4

DISCUSSION

North Atlantic Influence

Estonia’s proximity to the North Atlantic Ocean makes it sensitive to changes in mean state oceanic conditions. Precipitation in Estonia is dominantly controlled by the circulation and pressure systems in the North Atlantic Ocean. Atmospheric circulation in Europe is generally zonal in character, allowing a large flux of water vapor to enter Europe from the

North Atlantic (Rozanski, 1982). Moisture can be transported deep into the European continent because there are no large mountains on the Atlantic coast to prevent or divert the transport of the westerly air masses (Gimeno et al., 2012).

North Atlantic Oscillation

NAO is the dominant mode of oceanic and atmospheric variability in the North

Atlantic Ocean and strongly drives regional distributions of surface temperature and precipitation in Europe (Hurrell, 1995; Hurrell and van Loon, 1997). The NAO index is defined as the difference in atmospheric pressure at sea level between the Icelandic low- pressure system and the Azores high-pressure system (Wallace & Gutzler, 1981).

During a positive phase of the winter NAO the increased pressure gradient between the Icelandic and Azores pressure systems strengthens the westerlies over the middle latitudes

(van Loon and Rogers, 1978). The strengthened westerlies transport warm, moist air masses 38 further northward and eastward into northern Europe (Hurrell, 1995; Bladé et al., 2012).

Therefore, Northern Europe experiences winters with increased temperatures and precipitation during a positive phase of the NAO.

Negative phases of winter NAO are associated with a decreased pressure gradient between the Icelandic low and the Azores high-pressure systems. The decreased pressure gradient creates a strong blocking anticyclone in the East Atlantic Ocean which generates meridional flow (Buehler et al., 2011) and diverts heat transport to Southwest Greenland

(Walter and Graf, 2005). The weakened heat and moisture transport to Northern Europe during a negative NAO phase results in cold and dry winters in this region.

The summer NAO has a smaller spatial extent and less of an impact on temperature and precipitation (Bladé et al., 2012). Additionally, there are less summer NAO reconstructions available. Therefore, this study will focus only on winter NAO indices and their relationship with winter conditions in the Baltic region.

Applications of Paleolimnology

Oxygen isotopes from lacustrine calcite have been utilized as a paleoclimate proxy since McCrea (1950) first discovered their ability to reconstruct paleotemperature. The relationship between the δ18O values of calcite and climatic variations (i.e. temperature, precipitation source, evaporation) have been investigated and reviewed by numerous studies

(Talbot, 1990; Gasse et al., 1991; Leng and Marshall, 2004), making them a reliable paleoclimate proxy.

Calcite from lacustrine sediments can be used as a paleoclimate indicator because it precipitates in isotopic equilibrium with the lake water (McKenzie, 1985; Gasse et al., 1987). 39

The isotopic composition of the lake water is recording changes in the regional hydrologic cycle, therefore the calcite should also be recording the same changes in its isotopic composition. Consequently, the δ18O record from calcite in Lake Nuudsaku provides a continuous record of hydrologic cycle changes since 9960 cal yr BP. Before the isotopic composition of calcite can be interpreted all of the physical and chemical components of the modern lake system and the sediment record, in addition to the dominant drivers of δ18O values in the calcite record, such as lake hydrology and ocean-atmospheric circulation patterns must be considered.

Calcite Precipitation

Calcite is the most commonly precipitated mineral of CaCO3 in lakes in temperate zones (Stabel, 1986). The rate of CaCO3 precipitation is driven by productivity and the amount of calcium bicarbonate (Ca(HCO3)2) in equilibrium with carbon dioxide, carbonic

2- acid (H2CO3), and carbonate (CO3 ) in the lake (Wetzel, 2001). When carbon dioxide is removed from solution by photosynthesis (via phytoplankton and macrophytes), the system will precipitate calcium carbonate in order to reestablish equilibrium by the formation of carbon dioxide (Ca(HCO3)2 ⇌ CaCO3 ↓ + H2O + CO2) (Otsuki and Wetzel, 1974; Stabel,

1986). The pH of the lake water increases as CO2 is removed from the solution.

Precipitation of calcite in lakes tends to occur in the early summer months. During this time, biological productivity has increased the pH of the lake due to the removal of CO2 by photosynthesis (Otsuki and Wetzel, 1974). The greater lake water temperature has also decreased the solubility of calcite (Hodell et al., 1998). Water chemistry indicated that water pH was higher in May 2015 (8.1) than in August 2014 (7.8). This shift towards a higher pH 40 during the early summer likely creates the ideal conditions in the lake water for calcite precipitation.

18 The carbonate being measured for δ O was likely calcite (CaCO3). Calcite and aragonite are polymorphs of calcium carbonate and are differentiated by their crystal lattices

(Anthony et al., 1990). It is important to determine which carbonate minerals are present in the sediment record because each mineral has a different fractionation factor and a shift from calcite to aragonite would cause an increase in the δ18O value of the carbonate (Kim and

O’Neil, 1997).

The trend in intensity peaks for the sediment samples measured on the X-ray diffractometer match the intensity peak trend for calcite (Fig. 11). Calcite exhibits its greatest intensity peak at 30° 2θ and has smaller intensity peaks at 36, 40, 44, 47, and 49° 2θ (Anthony et al., 1990). These are the same locations of intensity peaks in all of the sediment samples from Lake Nuudsaku. Aragonite has its greatest intensity peak at 26° 2θ with smaller intensity peaks at 27, 33, 36, 38 and 46° 2θ, which are not present in these data. The similar trends in intensity peaks between calcite and the sediment samples from Lake Nuudsaku indicate that the carbonate being deposited in the lake is calcite and not aragonite.

The results of the PCA and SEM images suggest that the calcite is authigenic, and therefore, precipitating in isotopic equilibrium with the lake water. Zinc is a terrigenous material, meaning it can only be introduced into the lake by erosion of terrestrial rock

(Wetzel, 2001). If the calcite were also terrigenous, there would likely be a positive correlation between Ca and Zn highlighted in the PCA. There is a negative correlation between the two materials, indicating that the Ca in the sediment record is authigenic and not 41 terrigenous. The SEM images (Fig. 13) confirmed that the calcite crystals were unfractured, indicating that they were not likely transported from a terrigenous source.

Sediment Constituents

Three major constituents in sediments from Lake Nuudsaku are calcite, organic matter and BSi. Changes in the amount of BSi should record variations in the abundance of siliceous microfossils, such as diatoms and sponges (Leng and Marshall, 2004). Calcite, organic matter and siliceous microfossil abundance are controlled by pH, light intensity, temperature, length of growing season, and nutrient levels (Wetzel, 2001).

BSi has a similar trend as organic matter between 9960 and 1000 cal yr BP and a similar trend as calcite between 1000 cal yr BP and the present. BSi and organic matter were least abundant between 9960 and 5300 cal yr BP and increased between 5300 and 1000 cal yr

BP. Increased organic matter after 5300 cal yr BP likely supplied siliceous organisms with increased nutrients and allowed them to flourish during this time. BSi continued to become more abundant in Lake Nuudsaku after 1000 cal yr BP, even as organic matter decreased. It is likely that other favorable conditions during this time allowed the siliceous microorganisms to continue to flourish.

BSi and calcite have inverse trends between 9960 and 1000 cal yr BP because BSi favors basic conditions and calcium carbonate favors acidic conditions (Wetzel, 2001).

However, after 1000 cal yr BP, BSi and calcite both increased, while organic matter decreased. It is likely that a more basic pH has persisted in Lake Nuudsaku since 1000 cal yr

BP. The average pH recorded in Lake Nuudsaku was basic in August 2014 (7.8) and May

2015 (8.1) for the entire length of the water column (Fig. 6; Fig. 7). The basic pH is likely the 42 reason that the Lake Nuudsaku sediment record preserved the greatest amount of BSi and calcite between 1000 cal yr BP and the present (Fig. 14).

Lake Hydrology

When interpreting δ18O values from lake records it is imperative to first understand from what type of lake basin the sediment record was collected. Open-lake systems are fed via groundwater and precipitation as opposed to closed-lake systems that are driven by changes in the amount of precipitation and evaporation (Leng and Marshall, 2004). As a result, calcite from open lakes records changes in the isotopic composition of precipitation and the temperature at which that precipitation formed. In contrast, δ18O values from closed lakes record the ratio of precipitation to evaporation (P/E). Evaporation in open lakes is negligible because the groundwater through-flow is such a dominant factor.

Relationship Between δ13C and δ18O

In order to establish whether Lake Nuudsaku is an open or closed lake the δ13C values from the calcite were plotted against their respective δ18O values to determine whether there was a correlation between the two (Fig. 17). Calcite formed in hydrologically closed lakes has covarying δ18O and δ13C values (r2 > 0.49), while open lake systems have little to no correlation between δ18O and δ13C values (Talbot, 1990; Drummond et al., 1995; Li and Ku,

1997). The δ13C and δ18O values of calcite from Lake Nuudsaku had a poor correlation (r2 <

0.0001), which implies that Lake Nuudsaku is an open lake system. This is in agreement with what is seen in the regional landscape and lake level fluctuations. Lake Nuudsaku is 43 hydrologically connected to other lakes via a network of streams and level logger data (Fig. 9) suggest that lake level fluctuations in Lake Nuudsaku were minimal between June 2015 and

May 2016 (0.17 cm/yr).

Variations in δ13C values in calcite are the result of different environmental controls based on the type of lake system in which the calcite was deposited. In closed lake systems

δ13C and δ18O values are both controlled by the amount of evaporation from the lake and residence time of lake water, therefore, these two isotope systems covary in closed lakes

(Talbot, 1990). The δ13C values in open lakes are driven by primary production of organic matter (McKenzie, 1985), outgassing of 12C from the lake (Talbot and Kelts, 1990), and vegetation type in the region (Talbot, 1990). The δ13C and δ18O values do not covary in open lakes because the environmental controls on δ13C are independent of the controls on δ18O in open lake systems. The δ13C values of calcite in open lakes are difficult to interpret as paleoclimate indicators because of the numerous controls on these values.

Global Meteoric Water Line

Craig’s (1961) GMWL represents the global relationship between δ18O and δ2H from meteoric water samples and was created using the Global Network of Isotopes in Precipitation

(GNIP). Samples that were evaporatively enriched were excluded from the relationship because evaporation undergoes kinetic fractionation. As a result, the δ18O values of water that has undergone evaporation will be enriched and will plot along the REL, which has a more gradual slope than the GMWL. 44

Comparing the isotope data from Lake Nuudsaku’s water to the GMWL can help determine whether the lake has been evaporatively enriched and, therefore, whether it is open or closed. Since evaporation in open lake systems is negligible, water from a lake that plots on the GMWL is likely from an open lake system. The δ18O values of water from Lake

Nuudsaku plotted on the GMWL (Craig, 1961), indicating that there is little to no evaporative effect on the isotopic composition of the lake water. The lack of a major evaporative effect suggests that this is an open lake system (Talbot, 1990; Leng & Marshall, 2004).

δ18O Drivers in Lake Nuudsaku

Since Lake Nuudsaku is an open lake system, the δ18O values from Lake Nuudsaku’s calcite are recording changes in δ18O from precipitation and the temperature of the location at which the precipitation was formed (Leng and Marshall, 2004). Therefore, the Lake

Nuudsaku sediment record can be used as a proxy of changes in the relative amounts of seasonal precipitation and temperature in the Baltic region since 9960 cal yr BP.

Temperature

Open lake systems record changes in temperature of the location at which the precipitation was formed (Leng and Marshall, 2004). However, land-based atmospheric temperature reconstructions using pollen proxies from the North Atlantic region (Seppä and

Birks, 2002; Seppä et al., 2005) indicate that there has only been a shift in ~3°C throughout the Holocene (Fig. 19). An increase of 3°C would create an increase of 1.8‰ (Dansgaard,

1964) between the original water vapor and the precipitation in Southern Estonia. This 14.0

13.5

°C) 13.0

12.5

Temperature ( 12.0

11.5

11.0

10000 8000 6000 4000 2000 0 Age (cal yr BP)

Figure 19: Holocene atmospheric temperature reconstruction from the Baltic region. Data were taken from Seppä and Birks (2002). 45 46 variation is offset, however, by the fractionation that occurs as calcite precipitates from the water column into the sediment record. An increase of 3°C in the lake would create a change of -0.7‰ between aqueous calcite and the precipitated calcite (Eicher and Siegenthaler,

1976). The combination of these two fractionation events creates an overall additional increase of ~1‰ in the calcite δ18O record. This variation is considered negligible in the Lake

Nuudsaku record because it has a range of ~6‰.

Seasonal Precipitation Changes

Europe receives a majority of its annual precipitation from the Atlantic Ocean and receives additional precipitation from southern sources, such as the Mediterranean Sea and the

Black Sea, during the summer months (Fig. 1) (Gimeno et al., 2010). The change in seasonal precipitation source in Estonia creates variations in the δ18O value of the lake water and,

18 therefore, the calcite being deposited in the lake. By evaluating the change in δ Ocarb, the fluctuations in the relative amounts of summer and winter precipitation since 9960 cal yr BP can be inferred.

Winter precipitation in the Baltic region has lower δ18O values than summer precipitation. Precipitation transported to the Baltic region from the North Atlantic Ocean has relatively low δ18O values because, as water vapor from the Atlantic Ocean is transported northward it undergoes fractionation and the heavier isotopes (18O) are preferentially condensed out of the air mass first (Dansgaard, 1954; Sonntag et al., 1983). As latitude increases, temperature decreases, which increases the amount of fractionation, and further 47 depletes the air mass of 18O (Dansgaard, 1964). The δ18O value of the precipitation from the air mass is then lower as a result of the increased fractionation.

Summer precipitation in the Baltic region has comparatively greater δ18O values. The warmer temperatures in the North Atlantic Ocean during the summer months decrease fractionation of precipitation and increase the δ18O value as a result (Dansgaard, 1954). In addition, the added precipitation from the Mediterranean Sea during the summer months has high δ18O values (>1.5 ‰ VSMOW) because of the high evaporation rate and salinity in the

Mediterranean Sea (Schmidt et al., 1999). The Mediterranean Sea is a shallower basin that is more vulnerable to evaporation than the North Atlantic. Higher rates of evaporation in the

Mediterranean Sea deplete this reservoir of 16O (Dansgaard, 1954), leading to a higher δ18O value compared to water from the open ocean. The warmer temperatures in the North Atlantic and the higher δ18O values from the Mediterranean Sea are reflected in the higher δ18O values in Estonia’s summer precipitation.

Paleo-water Composition

18 18 The calculated δ Opaleo values (Fig. 18) were compared to the δ Oprecip values in

18 18 order to support the theory that δ Ocarb is recording seasonal changes in δ Oprecip. The

18 average δ Opaleo value of the water in Lake Nuudsaku was -10.8‰ VSMOW, which is a combination of the average δ18O values of winter and summer precipitation (-14.6‰ and -

18 6.1‰ VSMOW, respectively). The δ Opaleo values are never greater than the summer

18 δ Oprecip value and (with an exception of one data point at 3800 cal yr BP) are never less than

18 18 the winter δ Oprecip value. This implies that δ Ocarb is, in fact, recording seasonal changes in 48

18 18 δ Oprecip. Therefore, shifts to lower δ Ocarb values in the Lake Nuudsaku sediment record were interpreted as periods of increased winter precipitation relative to summer precipitation and vice versa.

Oxygen Isotope Record

9960 to 8800 cal yr BP

The δ18O values between 9960 and 8800 cal yr BP were consistently low, but generally increasing (Fig. 16). These low δ18O values indicate wetter winter conditions relative to summer conditions during the beginning of the record, but not as wet as modern winters in Estonia.

8800 to 4200 cal yr BP

The oxygen isotope record indicated that Estonia consistently received less winter precipitation relative to summer precipitation between 8800 and 4200 cal yr BP than during any other period in the record (Fig. 16). The δ18O values from this interval are consistently well above the modern δ18O value, indicating winter precipitation amounts were lower relative to summer precipitation than today. The higher variability in the record implies shifts in the seasonal precipitation balance during this time.

4200 to 1200 cal yr BP

Between 4200 and 1200 cal yr BP, winters experienced increased amounts of precipitation relative to summers (Fig. 16). Variability among δ18O values was high between 49

4200 and 2700 cal yr BP and low between 2700 and 1200 cal yr BP. Overall δ18O values decreased during this period, which is interpreted as increased winter precipitation relative to summer precipitation.

1200 cal yr BP to Present

The lowest δ18O values in the record occurred between 1200 cal yr BP and the present

(Fig. 16). These low δ18O values suggest that Estonia received the greatest amount of winter precipitation relative to summer precipitation since at least 9960 cal yr BP during this time.

The low, modern δ18O value (-12.5‰) suggests that Estonia is still presently receiving increased winter precipitation, relative to summer precipitation.

Regional Climate Reconstructions

Precipitation and temperature patterns during the Holocene are recorded throughout the northern hemisphere in ice core records (Dahl-Jensen et al., 1998; Johnsen et al., 2001), isotope records from lakes (Hammarlund et al., 2002, 2003; Laumets et al. 2014), and pollen records (Seppä and Birks, 2002; Heikkilä and Seppä, 2003; Seppä and Poska, 2004). Regional records were compared to the δ18O record from Lake Nuudsaku to help interpret the data and to increase the understanding of dynamic climate variations in Estonia since 9960 cal yr BP.

The Lake Nuudsaku isotope record began during the early Holocene, which is defined here as the period between 9960 and 8800 cal yr BP. The early Holocene was characterized as a period with mild, wet winters due to a persistent and stronger than present zonal circulation pattern (Seppä et al., 2005). The increased zonal circulation strengthened the flow of moist 50

Atlantic air deeper into Europe during the winter months (Seppä and Birks, 2002;

Hammarlund et al., 2002). This strong Atlantic influence during the winter was likely the reason for the increased winter precipitation relative to summer precipitation in the Baltic region between 9960 and 8800 cal yr BP.

A cold, dry period, known as the 8.2 ka event, is recorded in various climate reconstructions from the tropics to the northern polar regions between 8400 and 8000 cal yr

BP (Dansgaard, 1987; Johnsen et al., 1992; Alley et al., 1997). This period was most likely the result of melting continental ice sheets that introduced an influx of melt water into the

North Atlantic Ocean (Alley and Ágústsdóttir, 2005). The subsequent weakening of thermohaline circulation in the North Atlantic resulted in lowered sea surface temperatures and weakened zonal airflow, especially during the winter months (Vellinga and Wood, 2002).

The shift towards drier winter conditions relative to summer conditions in the Baltic region during this period is likely a result of the weakened zonal flow during the winters between

8400 and 8000 cal yr BP.

The cold period between 8400 and 8000 cal yr BP interrupted the Holocene Thermal

Maximum (HTM). The HTM was caused by orbitally-induced increased summer insolation

(Rensenn et al., 2009) and is recorded in various proxy records throughout the northern hemisphere starting at ~9000 cal yr BP and lasting until 4200 cal yr BP (Dahl-Jensen et al.,

1998; Seppä and Birks, 2002; Seppä et al., 2005; Laumets et al., 2014). This period was marked by dry winters and the highest temperatures during the Holocene (2.5°C above modern) (Seppä and Poska, 2004). The drier winter conditions during this time were likely amplified by enhanced meridional circulation as a result of strong blocking anticyclonic 51 atmospheric patterns over Northern Europe (Johannessen, 1970; Seppä and Poska, 2004) that are usually associated with a low NAO index (Hurrell and van Loon, 1997).

The Baltic region received the least amount of winter precipitation since 9960 cal yr

BP during the HTM (8800 to 4200 cal yr BP). If there was, in fact, a persistent negative NAO phase prevailing during this time then drier winters would have persisted as a result of the weakened westerlies. It is difficult to attribute these trends to NAO index changes, however, because NAO index reconstructions become increasingly unreliable as age increases (Jones et al., 1997).

The transition from the HTM to the late Holocene occurred at 4200 cal yr BP, at which time there was a shift towards cooler and wetter winter conditions in northern Europe recorded in lake δ18O records (Hammarlund et al., 2003), lake level changes (Digerfeldt,

1988), and speleothem δ18O records (Lauritzen and Lundberg, 1999). Pollen records also suggest increasingly cold and snow-rich winters during this period (Giesecke and Bennet,

2004; Seppä et al., 2005). Annual mean temperatures in the Baltic region have gradually decreased to the present level since 4200 cal yr BP (Fig. 19) (Seppä and Birks, 2002). Colder, wetter winters after the end of the HTM were likely a result of decreased summer insolation at mid-northern latitudes (Harrison and Digerfeldt, 1993) and changing atmospheric circulation attributed to higher NAO indices (Hammarlund et al., 2003). The transition from meridional to zonal circulation at this time allowed for the transport of moisture deeper into the European continent (Hurrell and van Loon, 1997), hence the wetter conditions. The period of highest winter precipitation in the record occurred between 4200 cal yr BP and the present. These wetter winter conditions in the Baltic region may be attributed to the decreased summer 52 insolation and amplified by the strengthened westerlies and subsequent zonal transport of moisture during the winter months.

NAO Reconstructions

The Lake Nuudsaku δ18O record was compared to existing NAO index reconstructions

(Trouet et al. 2009; Olsen et al., 2012) to increase the understanding of how NAO variability was associated with changes in Baltic region winter precipitation in the past. A better understanding of this past relationship can lead to more accurate predictions of future changes in Baltic region winter precipitation patterns caused by changing NAO mean state conditions.

NAO Between 5200 and 300 cal yr BP

Higher NAO indices in the reconstruction by Olsen et al. (2012) generally coincide with lower δ18O values (more winter precipitation) from the Lake Nuudsaku sediment record between 5200 and 1000 cal yr BP (Fig. 20). This relationship is in agreement with the modern positive correlation between NAO index and winter precipitation in Northern Europe (Bladé et al. 2012). The tendency for high NAO indices to coincide with low δ18O values implies that the changes in past winter precipitation of the Baltic region can be explained, at least in part, by variations in NAO index and the subsequent changes in ocean-atmospheric circulation.

Between 5200 and 4400 cal yr BP, the NAO had a persistent, positive mean state. The

Baltic region experienced highly variable winter precipitation during this period, but periods of increased winter precipitation tended to coincide with increased NAO index and vice versa.

The NAO index was relatively neutral between 4400 and 3500 cal yr BP and became highly Age (cal yr BP) 5000 4000 3000 2000 1000 0

-10

-11

-12 O (‰ VPDB)

18 -13

-14 More Winter

Precipitation NAO Index

0

1

2

3

5000 4000 3000 2000 1000 0 Age (cal yr BP)

Figure 20: Lake Nuudsaku 18O values compared to NAO index since 5200 cal yr BP. NAO reconstruction is modified from Olsen et al. (2012). 53 54 variable between 3500 and 2100 cal yr BP. Once again, periods of high winter precipitation tended to coincide with high NAO indices between 3500 and 1800 cal yr BP.

The Olsen et al. (2012) record indicates that NAO index was consistently high between 1800 and 1000 cal yr BP and then decreased between 1000 and 300 cal yr BP. The

Lake Nuudsaku δ18O record has a positive relationship with NAO indices until ~1000 cal yr

BP because periods of increased winter precipitation occur during periods of increased NAO index during this time. According to the Lake Nuudsaku δ18O record, winter precipitation has generally increased since 1000 cal yr BP, however the reconstruction implies that NAO index decreased between 1000 and 300 cal yr BP.

NAO Between 900 and -65 cal yr BP

The Medieval Climate Anomaly (MCA) and the Little Ice Age (LIA) are recorded in various proxy records throughout the Northern Hemisphere (Mann et al., 2009; Trouet et al.,

2009; Trouet et al., 2012). The beginning of the last millennium was characterized by warmer, wetter winters throughout northern Europe, known as the MCA (defined here as the period between 900 and 700 cal yr BP) followed by a decrease in winter temperature and precipitation (between 550 and 100 cal yr BP) known as the LIA (Bradley and Jonest, 1993;

Mann et al., 2009).

The persistent, positive NAO phase during the MCA may have been caused by increased solar irradiance and/or decreased volcanic activity (Mann et al., 2005). The enhanced Atlantic meridional overturning circulation (AMOC) likely intensified the positive

NAO phase, by strengthening the westerlies and increasing heat and precipitation 55 transportation to Northern Europe (Trouet et al., 2012). The shift to weaker NAO conditions associated with the LIA was likely caused by decreased solar irradiance (Mann et al., 2005).

The Lake Nuudsaku δ18O record since 900 cal yr BP suggests that there was a negative relationship between winter precipitation in the Baltic region and NAO index between 900 cal yr BP and ~0 cal yr BP (AD 1950) followed by a transition back to a positive relationship after AD 1950 (Fig. 21) (Trouet et al., 2009). The results from Trouet et al.

(2009) suggest the occurrence of a consistently positive NAO index for the MCA during the same period of decreased winter precipitation in the Lake Nuudsaku record. Their record then shows a transition to decreasing NAO indices after 700 cal yr BP associated with the onset of the LIA. During this time period, Lake Nuudsaku experienced increased winter precipitation.

The negative relationship between precipitation patterns recorded in the Lake Nuudsaku record and the NAO index record from Trouet et al. (2009) between 900 cal yr BP and AD

1950 is opposite of the relationship that is seen today. Since AD 1950 winter precipitation in the Baltic region and NAO index (Trouet et al., 2009) have both been high, which is in agreement with the instrumental record (Jaagus 2006; Bladé et al., 2012) and implies that the modern positive relationship between winter precipitation and NAO index has only persisted since AD 1950.

Deviations from NAO Index Records

The δ18O record from Lake Nuudsaku is not always positively correlated with NAO index. This is likely because the relationship between Baltic region precipitation and NAO index was non-stationary over this time period (Raible et al., 2014). This could mean that

NAO has not always been the dominant mode of variability in the Baltic region or that the Age (cal yr BP)

800 600 400 200 0

O (‰ VPDB) NAO Index 18 More Winter Precipitation 0

1

2

3

800 600 400 200 0 Age (cal yr BP)

Figure 21: Lake Nuudsaku 18O values compared to NAO index since 900 cal yr 56 57 magnitude of spatial and temporal controls of the NAO has changed over time (Osborn et al.,

1999).

Jones et al. (1998) suggests that proxy-based records are limited by spatial and seasonal changes. It is possible that changes in circulation patterns associated with NAO index variations have different impacts on different proxies, which may reduce the covariability between the different NAO reconstructions available (Schmutz et al., 2000). If this is the case, proxy records from lakes in Estonia cannot reliably be compared to NAO reconstructions from other parts of Northern Europe. For this reason, it is crucial to increase the spatial and temporal resolution of proxy records from the Baltic region to better understand the relationship between changing NAO indices and winter precipitation.

Other Baltic Region Climate Drivers

There are numerous factors that drive changes in the North Atlantic Ocean and, subsequently, the Baltic region. Changes in natural radiative forcing, such as solar irradiance, can create changes in sea-surface temperature and atmospheric circulation patterns (Bond et al., 2001). Increased temperature and freshwater input into the North Atlantic can also weaken thermohaline circulation and, therefore, heat and moisture transport into Europe (Alley et al.,

1997; Keigwin and Boyle, 2000). It is likely that these factors worked to strengthen or weaken the affects of the NAO in the past (Bond et al., 2001; Trouet et al., 2012) and could be the reason that the δ18O record from Lake Nuudsaku does not always agree with reconstructed

NAO index records. 58

Societal Importance

The highest NAO index values recorded have occurred since 1980 (Hurrell, 1995), indicating that the NAO is currently in a mean positive state. The transition to a mean positive state in the NAO has increased intensification of the westerlies during the winter months creating wetter and warmer winters in Estonia since 1951 (Jaagus, 2006). The persistent positive NAO index could be a result of increased tropical ocean temperatures attributed to increased atmospheric greenhouse gases (IPCC, 2014; Hurrell, 1995). If increasing greenhouse gases are, in fact, causing these anomalies in ocean-atmospheric circulation, then there may be a further increase in the occurrence of high NAO index winters in the future as greenhouse gases continue to increase (IPCC, 2014). Since NAO is the dominant mode of variability in the Atlantic region there will likely be changes in Baltic region precipitation in the future as a result of this change in mean NAO index. Further increases in the present mean positive state of the NAO could mean that the Baltic region may experience a greater magnitude of warmer and wetter winters in the future (Hurrell, 1995; Bladé et al., 2012).

However, longer-term associations between hydroclimate variations and the NAO should be considered when forecasting future climate changes in the Baltic region. CHAPTER 5

CONCLUSIONS

Lake Nuudsaku is an open lake system that records relative changes in seasonal precipitation. The Lake Nuudsaku carbonate δ18O record suggests that, relative to summer precipitation, winters were relatively wet in the Baltic region during the early Holocene (9960 to 8800 cal yr BP) and shifted to persistently dry winters during the HTM (between 8800 and

4200 cal yr BP). The δ18O record then suggests that, since 9960 cal yr BP, the wettest winter conditions relative to summer conditions in the Baltic region occurred between 4200 cal yr

BP and the present. These interpreted precipitation trends from the Lake Nuudsaku record agree with other climate records from the Baltic region (Seppä and Birks, 2002; Hammarlund et al., 2003; Seppä and Poska, 2004).

The δ18O record from Lake Nuudsaku and European NAO reconstructions (Trouet et al., 2009; Olsen et al., 2012) indicate that winter precipitation in the Baltic region has been influenced by NAO indices since 5200 cal yr BP. Periods of increased winter precipitation in the Lake Nuudsaku record generally coincide with higher NAO indices during much of the late Holocene (between 5200 and 1000 cal yr BP). This is in agreement with the modern positive correlation between winter precipitation in Northern Europe and NAO index (Bladé et al., 2012). There appears to be an inverse trend between NAO index and winter precipitation in the Baltic region between 1000 cal yr BP and 1950. The positive correlation 60 between winter precipitation and NAO index that is seen in the instrumental record (Bladé et al., 2012) begins at AD 1950 and continues to the present.

Deviations from the positive correlation between winter precipitation in the Baltic region and NAO index may be attributed to non-stationarities in NAO dynamics (Raible et al.,

2014). It is unlikely that NAO has had the same magnitude of spatial and temporal impacts on winter precipitation patterns in the Baltic region since 5200 cal yr BP. If the role of NAO was decreased by changes in stationarity, then another dominant driver, such as solar forcing or

THC dynamics may have driven precipitation variability during this time.

The spatial and temporal variability of NAO index and winter precipitation in the

Baltic region (Jaagus and Ahas, 2000) complicates future climate modeling. The percentage of variation that can be explained by NAO has not been constant in the past and relationships that exist today may not be similar to past relationships or future relationships (Slonosky et al., 2001). To create more reliable climate predictions for the future, paleoclimatologists need to continue to increase the spatial and temporal resolution of paleoclimate reconstructions from the Baltic region. REFERENCES

Abbott, M. B., & Stafford Jr, T. W. (1996). Radiocarbon geochemistry of modern and ancient Arctic lake systems, Baffin Island, Canada. Quaternary Research, 45(3), 300-311.

Alley, R. B., & Ágústsdóttir, A. M. (2005). The 8k event: cause and consequences of a major Holocene abrupt climate change. Quaternary Science Reviews, 24(10), 1123-1149.

Alley, R. B., Mayewski, P. A., Sowers, T., Stuiver, M., Taylor, K. C., & Clark, P. U. (1997). Holocene climatic instability: A prominent, widespread event 8200 yr ago. Geology, 25(6), 483-486.

Anthony, J. W., Bideaux, R. A., Bladh, K. W., & Nichols, M. C. (1990). Handbook of mineralogy, Mineral Data Publishing, Tucson, Arizona.

Blaauw, M., & Christen, J. A. (2013). Bacon Manual e V2. 2. Blaauw, M., Wohlfarth, B., Christen, JA, Ampel, L., Veres, D., Hughen, KA, Preusser, F., et al.(2010),—Were last glacial climate events simultaneous between Greenland and France, 387œ394.

Bladé, I., Liebmann, B., Fortuny, D., & van Oldenborgh, G. J. (2012). Observed and simulated impacts of the summer NAO in Europe: implications for projected drying in the Mediterranean region. Climate dynamics, 39(3-4), 709-727.

Bond, G., Kromer, B., Beer, J., Muscheler, R., Evans, M. N., Showers, W., ... & Bonani, G. (2001). Persistent solar influence on North Atlantic climate during the Holocene. Science, 294(5549), 2130-2136.

Bowen, G. J., & Wilkinson, B. (2002). Spatial distribution of δ18O in meteoric precipitation. Geology, 30(4), 315-318.

Bradley, R. S., & Jonest, P. D. (1993). 'Little Ice Age'summer temperature variations: their nature and relevance to recent global warming trends. The Holocene, 3(4), 367-376.

Buehler, T., Raible, C. C., & Stocker, T. F. (2011). The relationship of winter season North Atlantic blocking frequencies to extreme cold or dry spells in the ERA-40. Tellus A, 63(2), 212-222.

Coplen, T. B. (1988). Normalization of oxygen and hydrogen isotope data.Chemical Geology: Isotope Geoscience Section, 72(4), 293-297. 62

Craig, H. (1961). Isotopic variations in meteoric waters. Science, 133(3465), 1702-1703.

Dahl-Jensen, D., Mosegaard, K., Gundestrup, N., Clow, G. D., Johnsen, S. J., Hansen, A. W., & Balling, N. (1998). Past temperatures directly from the Greenland ice sheet. Science, 282(5387), 268-271.

Dansgaard, W. (1954). The O 18-abundance in fresh water. Geochimica et Cosmochimica Acta, 6(5), 241-260.

Dansgaard, W. (1964). Stable isotopes in precipitation. Tellus, 16(4), 436-468.

Dansgaard, W. (1987). Ice core evidence of abrupt climatic changes. InAbrupt climatic change (pp. 223-233). Springer Netherlands.

Dean Jr, W. E. (1974). Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition: comparison with other methods. Journal of Sedimentary Research, 44(1).

Digerfeldt, G. (1988). Reconstruction and regional correlation of Holocene lake-level fluctuations in Lake Bysjön, South Sweden. Boreas, 17(2), 165-182.

Eicher, U., & Siegenthaler, U. (1976). Palynological and oxygen isotope investigations on Late-Glacial sediment cores from Swiss lakes. Boreas, 5(2), 109-117.

Finkenbinder, M. S., Abbott, M. B., Edwards, M. E., Langdon, C. T., Steinman, B. A., & Finney, B. P. (2014). A 31,000 year record of paleoenvironmental and lake-level change from Harding Lake, Alaska, USA.Quaternary Science Reviews, 87, 98-113.

Friedman, I., & O'Neil, J. R. (1977). Data of geochemistry: Compilation of stable isotope fractionation factors of geochemical interest (Vol. 440). US Government Printing Office.

Gasse, F., Fontes, J. C., Plaziat, J. C., Carbonel, P., Kaczmarska, I., De Deckker, P., ... & Dupeuble, P. A. (1987). Biological remains, geochemistry and stable isotopes for the reconstruction of environmental and hydrological changes in the Holocene lakes from North Sahara. Palaeogeography, Palaeoclimatology, Palaeoecology, 60, 1-46.

Gasse, F., Arnold, M., Fontes, J. C., Fort, M., Gibert, E., Huc, A., ... & Van Campo, E. (1991). A 13, 000-year climate record from western Tibet. Nature,353(6346), 742- 745.

Giesecke, T., & Bennett, K. D. (2004). The Holocene spread of Picea abies (L.) Karst. in Fennoscandia and adjacent areas. Journal of biogeography,31(9), 1523-1548. 63

Gimeno, L., Drumond, A., Nieto, R., Trigo, R. M., & Stohl, A. (2010). On the origin of continental precipitation. Geophysical Research Letters, 37(13).

Gimeno, L., Stohl, A., Trigo, R. M., Dominguez, F., Yoshimura, K., Yu, L., ... & Nieto, R. (2012). Oceanic and terrestrial sources of continental precipitation.Reviews of Geophysics, 50(4).

Hammarlund, D., Barnekow, L., Birks, H. J. B., Buchardt, B., & Edwards, T. W. (2002). Holocene changes in atmospheric circulation recorded in the oxygen-isotope stratigraphy of lacustrine carbonates from northern Sweden.The Holocene, 12(3), 339- 351.

Hammarlund, D., Björck, S., Buchardt, B., Israelson, C., & Thomsen, C. T. (2003). Rapid hydrological changes during the Holocene revealed by stable isotope records of lacustrine carbonates from Lake Igelsjön, southern Sweden. Quaternary Science Reviews, 22(2), 353-370.

Harrison, S. P., & Digerfeldt, G. (1993). European lakes as palaeohydrological and palaeoclimatic indicators. Quaternary Science Reviews, 12(4), 233-248.

Heikkilä, M., & Seppä, H. (2003). A 11,000 yr palaeotemperature reconstruction from the southern boreal zone in Finland. Quaternary Science Reviews, 22(5), 541-554.

Hodell, D. A., Schelske, C. L., Fahnenstiel, G. L., & Robbins, L. L. (1998). Biologically induced calcite and its isotopic composition in Lake Ontario.Limnology and Oceanography, 43(2), 187-199.

Hurrell, J. W. (1995). Decadal trends in the North Atlantic Oscillation: regional temperatures and precipitation. Oceanographic Literature Review, 2(43), 116.

Hurrell, J. W., & van Loon, H. (1997). Decadal variations in climate associated with the North Atlantic Oscillation. In Climatic Change at High Elevation Sites (pp. 69-94). Springer Netherlands.

IPCC, 2014: Summary for policymakers. In: Climate Change 2014: Impacts, Adaptation,and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Field, C.B., V.R. Barros, D.J. Dokken, K.J. Mach, M.D. Mastrandrea, T.E. Bilir, M. Chatterjee, K.L. Ebi, Y.O. Estrada, R.C. Genova, B. Girma, E.S. Kissel, A.N. Levy, S. MacCracken, P.R. Mastrandrea, and L.L. White (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. 1-32.

Jaagus, J., & Ahas, R. (2000). Space-time variations of climatic seasons and their correlation with the phenological development of nature in Estonia.Climate Research, 15(3), 207- 219. 64

Jaagus, J. (2006). Climatic changes in Estonia during the second half of the 20th century in relationship with changes in large-scale atmospheric circulation. Theoretical and Applied Climatology, 83(1-4), 77-88.

Johannessen, T. W. (1970). The climate of Scandinavia. Climates of Northern and Western Europe. World survey of climatology, 5, 23-80.

Johnsen, S. J., Clausen, H. B., Dansgaard, W., Fuhrert, K., Gundestrup, N., Hammer, C. U., ... & Stauffer, B. (1992). Irregular glacial interstadials•, recorded in a new Greenland. Nature, 3, 24.

Johnsen, S. J., Dahl-Jensen, D., Gundestrup, N., Steffensen, J. P., Clausen, H. B., Miller, H., ... & White, J. (2001). Oxygen isotope and palaeotemperature records from six Greenland ice-core stations: Camp Century, Dye-3, GRIP, GISP2, Renland and NorthGRIP. Journal of Quaternary Science, 16(4), 299-307.

Jones, P. D., Briffa, K. R., Barnett, T. P., & Tett, S. F. B. (1998). High-resolution palaeoclimatic records for the last millennium: interpretation, integration and comparison with General Circulation Model control-run temperatures. The Holocene, 8(4), 455-471.

Jones, P. D., Jonsson, T., & Wheeler, D. (1997). Extension to the North Atlantic Oscillation using early instrumental pressure observations from Gibraltar and South-West Iceland. International Journal of climatology,17(13), 1433-1450.

Kalm, V. (2006). Pleistocene chronostratigraphy in Estonia, southeastern sector of the Scandinavian glaciation. Quaternary Science Reviews, 25(9), 960-975.

Keigwin, L. D., & Boyle, E. A. (2000). Detecting Holocene changes in thermohaline circulation. Proceedings of the National Academy of Sciences,97(4), 1343-1346.

Kim, S. T., & O'Neil, J. R. (1997). Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates. Geochimica et Cosmochimica Acta,61(16), 3461-3475.

Laumets, L., Kalm, V., Poska, A., Kele, S., Lasberg, K., & Amon, L. (2014). Palaeoclimate inferred from δ18O and palaeobotanical indicators in freshwater tufa of Lake Äntu Sinijärv, Estonia. Journal of paleolimnology,51(1), 99-111.

Lauritzen, S. E., & Lundberg, J. (1999). Calibration of the speleothem delta function: an absolute temperature record for the Holocene in northern Norway. The Holocene, 9(6), 659-669.

Leng, M. J., & Marshall, J. D. (2004). Palaeoclimate interpretation of stable isotope data from lake sediment archives. Quaternary Science Reviews,23(7), 811-831. 65

López-Moreno, J. I., Vicente-Serrano, S. M., Morán-Tejeda, E., Lorenzo-Lacruz, J., Kenawy, A., & Beniston, M. (2011). Effects of the North Atlantic Oscillation (NAO) on combined temperature and precipitation winter modes in the Mediterranean mountains: observed relationships and projections for the 21st century. Global and Planetary Change, 77(1), 62-76.

Mann, M. E., Cane, M. A., Zebiak, S. E., & Clement, A. (2005). Volcanic and solar forcing of the tropical Pacific over the past 1000 years. Journal of Climate, 18(3), 447-456.

Mann, M. E., Zhang, Z., Rutherford, S., Bradley, R. S., Hughes, M. K., Shindell, D., ... & Ni, F. (2009). Global signatures and dynamical origins of the Little Ice Age and Medieval Climate Anomaly. Science, 326(5957), 1256-1260.

McCrea, J. M. (1950). On the isotopic chemistry of carbonates and a paleotemperature scale. The Journal of Chemical Physics, 18(6), 849-857.

McKenzie, J. A. (1985). Carbon isotopes and productivity in the lacustrine and marine environment. Chemical Processes in Lakes, John Wiley and Sons, New York New York. 1985. p 99-118, 11 fig, 25 ref.

McKinney, C. R., McCrea J. M., Epstein S., Allen H. A. & Urey H. C. (1950) Improvements in mass spectrometers for the measrurement of small difference in isotope abundance ratios. Rev. Sci. Instrum. 21, 724-730.

Mortlock, R. A., & Froelich, P. N. (1989). A simple method for the rapid determination of biogenic opal in pelagic marine sediments. Deep Sea Research Part A. Oceanographic Research Papers, 36(9), 1415-1426.

Olsen, J., Anderson, N. J., & Knudsen, M. F. (2012). Variability of the North Atlantic Oscillation over the past 5,200 years. Nature Geoscience, 5(11), 808-812.

Olsson, I. U. (1986). Radiometric dating. In Handbook of Holocene palaeoecology and palaeohydrology.

Osborn, T. J., Briffa, K. R., Tett, S. F., Jones, P. D., & Trigo, R. M. (1999). Evaluation of the North Atlantic Oscillation as simulated by a coupled climate model. Climate Dynamics, 15(9), 685-702.

Otsuki, A., & Wetzel, R. G. (1974). Calcium and total alkalinity budgets and calcium- carbonate precipitation of a small hard-water lake. Archiv fur Hydrobiologie, 73(1), 14-30.

Raible, C. C., Lehner, F., González-Rouco, J. F., & Fernández-Donado, L. (2014). Changing correlation structures of the Northern Hemisphere atmospheric circulation from 1000 to 2100 AD. 66

Raukas, A., & Kajak, K. (1995). Quaternary stratigraphy in Estonia. InProceedings of the Estonian Academy of Sciences, Geology (Vol. 44, No. 3, pp. 149-162). Estonian Academy Publishers.

Reimer, P. J., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Bronk Ramsey, C., ... & Grootes, P. M. (2013). IntCal13 and Marine13 radiocarbon age calibration curves 0- 50,000 years cal BP.

Rinterknecht, V. R., Clark, P. U., Raisbeck, G. M., Yiou, F., Bitinas, A., Brook, E. J., ... & Piotrowski, J. A. (2006). The last deglaciation of the southeastern sector of the Scandinavian Ice Sheet. Science, 311(5766), 1449-1452.

Rodhe, W. (1949). The ionic composition of lake waters. Limnology. 11.317-323.

Rozanski, K., Sonntag, C., & Münnich, K. O. (1982). Factors controlling stable isotope composition of European precipitation. Tellus, 34(2), 142-150.

Schmidt, G. A., Bigg, G. R., & Rohling, E. J. (1999). Global seawater oxygen-18 database.

Schmutz, C., Luterbacher, J., Gyalistras, D., Xoplaki, E., & Wanner, H. (2000). Can we trust proxy-based NAO index reconstructions?. Geophysical Research Letters, 27(8), 1135- 1138.

Seppä, H., & Birks, H. J. B. (2002). Holocene climate reconstructions from the Fennoscandian tree-line area based on pollen data from Toskaljavri.Quaternary Research, 57(2), 191-199.

Seppä, H., Hammarlund, D., & Antonsson, K. (2005). Low-frequency and high-frequency changes in temperature and effective humidity during the Holocene in south-central Sweden: implications for atmospheric and oceanic forcings of climate. Climate Dynamics, 25(2-3), 285-297.

Seppä, H., & Poska, A. (2004). Holocene annual mean temperature changes in Estonia and their relationship to solar insolation and atmospheric circulation patterns. Quaternary Research, 61(1), 22-31.

Slonosky, V. C., Jones, P. D., & Davies, T. D. (2001). Atmospheric circulation and surface temperature in Europe from the 18 th century to 1995.International Journal of Climatology, 21(1), 63-75.

Sonntag, C., Münnich, K. O., Jacob, H., & Rozanski, K. (1983). Variations of deuterium and oxygen-18 in continental precipitation and groundwater, and their causes. In Variations in the global water budget (pp. 107-124). Springer Netherlands. 67

Stabel, H. H. (1986). Calcite precipitation in Lake Constance: chemical equilibrium, sedimentation, and nucleation by algae. Limnology and Oceanography, 31(5), 1081- 1094.

Talbot, M. R. (1990). A review of the palaeohydrological interpretation of carbon and oxygen isotopic ratios in primary lacustrine carbonates. Chemical Geology: Isotope Geoscience Section, 80(4), 261-279.

Thompson, J. B., Schultze-Lam, S., Beveridge, T. J., & Des Marais, D. J. (1997). Whiting events: biogenic origin due to the photosynthetic activity of cyanobacterial picoplankton. Limnology and oceanography, 42(1), 133-141.

Trouet, V., Esper, J., Graham, N. E., Baker, A., Scourse, J. D., & Frank, D. C. (2009). Persistent positive North Atlantic Oscillation mode dominated the medieval climate anomaly. Science, 324(5923), 78-80.

Trouet, V., Scourse, J. D., & Raible, C. C. (2012). North Atlantic storminess and Atlantic Meridional Overturning Circulation during the last Millennium: Reconciling contradictory proxy records of NAO variability. Global and Planetary Change, 84, 48-55. van Loon, H., & Rogers, J. C. (1978). The seesaw in winter temperatures between Greenland and northern Europe. Part I: General description.Monthly Weather Review, 106(3), 296-310.

Vellinga, M., & Wood, R. A. (2002). Global climatic impacts of a collapse of the Atlantic thermohaline circulation. Climatic change, 54(3), 251-267.

Wallace, J. M., & Gutzler, D. S. (1981). Teleconnections in the geopotential height field during the Northern Hemisphere winter. Monthly Weather Review,109(4), 784-812.

Walter, K., & Graf, H. F. (2005). The North Atlantic variability structure, storm tracks, and precipitation depending on the polar vortex strength. Atmospheric Chemistry and Physics, 5(1), 239-248.

Wetzel, R. G. (2001). Limnology: lake and river ecosystems. Gulf Professional Publishing.

APPENDIX

LAKE NUUDSAKU DATA

69 Material Conv. depth 14C age ( cal 210Pb age (cal Dated (cm) yr BP) Error yr BP) Error Surface Pb 0.375 - -51 6.7 Surface Pb 0.875 -35 7.6 Surface Pb 1.375 -8 4.3 Charcoal 148.5 735 50 Charcoal 224.5 1600 90 Charcoal 386 1350 60 Charcoal 460 3180 100 Wood 549.5 5145 20 Charcoal 616 6070 50 Charcoal 686.5 6480 160 Birch leaf 722 8960 25

18 13 18 δ O (‰) δ C (‰) δ Opaleo (‰) Depth (cm) Age (cal yr BP) VPDB VPDB VSMOW 0 -64 -12.5 -7.5 -12.1 1 -29.2 -12 -7.7 -11.6 2 5.4 -11.3 -7.7 -10.9 3 39.9 -11.9 -7.7 -11.5 4 74.5 -12.6 -7.7 -12.2 6 115.1 -12.4 -7.4 -12 8 126.5 -11.8 -7.4 -11.4 10 137.6 -13.1 -7.4 -12.7 12 150.2 -11.7 -6.9 -11.3 14 162.7 -12.6 -6.6 -12.2 16 175.1 -11.9 -6.2 -11.5 20 199.1 -11.8 -7.2 -11.4 23 217.1 -11.4 -7.5 -11 26 235.5 -12.7 -7.2 -12.3 31 267 -11.3 -7.5 -10.9 33 279.7 -11.5 -7.5 -11.1 36 298.3 -12.4 -7 -12 39 316.3 -12.4 -7 -12 41 328.3 -11.3 -7.2 -10.9 43 340.2 -11.5 -7.2 -11.1 44 346.2 -10.8 -7.2 -10.4 46 358.2 -11.2 -7 -10.8 49 376.4 -11.9 -6.4 -11.5 51 388.3 -11.8 -7.3 -11.4 53 400.4 -11.5 -6.7 -11.1 56 418.6 -11.8 -6.9 -11.4 58 431 -11.5 -7 -11.1 70 18 13 18 δ O (‰) δ C (‰) δ Opaleo (‰) Depth (cm) Age (cal yr BP) VPDB VPDB VSMOW 59 437.3 -11.3 -7.2 -10.9 61 449.9 -11.4 -7.7 -11 63 461.9 -11.4 -7.5 -11 64 468 -11.5 -7.6 -11.1 66 480.2 -11.5 -6.6 -11.1 68 492.7 -11.1 -7.7 -10.7 69 498.9 -11.5 -7.7 -11.1 71 511.2 -11.6 -6.8 -11.2 73 523.3 -10.9 -7.3 -10.5 74 529.5 -12.2 -6.9 -11.8 76 541.7 -11.7 -7.5 -11.3 79 560.4 -11.1 -8.2 -10.7 81 572.8 -12.6 -8.3 -12.2 83 585.2 -11 -7.9 -10.6 84 591.4 -12 -7.3 -11.6 86 603.7 -11.4 -7.6 -11 89 621.9 -11.2 -7.6 -10.8 91 634.3 -12.6 -8.9 -12.2 93 646.5 -11.8 -8.6 -11.4 94 652.7 -12.1 -7.4 -11.7 96 664.9 -12.6 -7.6 -12.3 98 677.2 -12.2 -8.8 -11.8 99 683.3 -11.3 -7.9 -10.9 101 695.6 -11.5 -8.4 -11.1 103 707.6 -11.8 -8.8 -11.4 104 713.9 -12.1 -8.3 -11.7 106 725.9 -12.9 -8.6 -12.5 108 737.9 -11.2 -8.2 -10.7 109 744 -11.2 -8.4 -10.7 111 755.9 -11.9 -8.6 -11.5 113 767.7 -11.8 -8.5 -11.4 114 773.7 -10.7 -8 -10.3 116 785.8 -13.6 -8.5 -13.2 118 798.2 -11.4 -7.9 -11 119 804.4 -10.7 -7.8 -10.3 121 816.5 -11.5 -8.2 -11.1 123 828.3 -11.5 -7.7 -11.1 124 834.1 -12.1 -6.9 -11.7 126 845.7 -12.8 -8.6 -12.4 128 858 -11.1 -7.4 -10.6 129 864.1 -10.1 -7.9 -9.7 71 18 13 18 δ O (‰) δ C (‰) δ Opaleo (‰) Depth (cm) Age (cal yr BP) VPDB VPDB VSMOW 131 876.4 -10.6 -7.5 -10.2 133 888.9 -11.4 -8.1 -11 134 895 -11.9 -6.7 -11.5 135 901.3 -12.4 -7.5 -12 136 907.5 -11 -7.5 -10.6 138 919.7 -11.1 -7.3 -10.7 138 919.7 -10.6 -7.4 -10.1 141 938.6 -12.1 -8.2 -11.7 143 950.8 -11.1 -7.8 -10.7 144 957 -13.2 -7.8 -12.8 146 969.8 -13.1 -8.2 -12.7 148 982.9 -10.5 -7.5 -10.1 149 989.5 -10.9 -7.6 -10.5 151 1005.2 -12.8 -8.6 -12.4 153 1023 -11.4 -8 -11 154 1031.8 -11.8 -7 -11.4 156 1050 -10.6 -7.6 -10.2 159 1078.4 -11.3 -7.8 -10.9 160 1087.9 -11 -7.5 -10.6 161 1097.1 -11.9 -8.2 -11.5 163 1115.4 -10.6 -7.6 -10.1 164 1124.6 -13.5 -7.4 -13.2 166 1142.9 -13.7 -8.4 -13.3 167 1152 -10.4 -7.3 -10 169 1170.2 -11.3 -7.5 -10.8 170 1179.4 -10.7 -7.3 -10.3 171 1188.7 -11.6 -8.5 -11.2 173 1207.6 -12.2 -7.6 -11.8 174 1217.3 -10.7 -7.1 -10.3 176 1236 -11.4 -7.4 -10.9 178 1254.6 -11.4 -7.4 -11 179 1264 -11.4 -7.6 -11 180 1273.2 -11.5 -7.3 -11.1 181 1281.9 -11.8 -8.1 -11.4 182 1290.4 -10.5 -7.2 -10.1 183 1299.1 -10.4 -8.2 -10 188 1344.5 -11.3 -7.6 -10.9 191 1371.7 -11.8 -7.5 -11.4 193 1389.8 -11.1 -7.9 -10.7 194 1398.7 -11.8 -8 -11.4 198 1435 -11.6 -7.9 -11.2 72 18 13 18 δ O (‰) δ C (‰) δ Opaleo (‰) Depth (cm) Age (cal yr BP) VPDB VPDB VSMOW 199 1443.8 -9.6 -7.6 -9.2 201 1461.5 -12.5 -6.9 -12.1 203 1479.1 -10.8 -7.7 -10.4 204 1487.7 -12.6 -8.2 -12.2 206 1505.7 -11.4 -7.2 -11 208 1524.2 -11.7 -8.2 -11.3 211 1551.5 -11.9 -7.4 -11.5 213 1569.4 -10.7 -9.4 -10.3 214 1578.3 -11.4 -8.8 -11 216 1596.6 -10.7 -7.4 -10.3 219 1624.5 -10.7 -8.2 -10.3 221 1643.6 -11.7 -8.5 -11.3 223 1663 -11.6 -8.1 -11.2 224 1672.6 -11.3 -8.1 -10.9 226 1694 -10.8 -8.7 -10.4 229 1729.6 -11 -8.2 -10.6 230 1741.5 -10.8 -7.3 -10.4 231 1753.8 -11.1 -8.5 -10.7 232 1766 -10.3 -8.7 -9.9 235 1802.9 -11.2 -8.2 -10.8 238 1839.4 -12 -8 -11.6 240 1863.7 -11.4 -8.4 -11 242 1888.4 -10.8 -8.7 -10.4 245 1925 -11.4 -8.4 -11 248 1962.4 -9.8 -8.2 -9.4 250 1986.9 -11.4 -7.7 -11 252 2010.9 -11.2 -8.8 -10.8 255 2047.5 -11.5 -8.7 -11.1 256 2060.1 -12.1 -7.6 -11.7 258 2084.6 -11.7 -8 -11.3 260 2109.6 -11.6 -7.5 -11.2 263 2146.1 -12.6 -8.9 -12.2 265 2170.7 -12.3 -7.4 -12 270 2229.3 -11.9 -8.8 -11.5 272 2254.3 -10.8 -8.5 -10.3 275 2291.4 -11.2 -8.1 -10.8 278 2328 -10.2 -7.8 -9.8 280 2352.6 -10.6 -7.8 -10.2 282 2376.8 -10.7 -7.7 -10.3 285 2413.5 -12 -8.2 -11.6 286 2425.7 -11.5 -7.4 -11.1 73 18 13 18 δ O (‰) δ C (‰) δ Opaleo (‰) Depth (cm) Age (cal yr BP) VPDB VPDB VSMOW 288 2449.4 -12.1 -7.7 -11.7 290 2473.7 -11.2 -7.8 -10.8 291 2485 -11.1 -7.7 -10.7 293 2508.3 -11.6 -8.2 -11.2 295 2531.6 -12.1 -6.7 -11.7 296 2543.8 -11.8 -7.5 -11.4 298 2568.7 -10.9 -7.2 -10.5 302 2617.5 -10.8 -7.3 -10.4 304 2641.6 -11 -7.3 -10.6 305 2653.5 -11.6 -8.3 -11.2 306 2665.4 -10.4 -7.3 -10 308 2690.1 -11.7 -7.6 -11.3 309 2702 -10.3 -7 -9.9 313 2750.6 -13.9 -6.7 -13.5 315 2775 -11.8 -7 -11.4 316 2787.4 -10.7 -9.2 -10.3 318 2812.6 -10.1 -7.2 -9.7 321 2849.3 -11.4 -7.3 -11 323 2873.1 -11 -8.1 -10.6 326 2908.8 -10.7 -7.6 -10.3 329 2944.9 -10.6 -7.6 -10.2 331 2968.7 -11.4 -7.7 -10.9 333 2991.9 -11 -7.9 -10.6 335 3015 -11.9 -7.5 -11.5 336 3027.5 -11.3 -7.8 -10.9 340 3077.1 -10.6 -7.1 -10.2 341 3088.9 -11.2 -7.7 -10.8 342 3101 -11.4 -7.1 -11 344 3124.5 -14.1 -7.5 -13.8 350 3197.5 -12.3 -7.3 -11.9 351 3210.3 -11.2 -8.6 -10.8 358 3296.5 -10.4 -7.1 -10 359 3308.5 -11.3 -8.6 -10.9 361 3332.6 -10.7 -7.2 -10.3 368 3417.2 -12.2 -7.7 -11.8 369 3429 -10 -7.5 -9.5 371 3452.7 -11.4 -8.2 -11 374 3489.2 -14.1 -8.5 -13.7 375 3501 -13.1 -7.8 -12.7 376 3513.1 -11.8 -7.4 -11.4 378 3537.6 -10.4 -7.4 -9.9 74 18 13 18 δ O (‰) δ C (‰) δ Opaleo (‰) Depth (cm) Age (cal yr BP) VPDB VPDB VSMOW 379 3549.9 -11.9 -7.9 -11.5 380 3562 -10.3 -7.1 -9.8 381 3574.3 -10.7 -8.1 -10.3 384 3611.3 -11.2 -7.6 -10.8 386 3635.2 -11.4 -6.8 -11 387 3647.2 -9.8 -7.5 -9.4 389 3671.5 -10.1 -7.5 -9.7 390 3683.2 -10.6 -7.3 -10.2 392 3707.9 -9.9 -7.5 -9.5 393 3720.1 -11.2 -8.4 -10.8 395 3745.2 -10 -6.9 -9.6 396 3757.3 -15 -7.4 -14.7 397 3769.4 -11.5 -7.4 -11.1 399 3793.7 -9.7 -7.7 -9.2 400 3805.6 -9.9 -7.7 -9.5 402 3829.7 -12.8 -7.4 -12.4 403 3841.9 -13 -8 -12.7 405 3866.1 -11.6 -7.7 -11.2 406 3877.9 -9.5 -7.5 -9.1 407 3889.9 -11.1 -7.7 -10.7 408 3901.7 -12.3 -8.1 -11.9 410 3926 -10.9 -7.5 -10.5 411 3938.2 -10.9 -7.9 -10.5 412 3950.7 -12 -7.7 -11.6 413 3962.9 -11.1 -8.8 -10.7 416 4000.2 -9.9 -7.3 -9.4 417 4012.1 -11.8 -7.7 -11.4 418 4024 -12.1 -6.8 -11.7 420 4048.4 -9.4 -7.3 -9 421 4060.4 -10.6 -7.4 -10.2 422 4072.4 -11.6 -7.3 -11.2 423 4083.9 -10.6 -7.2 -10.1 425 4108.2 -9.7 -7.3 -9.3 426 4120.2 -9.6 -7.4 -9.2 429 4156.1 -10.5 -7.3 -10.1 431 4180.4 -12.2 -7.6 -11.8 432 4192.4 -11.5 -6.7 -11.1 433 4204.6 -11.2 -6.8 -10.8 435 4228.4 -10.5 -8.1 -10.1 436 4240.6 -9.5 -7.4 -9.1 437 4252.5 -9.4 -7 -9 75 18 13 18 δ O (‰) δ C (‰) δ Opaleo (‰) Depth (cm) Age (cal yr BP) VPDB VPDB VSMOW 438 4264.8 -10.5 -7.1 -10.1 446 4358.8 -10.1 -8.1 -9.7 449 4395.3 -11.7 -8.1 -11.3 455 4467.5 -13.1 -9.1 -12.7 462 4556.5 -10 -7.9 -9.6 463 4570.5 -13.1 -8.2 -12.7 465 4599.2 -11.3 -9.5 -10.9 469 4658.7 -11.1 -7.3 -10.7 470 4673.5 -10.9 -9.4 -10.5 471 4689 -11 -8.7 -10.6 475 4751.1 -11.9 -7.9 -11.5 477 4781.3 -10.2 -7.2 -9.8 479 4812.5 -10 -8.3 -9.6 481 4843.4 -10.8 -8.3 -10.4 483 4873.9 -9.7 -6.4 -9.3 484 4889.6 -12.4 -8.6 -12 486 4921.2 -11.9 -7.7 -11.5 487 4937.1 -11.8 -7.7 -11.4 488 4953.4 -11 -7.1 -10.5 489 4969.2 -10.1 -6.7 -9.7 496 5077.3 -12.6 -8 -12.2 498 5107.6 -9.5 -7 -9.1 499 5123.1 -12 -7.9 -11.6 502 5169.5 -12.2 -8.6 -11.8 503 5184.6 -11.7 -8.3 -11.3 505 5215.1 -10.7 -8.1 -10.3 508 5261.5 -11.5 -8 -11.1 509 5277 -10.1 -7.1 -9.7 511 5307.5 -13.1 -11.5 -12.7 512 5322.5 -11.8 -7.8 -11.4 513 5337.2 -10.6 -8.1 -10.2 515 5366.4 -10.6 -8.3 -10.2 516 5381.7 -11 -8.2 -10.6 517 5397.2 -11.1 -8.4 -10.7 518 5412.5 -10.7 -8.4 -10.3 519 5428.1 -9.7 -7 -9.3 521 5458.8 -10.9 -8.6 -10.5 522 5474.4 -10.9 -8.5 -10.5 523 5489.5 -11.3 -8.5 -10.9 524 5505.1 -10.5 -8.5 -10.1 525 5520.4 -11.4 -8.3 -11 76 18 13 18 δ O (‰) δ C (‰) δ Opaleo (‰) Depth (cm) Age (cal yr BP) VPDB VPDB VSMOW 526 5536 -10.7 -8.6 -10.3 527 5551.4 -10.4 -8.5 -10 528 5567.4 -11.1 -8.5 -10.7 529 5582.5 -10 -9.4 -9.5 530 5598.1 -10.8 -8.4 -10.4 531 5613.5 -10.3 -8 -9.9 532 5629 -11.7 -8.1 -11.3 533 5644.4 -10.6 -8.1 -10.2 534 5659.7 -11 -8.5 -10.5 535 5675.1 -10.8 -8.2 -10.4 536 5689.4 -11 -7.8 -10.6 537 5703.7 -10.6 -8.3 -10.2 538 5718.2 -10.9 -8.3 -10.5 539 5732.6 -10.6 -8.5 -10.1 540 5747.7 -11.5 -8.2 -11.1 541 5762.9 -11.5 -8.5 -11.1 542 5778.3 -11.2 -8.4 -10.8 543 5793.4 -12 -8.3 -11.6 544 5808.8 -11.5 -8.3 -11.1 545 5824 -11.3 -8.3 -10.9 546 5838.5 -11.2 -9.1 -10.8 547 5852.9 -12.2 -8.5 -11.8 549 5881.7 -10.9 -8.4 -10.4 551 5913 -11 -8.2 -10.6 552 5929.7 -11.5 -8.9 -11.1 553 5946.5 -11 -8 -10.6 554 5963.2 -11.2 -8.3 -10.8 555 5979.9 -10 -9.4 -9.6 556 5996.1 -11.2 -8.3 -10.8 557 6012.7 -11.3 -7.6 -10.9 558 6029.2 -10.6 -8.3 -10.2 559 6045.6 -11 -8.2 -10.6 560 6061.9 -9.6 -8 -9.2 561 6078.9 -11.2 -8.4 -10.8 562 6096.1 -10.4 -8.2 -10 563 6112.9 -11.2 -8.5 -10.8 564 6129 -11.1 -8.5 -10.7 565 6144.9 -10.1 -9 -9.7 566 6161.5 -11.5 -8.4 -11.1 567 6178 -11 -8.2 -10.5 568 6194.6 -11.8 -8.4 -11.4 77 18 13 18 δ O (‰) δ C (‰) δ Opaleo (‰) Depth (cm) Age (cal yr BP) VPDB VPDB VSMOW 569 6211 -11 -8.3 -10.6 570 6227.8 -10.7 -9 -10.3 571 6244.2 -10.9 -8.6 -10.4 572 6260.5 -11.6 -8.8 -11.2 573 6276.9 -11.2 -8.4 -10.8 574 6293.4 -10.9 -8.4 -10.5 575 6309.9 -9.9 -9.6 -9.5 576 6326.6 -11.3 -8.5 -10.9 577 6343.5 -10.8 -8.2 -10.4 578 6360.1 -11.4 -8.5 -11 579 6376.9 -10.8 -8.1 -10.4 580 6393.7 -10 -8.8 -9.6 581 6410 -11.3 -8.5 -10.9 583 6443.2 -11.2 -8.6 -10.8 584 6459.5 -11 -8.3 -10.6 586 6492.2 -11 -8.4 -10.5 587 6508.5 -10.3 -8.5 -9.9 588 6525 -10.4 -8.6 -10 589 6541.3 -10.4 -7.8 -10 590 6557.7 -10.9 -8.7 -10.5 591 6573.6 -10.8 -8.4 -10.4 592 6589.6 -10.1 -8 -9.7 593 6605.7 -10.9 -8.4 -10.5 594 6621.7 -11.6 -8.2 -11.2 595 6637.9 -10.4 -8.4 -10 596 6654.4 -11 -8.2 -10.6 597 6671.3 -10.8 -7.8 -10.4 598 6688.3 -11.5 -8.4 -11.1 599 6705.1 -11.6 -7.7 -11.2 600 6721.9 -10.6 -7.9 -10.2 601 6738.4 -10.8 -8 -10.4 602 6754.6 -10.3 -7.4 -9.9 603 6771.1 -10.7 -7.9 -10.3 604 6787.6 -11 -8.1 -10.6 605 6804.1 -10.3 -8 -9.9 606 6820.3 -11.3 -8.2 -10.9 607 6836.7 -11.8 -8.1 -11.4 608 6852.9 -10.8 -8.4 -10.4 609 6869.2 -10.2 -7.9 -9.7 610 6885.6 -11.9 -8.3 -11.5 611 6902.3 -11.1 -8 -10.7 78 18 13 18 δ O (‰) δ C (‰) δ Opaleo (‰) Depth (cm) Age (cal yr BP) VPDB VPDB VSMOW 612 6919 -10.4 -8 -10 613 6935.5 -10.9 -8.2 -10.5 615 6968.4 -10.9 -8.1 -10.5 616 6986.1 -10.1 -8.4 -9.7 617 7004.1 -10.4 -8.3 -10 618 7022.5 -10.5 -8.3 -10.1 619 7041 -10.8 -7.9 -10.4 620 7058.7 -10.4 -8.3 -10 621 7083.8 -11.3 -8.3 -10.9 622 7108.8 -10.8 -8 -10.4 623 7133 -11.1 -7.8 -10.6 625 7179.9 -10.9 -8.1 -10.5 626 7205.2 -10.9 -7.9 -10.4 627 7229.9 -10.2 -8.2 -9.8 628 7255.3 -10.6 -8.1 -10.1 629 7280.1 -10.4 -8.9 -10 630 7305.2 -10.8 -8.2 -10.4 631 7329.3 -10.7 -7.9 -10.3 632 7353.4 -10.7 -7.7 -10.3 633 7377.7 -10.8 -8.3 -10.4 634 7402 -11 -8 -10.6 635 7425.7 -10.5 -8.4 -10.1 636 7449.9 -10.3 -8.3 -9.8 637 7474.7 -11 -8.3 -10.6 638 7499.5 -10 -8.2 -9.6 639 7524.1 -10 -7.9 -9.6 640 7548.8 -11.4 -8 -11 641 7574.3 -10.3 -8.1 -9.9 642 7599.9 -10.4 -8 -10 643 7625.5 -11.4 -7.7 -11 644 7651 -11 -8.1 -10.6 645 7676.3 -10.2 -7.8 -9.8 646 7701.7 -11.1 -8.1 -10.7 648 7752.6 -9.8 -7.7 -9.4 649 7778.2 -10.5 -7.7 -10.1 650 7803.1 -9.9 -7.7 -9.5 651 7828.4 -10.4 -7.7 -10 652 7854.2 -10.2 -8.8 -9.8 653 7880.1 -10.3 -7.6 -9.9 654 7905.9 -10.9 -8.2 -10.5 655 7931.7 -10.7 -6.9 -10.3 79 18 13 18 δ O (‰) δ C (‰) δ Opaleo (‰) Depth (cm) Age (cal yr BP) VPDB VPDB VSMOW 656 7956.1 -10.6 -7.8 -10.2 657 7980.8 -12.1 -8.2 -11.7 658 8005.1 -11.3 -8 -10.9 659 8029.4 -10.7 -7.8 -10.3 660 8053.8 -10.7 -7.9 -10.3 661 8078.7 -10.8 -7.8 -10.4 662 8103.5 -11.5 -8.2 -11.1 663 8128.6 -10.9 -7.9 -10.5 664 8153.5 -10.7 -8.9 -10.2 665 8178.9 -10.7 -7.7 -10.3 666 8204.1 -10 -7.3 -9.6 667 8229.7 -11.7 -8.1 -11.3 668 8255.3 -11.2 -7.5 -10.8 669 8281 -10.2 -8 -9.8 670 8306.7 -10.7 -7.7 -10.3 671 8331.3 -11.1 -8.1 -10.7 672 8356.1 -10.7 -7.7 -10.3 673 8380.5 -10.5 -7.9 -10.1 674 8405.3 -11.3 -8.7 -10.8 675 8430.5 -10.8 -7.3 -10.4 676 8454.7 -10.1 -7.4 -9.7 677 8479.9 -11.9 -7.9 -11.5 678 8505 -11.2 -7.9 -10.8 679 8529.7 -10.7 -7.8 -10.2 680 8554.6 -11.5 -8.4 -11.1 682 8606.7 -10.7 -7.6 -10.2 684 8658.3 -10.6 -7.8 -10.2 685 8684 -10.6 -7.8 -10.2 690 8816.1 -10.1 -8.1 -9.7 691 8851.1 -10.4 -9.8 -10 692 8887.1 -10.7 -7.8 -10.2 693 8923 -11.8 -7.6 -11.4 694 8959 -11.2 -8.2 -10.8 695 8995 -11 -7.3 -10.6 697 9068.6 -11.7 -7.4 -11.3 698 9105.6 -11.1 -7.5 -10.7 699 9142.5 -11.2 -7.5 -10.8 700 9178.6 -11.9 -7.6 -11.5 701 9213.6 -11.6 -7.2 -11.2 702 9248.8 -11.7 -7.3 -11.3 703 9284.2 -11.2 -7.3 -10.8 80 18 13 18 δ O (‰) δ C (‰) δ Opaleo (‰) Depth (cm) Age (cal yr BP) VPDB VPDB VSMOW 704 9319.5 -10.6 -7.5 -10.2 705 9355 -10.9 -8.9 -10.5 707 9427 -11.2 -7.6 -10.8 709 9498.7 -11.9 -7.1 -11.5 710 9534.8 -11.2 -6.9 -10.8 711 9569.6 -11.6 -7.2 -11.2 712 9605.1 -11.2 -7.1 -10.8 713 9641 -12.4 -6.8 -12 715 9712.5 -10.7 -8 -10.3 717 9784.8 -11.3 -8 -10.9 718 9820.6 -11 -7.1 -10.6 719 9856.6 -11.9 -7.3 -11.5 720 9891.8 -11 -7.7 -10.6 721 9927.4 -13.2 -6.8 -12.8 722 9963 -11.9 -7.4 -11.5

Depth Age (cal (cm) yr BP) Si (%) Ca (%) Zn (%) Fe (%) P (%) Mn (%) K (%) 0.25 -62.7 3.2 12.5 0.0059 0.40 0.08 0.03 0.08 0.75 -40.7 2.6 10.3 0.0063 0.29 0.05 0.02 0.07 1.25 -18.8 3.9 14.7 0.0046 0.51 0.11 0.03 0.09 1.75 3.2 3.1 10.8 0.0045 0.33 0.06 0.02 0.08 2.25 25.1 4.1 14 0.0038 0.46 0.07 0.03 0.09 2.75 47 3.9 13.3 0.0035 0.45 0.08 0.02 0.09 3.25 68.9 3.5 12.4 0.0039 0.43 0.07 0.03 0.08 3.75 90.9 3.6 12.2 0.0037 0.43 0.08 0.03 0.07 4.25 112.8 4.8 16.3 0.0034 0.61 0.09 0.04 0.09 4.75 134.7 4.7 15.8 0.0031 0.58 0.10 0.03 0.09 5.25 147.3 5.1 17.8 0.0035 0.67 0.09 0.04 0.10 5.75 150.3 4.9 16.9 0.0033 0.58 0.09 0.03 0.09 6.25 153.4 3.4 12.4 0.0051 0.36 0.07 0.02 0.07 6.75 156.5 5.2 16.6 0.0034 0.60 0.10 0.03 0.09 7.25 159.5 3.9 15.2 0.0032 0.48 0.09 0.03 0.08 7.75 162.6 6 21.1 0.0031 0.77 0.11 0.04 0.10 8.25 165.6 6 21.5 0.0034 0.80 0.11 0.05 0.09 8.75 168.5 6.3 22.2 0.0029 0.77 0.11 0.05 0.09 9.25 171.5 6.9 24 0.0033 0.86 0.12 0.05 0.07 9.75 174.5 5.2 19.7 0.0034 0.66 0.09 0.04 0.08 10.25 177.5 4.3 17.4 0.0028 0.57 0.06 0.04 0.07 10.75 180.6 2.9 12.1 0.0036 0.32 0.06 0.02 0.04 11.25 183.7 3.1 14.3 0.0031 0.45 0.08 0.03 0.05 81 Depth Age (cal (cm) yr BP) Si (%) Ca (%) Zn (%) Fe (%) P (%) Mn (%) K (%) 11.75 186.7 3.3 14.2 0.0033 0.47 0.06 0.02 0.05 12.25 189.8 3.9 16 0.0024 0.59 0.07 0.03 0.05 12.75 192.9 4 15.6 0.0026 0.65 0.07 0.03 0.05 13.25 195.9 4.4 17.9 0.0028 0.76 0.09 0.03 0.07 13.75 199 4.2 16.6 0.0026 0.81 0.06 0.03 0.07 14.25 202.1 4.6 16.7 0.0028 0.84 0.07 0.03 0.06 14.75 205.1 3.3 12.8 0.0036 0.60 0.04 0.02 0.06 15.25 208.3 2.8 10.3 0.0048 0.41 0.04 0.01 0.06 15.75 211.3 4 15 0.0029 0.90 0.05 0.02 0.08 16.25 214.5 3.7 12.9 0.004 0.71 0.06 0.02 0.08 16.75 217.6 4.7 15.5 0.0035 0.93 0.07 0.03 0.10 17.25 220.7 3.2 12 0.0043 0.56 0.05 0.02 0.06 18.25 227 4.3 15.7 0.0033 0.85 0.07 0.02 0.06 18.75 230.1 2.6 9.8 0.0051 0.32 0.00 0.01 0.04 19.25 233.2 3.8 11.7 0.0043 0.56 0.06 0.01 0.07 19.75 236.3 5.4 14.4 0.0037 0.94 0.07 0.03 0.10 21.3 245.9 4.4 10.4 0.005 0.53 0.08 0.02 0.10 25.3 270.3 4.4 7.5 0.0062 0.46 0.08 0.01 0.10 29.3 295.7 5.7 9.3 0.0057 0.74 0.06 0.02 0.13 33.3 320.7 4.1 6 0.0062 0.34 0.04 0.01 0.11 37.3 345.3 4.7 8.5 0.0048 0.66 0.05 0.02 0.16 41.3 369.3 4.7 8.6 0.0054 0.66 0.05 0.02 0.18 45.3 393.9 2.9 8.9 0.0057 0.51 0.04 0.02 0.03 49.3 418.8 2.6 8.8 0.0063 0.48 0.07 0.01 0.03 53.3 443.3 2.3 8.3 0.0061 0.32 0.06 0.01 0.04 57.3 467.6 2.9 7.9 0.006 0.50 0.07 0.01 0.05 61.3 492.2 2.8 9.9 0.0045 0.60 0.05 0.02 0.00 65.3 516.8 2.2 9.8 0.0046 0.52 0.05 0.02 0.00 69.3 541 1.7 8.6 0.0046 0.61 0.05 0.02 0.00 73 564 3.3 11.2 0.0035 0.70 0.05 0.04 0.00 77 588.6 2.3 12.9 0.0025 0.92 0.06 0.03 0.00 81 612.9 3 12 0.003 1.08 0.06 0.04 0.00 85 637.3 2.2 7.4 0.0059 0.52 0.04 0.02 0.00 89 661.5 2.1 10.2 0.0037 1.48 0.06 0.04 0.00 93 686.2 2.9 8.5 0.0031 2.89 0.35 0.06 0.00 97 710.4 1.6 8.6 0.0022 4.14 0.20 0.07 0.00 101 735 1.6 11.5 0.0021 3.27 0.17 0.07 0.00 105 759.6 1.4 7.6 0.0051 2.06 0.10 0.03 0.01 109 783.5 2.2 9.2 0.0033 2.86 0.12 0.04 0.00 113 807.8 2.3 7.6 0.0035 3.10 0.22 0.05 0.02 117 832.4 2.4 7.6 0.0048 1.78 0.18 0.04 0.00 82 Depth Age (cal (cm) yr BP) Si (%) Ca (%) Zn (%) Fe (%) P (%) Mn (%) K (%) 121 857.3 2.5 10.7 0.0026 2.71 0.18 0.05 0.00 125 881.6 2.2 8.7 0.0042 2.17 0.14 0.04 0.01 129 905 2 7.7 0.0041 2.22 0.08 0.04 0.03 131 917 1.5 6.4 0.0044 2.24 0.11 0.03 0.02 133 929.2 2 6.8 0.0052 2.34 0.15 0.04 0.03 135 941.7 1.8 7.4 0.0034 3.81 0.07 0.05 0.05 137 953.8 1.8 4.7 0.0064 1.58 0.08 0.02 0.03 139 965.6 1.8 5.9 0.0042 4.40 0.21 0.06 0.03 141 978 2.1 6.6 0.0046 3.53 0.17 0.05 0.03 143 990.8 1.6 3.3 0.0053 2.34 0.14 0.03 0.00 145 1003.3 2 5.1 0.0051 2.66 0.17 0.04 0.02 147 1016.1 1.8 6.5 0.004 3.84 0.14 0.06 0.02 151 1044.7 1.4 7 0.0038 3.23 0.11 0.06 0.03 155 1081.1 1.5 6.8 0.0039 3.27 0.22 0.07 0.02 159 1116.7 1.4 6.6 0.0043 2.84 0.13 0.06 0.02 163 1152.7 1.7 6.5 0.0044 2.79 0.07 0.06 0.01 167 1188.9 1.6 6.8 0.0041 3.09 0.11 0.07 0.02 171 1225.3 1.5 5.5 0.0038 3.82 0.50 0.07 0.01 175 1262.4 1.7 5.1 0.0053 1.87 0.05 0.04 0.02 179 1298.4 2 5.4 0.0046 2.83 0.15 0.05 0.02 183 1333.9 2.4 6.8 0.0029 3.94 0.27 0.08 0.03 187 1369.3 2.4 6.9 0.0042 2.61 0.14 0.06 0.02 191 1405.5 2.2 7.3 0.0042 2.71 0.12 0.07 0.03 195 1442.3 1.8 7.6 0.0035 3.21 0.19 0.07 0.02 199 1478.2 1.7 8.1 0.0035 3.02 0.09 0.07 0.00 203 1514 1.5 7.5 0.0044 1.98 0.07 0.06 0.01 207 1549.7 2 9.8 0.0029 2.15 0.08 0.06 0.02 210 1576.5 1.7 8 0.0042 1.97 0.09 0.06 0.02 211 1585.3 1.7 10.3 0.0027 2.64 0.11 0.08 0.03 214 1612.8 1.6 10 0.0029 2.58 0.07 0.07 0.02 215 1621.8 1.6 9.4 0.0034 2.28 0.06 0.06 0.02 218 1648.6 1.6 9.3 0.0039 2.14 0.07 0.05 0.02 219 1657.1 1.6 10 0.0029 2.73 0.06 0.07 0.03 222 1684.2 1.8 9.7 0.0036 2.62 0.05 0.06 0.03 223 1693.4 1.7 8.9 0.0038 2.42 0.06 0.06 0.04 226 1723.3 3.1 9.7 0.0029 2.58 0.09 0.06 0.06 227 1734.8 2.9 9.4 0.0029 2.52 0.07 0.06 0.06 230 1770.3 3.2 8.8 0.0043 1.79 0.07 0.05 0.07 234 1819.1 4.2 10.4 0.0029 2.36 0.06 0.07 0.07 238 1866.9 3.7 10.2 0.0031 2.82 0.09 0.08 0.07 242 1914.7 2.6 7.8 0.0052 1.46 0.08 0.04 0.06 83 Depth Age (cal (cm) yr BP) Si (%) Ca (%) Zn (%) Fe (%) P (%) Mn (%) K (%) 246 1962.6 2.5 6.1 0.0054 1.35 0.08 0.04 0.05 250 2009.9 2.5 5.8 0.006 1.40 0.12 0.04 0.05 254 2057.5 2.9 8.1 0.004 3.33 0.17 0.09 0.05 258 2105.5 2.8 7.5 0.0046 2.99 0.13 0.08 0.05 262 2153.7 3.2 8.1 0.0038 3.59 0.11 0.09 0.07 266 2201.8 3.3 7.4 0.0051 2.38 0.10 0.06 0.07 270 2250.8 3.5 6.8 0.0038 4.13 0.50 0.08 0.08 274 2298.7 3.6 8.1 0.004 3.43 0.14 0.10 0.13 278 2346.2 3.3 6.3 0.0056 2.23 0.12 0.06 0.12 282 2392.2 3.4 6.8 0.0044 3.02 0.18 0.08 0.05 286 2438.4 3.6 7 0.0031 5.18 0.33 0.11 0.00 290 2486.8 3.4 6.9 0.0039 3.91 0.16 0.10 0.00 298 2585.4 3.3 6.7 0.004 3.63 0.16 0.09 0.00 302 2633.9 3.3 4.4 0.0061 1.48 0.14 0.03 0.00 306 2682.7 3.6 6.3 0.0033 4.22 0.23 0.08 0.00 310 2729.7 3.7 6.7 0.0035 3.67 0.32 0.09 0.00 314 2778.7 3.1 4.3 0.0062 1.35 0.14 0.03 0.00 318 2826.3 3.3 7.5 0.0022 4.14 0.22 0.12 0.00 322 2874.4 3 6.8 0.0035 3.42 0.16 0.09 0.00 326 2923 3 7.4 0.0028 3.66 0.15 0.10 0.00 330 2971.8 2.9 4.5 0.0062 1.47 0.18 0.04 0.02 334 3020.3 2.8 6.2 0.0034 4.05 0.19 0.10 0.00 338 3069.6 2.9 6.7 0.0023 4.82 0.17 0.11 0.00 342 3119.1 3 6.8 0.0021 4.71 0.20 0.11 0.00 346 3168.6 2.7 6.2 0.0032 3.54 0.14 0.09 0.00 350 3216.2 2.8 7.1 0.0032 3.49 0.15 0.09 0.00 354 3265.4 3 6.5 0.0041 2.92 0.19 0.08 0.00 358 3313.8 3.1 6.1 0.0038 3.03 0.23 0.08 0.00 362 3361.3 3.3 6 0.0037 3.74 0.25 0.09 0.01 366 3409.1 3.1 4 0.0058 1.38 0.20 0.04 0.02 370 3458.8 3.3 5.4 0.0052 2.40 0.20 0.06 0.00 374 3506.3 3.4 7.2 0.0029 3.67 0.26 0.10 0.00 378 3552.7 3.9 7.9 0.0026 4.27 0.23 0.11 0.00 382 3600.6 3.4 6.9 0.0037 3.17 0.16 0.08 0.00 386 3648.7 3.8 6.8 0.002 5.98 0.35 0.12 0.00 390 3696.7 1.7 4.8 0.0049 2.33 0.16 0.07 0.00 394 3745.2 1.5 4.3 0.0057 1.98 0.13 0.05 0.00 398 3792.3 1.6 6.3 0.0045 2.35 0.12 0.07 0.00 402 3839.4 1.6 6.6 0.0034 2.86 0.10 0.06 0.00 406 3886 1.6 7.5 0.0033 2.59 0.15 0.08 0.00 410 3934.2 1.9 7 0.0042 2.63 0.09 0.07 0.00 84 Depth Age (cal (cm) yr BP) Si (%) Ca (%) Zn (%) Fe (%) P (%) Mn (%) K (%) 414 3982.3 1.6 5.5 0.004 2.27 0.13 0.05 0.00 418 4031.6 1.1 3.2 0.0058 0.93 0.12 0.02 0.02 422 4079.8 1.5 5 0.0029 3.10 0.14 0.06 0.00 426 4126.7 1.1 3.1 0.0068 0.63 0.11 0.01 0.02 430 4174.9 0.9 1.9 0.0073 0.27 0.08 0.01 0.03 434 4224.3 1.8 5.2 0.0037 3.77 0.21 0.06 0.00 438 4273.3 2.3 3.8 0.0017 5.69 0.13 0.05 0.00 442 4323.4 1.1 1.5 0.0062 1.17 0.20 0.02 0.00 446 4374.3 1.7 3.6 0.003 4.34 0.17 0.05 0.00 450 4423.1 1.3 1.5 0.0063 1.26 0.10 0.01 0.00 452 4447.1 2.2 4 0.0024 6.04 0.19 0.07 0.00 454 4470.7 1.4 2.9 0.0049 2.68 0.24 0.04 0.00 458 4519.7 1.3 4.7 0.0034 3.89 0.35 0.07 0.00 460 4544.5 1.7 5.1 0.0031 4.67 0.34 0.06 0.00 462 4572.6 1.2 1.2 0.0072 0.59 0.08 0.00 0.02 464 4600.8 2.2 3.3 0.0027 5.15 0.07 0.06 0.00 466 4629.7 1.8 2.2 0.0038 4.09 0.25 0.06 0.00 468 4659.7 2.2 4.8 0.0019 6.35 0.19 0.08 0.00 472 4719.5 1.8 5.5 0.0017 5.66 0.23 0.06 0.00 476 4779.6 1.5 3.7 0.0029 4.93 0.44 0.08 0.00 480 4841.1 2.1 4.1 0.003 5.58 0.23 0.08 0.00 484 4902.2 1.9 2.2 0.0042 4.02 0.11 0.05 0.00 488 4963.4 2 3.6 0.0012 6.55 0.13 0.08 0.00 492 5024.2 1.5 2.6 0.0054 2.62 0.29 0.04 0.00 496 5084.8 2.1 2.2 0.002 6.53 0.15 0.07 0.00 500 5144.7 1.6 7 0.0017 5.40 0.36 0.08 0.00 504 5206.3 2.2 6.5 0.0023 4.93 0.26 0.06 0.00 508 5266.7 1.6 7.2 0.0038 2.88 0.19 0.04 0.00 512 5327.2 1.6 10.4 0.0023 3.43 0.22 0.06 0.00 516 5388.5 1.5 10.6 0.0029 2.16 0.19 0.04 0.02 520 5447 1.4 13.2 0.0022 2.19 0.16 0.06 0.00 524 5507.1 1.3 9.7 0.0037 1.62 0.15 0.04 0.00 528 5566.7 1.6 11.5 0.0021 2.75 0.20 0.06 0.00 532 5625.9 1.7 9.7 0.0037 1.98 0.23 0.05 0.00 536 5686.8 1.4 11.1 0.0038 1.73 0.14 0.05 0.00 540 5747.3 1.2 12.1 0.003 1.93 0.16 0.05 0.00 544 5809.4 1.4 10.5 0.0034 2.23 0.23 0.05 0.00 548 5868.5 1.8 11.2 0.0029 2.89 0.21 0.05 0.00 552 5930 1.9 12 0.001 3.74 0.22 0.05 0.00 556 5994.2 1.6 14.5 0.0011 2.98 0.21 0.07 0.00 560 6059.9 1.3 10.1 0.0051 1.21 0.14 0.03 0.00 85 Depth Age (cal (cm) yr BP) Si (%) Ca (%) Zn (%) Fe (%) P (%) Mn (%) K (%) 564 6126.3 1.4 13.7 0.0018 2.30 0.17 0.05 0.00 568 6192.9 1.6 13.5 0.0022 2.86 0.22 0.05 0.00 572 6258.6 1.4 11.9 0.0026 2.01 0.16 0.03 0.00 576 6323.9 1.1 11.4 0.0031 1.93 0.17 0.03 0.00 580 6390 1.5 15.1 0.0006 3.00 0.16 0.05 0.00 584 6456.3 1.4 10.6 0.005 1.47 0.15 0.03 0.00 588 6524.1 1.7 14.4 0.0013 2.85 0.18 0.06 0.00 592 6590.9 1.9 13.5 0.0015 3.00 0.15 0.06 0.00 596 6658.3 1.8 9 0.0046 1.70 0.12 0.03 0.00 600 6724.6 2.1 9.9 0.0048 2.09 0.11 0.04 0.00 604 6790.8 2.1 11 0.0037 2.67 0.16 0.05 0.00 608 6855.8 1.7 12.6 0.0022 2.63 0.15 0.05 0.00 616 6987.3 1.4 12.5 0.0011 3.55 0.14 0.05 0.00 620 7062.3 1.2 11.6 0.0028 2.00 0.08 0.03 0.00 624 7157.7 1 14.6 0.0009 2.61 0.09 0.05 0.00 628 7255.5 1.2 15.1 0.0014 2.69 0.09 0.06 0.00 632 7354.5 1.6 10.4 0.0017 4.04 0.22 0.07 0.00 636 7457.9 1.2 10.3 0.0014 3.41 0.11 0.06 0.00 640 7559.4 1.9 11.3 0.0015 3.74 0.14 0.08 0.00 644 7657.6 1 9.9 0.0037 1.78 0.06 0.04 0.00 648 7757.9 1 12.9 0.0022 2.31 0.06 0.05 0.00 652 7859.5 0.9 10.9 0.0038 1.64 0.04 0.04 0.00 656 7959.2 0.9 14 0.0021 1.88 0.04 0.05 0.00 660 8058 0.8 8.9 0.0049 1.01 0.05 0.03 0.02 664 8158.1 1 14.1 0.0017 2.23 0.05 0.06 0.00 668 8257.6 0.9 13.5 0.0022 2.17 0.06 0.06 0.00 672 8357.5 1.1 15.3 0.0014 2.36 0.06 0.06 0.01 676 8456.7 1.2 16.1 0.0007 2.68 0.06 0.07 0.00 680 8554.5 1.2 14.2 0.0036 2.15 0.05 0.05 0.00 684 8652.2 1 10.6 0.0029 2.16 0.06 0.05 0.00 688 8753 1.3 13.4 0.0022 2.60 0.05 0.07 0.02 692 8873.7 1.4 10.4 0.0043 1.99 0.10 0.05 0.03 696 9016.6 1.5 12.5 0.0011 3.47 0.07 0.08 0.02 700 9160.3 1.6 11.2 0.0028 3.05 0.08 0.07 0.04 704 9307.8 1.7 9.1 0.0033 2.82 0.06 0.07 0.05 708 9449.9 2.2 11.5 0.0021 3.62 0.06 0.10 0.06 712 9591.5 2.2 11.1 0.0023 3.93 0.07 0.10 0.05 716 9734.2 2.5 12 0.0016 4.10 0.09 0.10 0.06 720 9884.7 2.6 12 0.0016 3.80 0.08 0.09 0.07 722 9963 2.6 13 0.0013 4.14 0.08 0.10 0.06 86 PC 1 PC 2 PC 3 2.78 -0.62 0.55 2.76 -1.50 0.23 2.71 0.63 0.66 2.60 -0.42 0.02 2.90 0.94 0.40 2.70 0.82 0.30 2.58 0.36 0.19 2.36 0.38 0.12 2.87 1.70 0.57 2.75 1.67 0.50 3.13 2.13 0.82 3.03 1.88 0.62 2.74 -0.31 0.27 2.99 1.86 0.77 2.56 1.21 0.08 3.27 3.08 0.97 3.23 3.00 0.98 3.25 3.39 0.89 3.20 3.53 0.97 3.00 2.28 0.37 2.65 1.83 -0.28 1.98 -0.12 -0.80 1.98 0.69 -0.66 2.30 0.59 -0.62 2.17 1.48 -0.69 2.25 1.39 -0.51 2.61 1.94 -0.08 2.41 1.77 -0.33 2.48 1.66 -0.19 2.38 0.26 -0.48 2.54 -0.92 -0.34 2.58 1.31 -0.20 2.75 0.38 0.18 3.10 1.57 0.68 2.52 -0.20 -0.21 2.34 1.02 -0.68 2.57 1.21 -0.09 2.48 -1.34 -0.78 2.71 -0.06 0.13 3.12 1.56 1.09 3.21 -0.10 1.22 3.19 -1.04 1.78 87 PC 1 PC 2 PC 3 3.78 0.16 2.40 3.53 -1.36 1.60 3.84 0.25 2.00 4.22 0.08 2.39 2.18 -1.52 -0.13 2.11 -1.90 0.04 2.20 -2.08 -0.18 2.31 -1.76 0.31 1.42 -0.98 -0.84 1.32 -1.30 -1.12 1.15 -1.66 -1.28 1.23 -0.07 -0.89 0.80 0.31 -1.69 0.91 0.24 -1.14 1.47 -2.19 -0.63 0.44 -0.48 -1.11 -1.77 0.34 1.19 -2.15 0.55 -0.28 -1.47 0.83 -0.89 0.32 -1.63 -0.50 -0.49 -0.22 -0.58 -1.05 -0.20 0.46 -0.05 -1.20 0.17 -0.76 0.47 -0.42 0.01 -0.69 -0.16 0.36 -0.86 -0.39 0.08 -1.42 -0.41 0.26 -1.39 0.42 -0.37 -0.15 -0.17 1.05 -2.57 0.21 -1.45 -0.62 0.84 -0.59 -0.84 0.67 -0.29 -2.36 0.05 -0.27 -1.62 0.54 -1.08 -0.62 0.16 0.06 -1.76 -0.01 -0.75 -0.55 -0.23 -1.52 -0.53 0.45 -0.82 -0.92 -0.09 -0.46 -0.91 -0.31 -0.91 -0.56 -0.07 -3.21 -0.51 2.05 88 PC 1 PC 2 PC 3 0.49 -1.91 -0.31 -0.47 -1.14 0.44 -1.97 0.47 1.09 -0.46 -0.49 0.45 -0.45 -0.41 0.25 -1.25 -0.09 0.29 -0.98 -0.25 -0.61 -0.01 -1.00 -0.60 -0.10 0.30 -0.73 -0.06 -0.73 -0.45 -0.69 0.60 -0.61 -0.52 0.33 -0.87 -0.13 -0.16 -0.90 0.04 -0.51 -0.81 -0.39 0.31 -0.95 0.09 -0.02 -0.64 0.14 -0.31 -0.55 0.44 0.86 0.28 0.44 0.79 0.17 1.35 -0.06 0.55 0.93 1.51 0.79 0.43 1.35 0.87 1.31 -0.92 0.50 1.23 -1.35 0.52 1.06 -1.69 0.93 -0.84 0.52 1.24 -0.28 -0.04 1.09 -0.46 0.92 1.28 0.87 -0.23 1.37 -2.09 0.93 3.82 0.33 1.43 2.46 1.40 -0.31 2.25 -0.43 0.15 1.61 -3.22 1.27 2.16 -1.67 0.48 1.09 -1.20 -0.35 0.98 -1.34 0.14 0.93 0.59 -1.99 0.97 -1.87 0.50 1.35 -2.14 0.55 1.91 0.61 -2.19 0.83 -2.65 1.57 1.07 89 PC 1 PC 2 PC 3 -1.49 0.29 0.69 -1.79 0.86 0.48 0.39 -1.96 1.24 -2.08 0.40 0.93 -2.70 1.28 0.74 -2.71 1.33 0.83 -1.63 0.30 0.44 -1.55 0.39 0.41 -1.20 -0.19 0.86 -1.50 0.00 1.16 -1.92 0.41 1.63 0.28 -1.85 1.36 -0.55 -1.04 1.28 -2.21 0.97 1.34 -2.23 1.49 1.37 -1.12 0.26 0.84 -3.81 1.96 2.22 -0.99 -1.42 0.31 -0.38 -2.15 0.16 -0.80 -1.06 -0.17 -1.01 -0.53 -0.55 -1.36 -0.15 -0.30 -0.84 -0.62 -0.23 -0.69 -1.19 -0.35 0.51 -2.90 -0.15 -1.41 -0.64 -0.44 0.99 -3.46 -0.04 1.50 -3.98 -0.03 -1.84 -0.65 0.41 -2.19 0.19 -0.13 -0.08 -3.41 0.35 -1.92 -0.70 0.08 0.47 -3.43 -0.11 -2.86 0.20 0.55 -1.20 -2.08 0.57 -3.03 0.41 0.36 -2.92 -0.56 1.04 -2.83 -0.39 0.96 1.32 -3.98 0.08 -1.73 -0.37 -0.22 -2.26 -1.12 0.92 -3.19 0.75 0.51 90 PC 1 PC 2 PC 3 -2.89 0.45 0.17 -3.89 -0.19 1.72 -2.87 -0.04 0.90 -1.25 -1.51 0.16 -3.16 0.77 -0.08 -1.38 -2.26 1.06 -2.95 0.08 0.31 -3.65 0.83 0.77 -2.39 0.27 0.41 -0.96 -0.89 -0.21 -1.59 0.47 -0.51 -0.54 -0.02 -0.61 -0.73 0.63 -1.38 -0.24 -0.77 -0.93 -1.27 0.66 -0.84 -0.74 -0.55 -0.25 -0.17 -0.53 -0.96 -0.52 -0.05 -1.24 -0.97 -0.26 -0.43 -1.07 0.21 -0.50 -1.70 1.32 -0.87 -1.44 1.60 -1.24 0.50 -1.61 -0.86 -0.76 0.81 -1.47 -1.01 0.71 -0.94 -0.31 -0.06 -1.33 -0.33 -0.40 -1.27 -1.12 1.66 -1.83 0.37 -1.40 -0.76 -1.08 1.39 -1.38 -0.94 1.22 -1.32 0.30 -1.27 -0.66 0.16 -0.92 -0.44 -0.47 -0.12 -0.46 -0.66 0.60 -1.24 -1.96 0.99 -0.40 -1.26 1.10 -1.59 0.00 -0.27 -1.81 -0.69 1.23 -2.37 -0.67 1.22 -2.14 -2.05 0.87 -0.58 -1.33 0.67 -1.54 91 PC 1 PC 2 PC 3 -1.67 1.30 -0.95 0.14 -0.91 -1.61 -0.37 0.38 -2.11 0.34 -0.87 -1.87 -0.06 0.49 -2.44 0.96 -1.73 -1.30 -0.41 0.87 -2.33 -0.38 0.52 -2.14 -0.37 1.32 -2.22 -0.83 1.84 -2.49 0.06 0.03 -1.76 -0.29 -0.26 -1.72 -0.40 0.93 -1.66 0.21 -0.63 -0.68 -1.09 1.54 -1.57 -0.40 0.61 -0.82 -0.19 0.28 -0.34 -0.67 1.75 -0.25 -0.94 1.64 -0.19 -1.11 2.30 -0.06 -0.66 2.21 -0.04 -1.01 2.56 -0.24

r2 with r2 with Element PC1 PC2 Si 0.33 0.25 Ca 0.28 0.51 Zn 0.20 0.61 Fe 0.83 0.04 P 0.47 0.00 Mn 0.57 0.20 K 0.57 0.09

Depth (cm) Age (cal yr BP) Organic Matter (%) Calcium Carbonate (%) 21.3 243.4 24.9 20.3 25.3 267.3 28.2 17.4 29.3 290.8 29 16.7 33.3 314 29.5 16.6 37.3 337.9 30.4 15.7 41.3 362 31 16.8 45.3 386.4 28.4 21.6 49.3 410.6 29.6 21.2 92 Depth (cm) Age (cal yr BP) Organic Matter (%) Calcium Carbonate (%) 53.3 435 28.6 23.3 57.3 459.4 35.2 18.9 61.3 483.9 26.2 23.4 65.3 507.9 23.4 25.2 69.3 532.2 22.8 26.9 73 554.9 24.3 22.6 77 579.8 21 24.3 81 604.8 21.2 25 85 629 21.4 23.2 89 654.3 24.9 21.5 93 678.2 27.5 16.7 97 702.4 33.2 11.1 101 726.2 30.4 20 105 750.1 30.7 18.5 109 773.8 30.1 17.8 113 798.2 33.4 14.4 117 822.9 30 18.2 121 847.8 27.9 19.8 125 872.3 29.7 19.1 129 897.1 30.7 17.6 133 921.7 31.9 16.1 137 945.9 33 15.2 141 969.8 33.3 13.2 145 994.2 34.1 11 149 1020.5 43.5 10.6 153 1055 50.7 17.3 157 1091.8 48.2 10.6 161 1128.1 42.2 11.2 165 1163.9 43.8 11.6 169 1199.6 42.9 3.9 173 1236.1 45.4 9.9 177 1273 45.4 10.3 181 1310.1 44.8 8.6 185 1347 42.3 10.4 189 1383.9 40.7 10.4 193 1420.3 37.5 12.5 197 1457 34.7 15.2 201 1493.7 30.6 16.1 205 1529.6 28.2 20 209 1565.9 26.6 19 213 1601.7 26.1 20.2 217 1637.6 27.2 20.5 93 Depth (cm) Age (cal yr BP) Organic Matter (%) Calcium Carbonate (%) 221 1673.7 28.7 19.5 225 1711.5 30.4 20.6 226 1722.6 31.6 19.4 230 1767.9 32.8 19.2 234 1816.3 33 19.1 238 1864.1 34.2 18 242 1912.4 36 16 246 1961.5 36.1 16.8 250 2009.6 37.2 15.6 254 2056 37.6 15.8 258 2103.2 37.7 15.4 262 2151.7 37.9 13.4 266 2199.3 37.6 15 270 2245.6 37.8 12.4 274 2295.2 36.3 12.5 278 2345.4 36 14.4 282 2394.6 38.4 12.1 286 2442.7 40.1 10.3 290 2489.7 41.2 12.4 294 2536.8 41 10.5 298 2583.6 42.7 9.4 302 2631.9 43.1 11.1 306 2681.2 42.4 9.8 310 2729.8 43.1 11.1 314 2778.5 45.3 10.4 318 2828.2 44.1 3.1 322 2877.6 40.4 7.1 326 2926.1 41.7 2.6 330 2974 41.9 4.6 334 3021.2 46.4 10.2 338 3069 40.3 0 342 3116.4 42.3 10.6 346 3163.5 48.5 9.2 350 3211.6 42 12.9 354 3259.2 41.5 10.8 358 3307.9 40.8 7.7 362 3357.4 41.3 3.6 366 3406.3 42.2 9.1 370 3455.9 40.5 9.8 374 3504.6 38.7 11.3 378 3552.4 38.1 11.8 382 3600 42.6 11.5 94 Depth (cm) Age (cal yr BP) Organic Matter (%) Calcium Carbonate (%) 386 3648.6 40.9 1.4 390 3696.7 41.7 2.7 394 3747.8 38.4 10.5 398 3796 39.4 11.6 402 3844.2 39.3 12.4 406 3892.3 46.1 10.8 410 3939.7 37.6 14.5 414 3988.2 43.5 7.6 418 4036.6 39 8.2 422 4084.9 46.2 10.1 426 4133.3 39.6 13.6 430 4182.2 38.4 13.4 434 4229.6 52.5 6.5 438 4277.3 41.7 4.4 442 4325.2 51.5 0 446 4372.8 39.1 5.8 450 4423.1 37.7 4.2 454 4472.3 42.8 5.8 458 4520.6 42.1 7 462 4573.1 35.1 5 466 4630.7 55.4 0 468 4662 31.3 3.3 472 4723.2 34.5 10.3 476 4783.7 42.6 4.8 480 4845.1 35.2 6.4 484 4907.2 38.6 3.4 488 4968.7 37.4 4.7 492 5029.3 36 5.4 496 5089.2 37 1.6 500 5151.3 33.4 12.4 504 5211.5 25.3 13.6 508 5273.1 25.7 17 512 5333.1 25.1 20.7 516 5392.2 22.8 22.4 520 5451.4 20.2 25.7 524 5511.5 20.8 24.5 528 5571.5 21.7 23.5 532 5631.5 21.6 22.7 536 5690.4 19.8 25.7 540 5749 18.5 26.6 544 5810.3 19.2 24.1 548 5868.8 19.6 23 95 Depth (cm) Age (cal yr BP) Organic Matter (%) Calcium Carbonate (%) 552 5931.2 18.7 23.5 556 5995.7 18.6 26.2 560 6061.1 19.4 27.2 564 6127.9 17.6 27.4 568 6192.5 17.3 26.5 572 6258 16.1 27.4 576 6324.7 16.6 28.7 580 6391.5 15.5 28.2 584 6459.7 15.2 28.6 588 6526.6 16.2 27.5 592 6594.1 16.5 26.7 596 6661.8 18.3 24.5 600 6726.5 18.9 23.8 604 6792.7 17.6 25 608 6857.1 15.4 27.4 612 6921.9 20.4 19.6 616 6989.9 16 25.8 620 7065.3 13.1 29.4 624 7164.2 13 30 628 7266.7 12.9 30.3 632 7368.5 24.1 20.1 636 7468 17.3 25.1 640 7568.5 22.2 22.7 644 7669.4 14.4 29.3 648 7770.3 12.6 31 652 7871.9 12.3 31.3 656 7973.6 10.9 32.8 660 8073.7 11.5 32 664 8173.6 11.2 31.7 668 8274.7 10.8 32 672 8377.3 10.5 33 676 8479.7 10.6 32.5 680 8578 10.8 31.5 684 8680.1 11.7 29.9 688 8782.6 11.8 28.5 692 8905.4 13.4 27.9 696 9047.1 13.5 27.5 700 9187.9 14.6 26.2 704 9331.8 16.1 24.5 708 9472.4 15.9 24.2 712 9612.3 16.1 23.5 716 9752.9 16.2 24.2 96 Depth (cm) Age (cal yr BP) Organic Matter (%) Calcium Carbonate (%) 720 9891 15.2 24.5 722 9963 14.4 25.6

Age (cal Bulk Density Sed. rate Depth Age (cal Depth (cm) yr BP) (g/cm3) (cm/yr) (cm) yr BP) BSi(%) 21.3 243.4 0.15 0.16 1 -29.7 9.1 22.3 249.4 0.13 0.17 3 57.8 11.8 23.3 255.5 0.13 0.16 5 145.4 10.6 24.3 261.6 0.11 0.16 7 157.9 10.9 25.3 267.6 0.12 0.16 9 169.7 9.6 26.3 273.6 0.14 0.16 11 181.7 9.3 27.3 279.7 0.1 0.16 13 194 10.4 28.3 285.8 0.1 0.16 15 205.9 10.3 29.3 291.9 0.13 0.16 17 217.7 13.2 30.3 298 0.12 0.16 19 229.5 10.3 31.3 304.2 0.11 0.16 23.3 255.8 13.2 32.3 310.2 0.12 0.16 26.3 274.1 14.2 33.3 316.3 0.13 0.16 31.3 304.1 16.4 34.3 322.5 0.14 0.16 34.3 321.7 15.3 35.3 328.6 0.16 0.16 39.3 352.6 11.6 36.3 334.8 0.13 0.16 42.3 371.1 11.8 37.3 341 0.14 0.16 47.3 401.1 9.1 38.3 347.1 0.12 0.16 50.3 419.6 9 39.3 353.1 0.15 0.16 54 442.1 12.3 40.3 359.1 0.15 0.16 55.3 450 6.8 41.3 365.3 0.13 0.16 58.3 468.5 10.8 42.3 371.6 0.15 0.17 62 491 9.2 43.3 377.9 0.12 0.16 63.3 498.8 5.1 44.3 384.1 0.1 0.17 66.3 517.1 9.2 45.3 390.2 0.12 0.17 70 539.6 5.6 46.3 396.5 0.14 0.16 74 564.2 12.2 47.3 402.9 0.11 0.17 78 588.2 8.1 48.3 409.1 0.14 0.16 82 612.9 13.3 49.3 415.4 0.12 0.17 86 637.8 8.1 50.3 421.6 0.13 0.16 90 661.9 6 51.3 428 0.11 0.16 94 685.4 10.4 52.3 434.3 0.13 0.16 98 709.7 5.7 53.3 440.6 0.14 0.16 102 734.1 3.2 54.3 446.9 0.14 0.17 106 758.7 4.8 55.3 453.1 0.15 0.16 110 783.2 13.1 56.3 459.2 0.12 0.16 114 808.8 6.8 57.3 465.4 0.13 0.16 118 834 5.8 97 Age (cal Bulk Density Sed. rate Depth Age (cal Depth (cm) yr BP) (g/cm3) (cm/yr) (cm) yr BP) BSi(%) 58.3 471.5 0.14 0.16 122 858.4 9.8 59.3 477.7 0.14 0.17 126 882.7 5.9 60.3 483.5 0.13 0.17 130 907.7 6.3 61.3 489.4 0.15 0.16 134 932.4 7.7 62.3 495.5 0.16 0.16 138 957.1 4.6 63.3 501.3 0.17 0.16 142 981.1 4.7 64.3 507.3 0.16 0.16 146 1005.5 5.8 65.3 513.2 0.16 0.16 150 1031.1 4.3 66.3 519.6 0.2 0.17 151 1040.1 3.4 67.3 525.8 0.18 0.16 154 1066.4 3.3 68.3 532.1 0.19 0.16 159 1112.6 3.1 69.3 538.3 0.17 0.16 162 1140.1 4 70 542.6 0.17 0.17 167 1186.5 3.3 71 548.4 0.17 0.16 170 1214.2 5.2 72 554.5 0.17 0.16 175 1258.2 4.3 73 560.5 0.16 0.16 178 1285.8 4.4 74 566.5 0.16 0.17 183 1332.4 6.3 75 572.5 0.19 0.17 186 1360.3 6.7 76 578.6 0.2 0.16 191 1406 5.6 77 584.7 0.2 0.16 194 1433.1 5.5 78 590.9 0.22 0.16 199 1477.5 4.1 79 597.1 0.18 0.17 202 1504.1 4.2 80 603.2 0.19 0.16 207 1549 4.9 81 609.3 0.2 0.16 210 1575 3.9 82 615.3 0.21 0.16 215 1619.6 3.5 83 621.4 0.2 0.16 218 1646.5 3.4 84 627.5 0.2 0.16 223 1691.1 3.5 85 633.6 0.21 0.17 226 1721.4 5.5 86 639.7 0.19 0.16 232 1794.1 7.9 87 645.7 0.17 0.16 235 1828.7 7.8 88 651.8 0.15 0.16 240 1888.9 7.4 89 657.8 0.2 0.16 243 1926.7 4.2 90 663.7 0.18 0.16 248 1987.6 4 91 669.9 0.16 0.17 251 2023.9 4 92 676 0.16 0.16 256 2083.9 4.5 93 682.3 0.15 0.17 259 2119.2 4.1 94 688.4 0.13 0.17 264 2179.4 4.5 95 694.6 0.15 0.16 267 2215.7 4.6 96 700.9 0.18 0.16 272 2277 4.2 97 707.1 0.18 0.16 275 2313.3 4.4 98 713.4 0.17 0.16 280 2370.8 5.1 98 Age (cal Bulk Density Sed. rate Depth Age (cal Depth (cm) yr BP) (g/cm3) (cm/yr) (cm) yr BP) BSi(%) 99 719.3 0.16 0.16 283 2406.9 5.9 100 725.4 0.16 0.16 288 2468.1 5.9 101 731.6 0.19 0.17 291 2504.9 5.7 102 737.9 0.18 0.16 296 2566.4 5.7 103 744 0.17 0.17 299 2605.8 5.9 104 750.1 0.14 0.16 304 2665.8 7.4 105 756.1 0.15 0.16 307 2701.5 7.4 106 762.4 0.18 0.17 312 2761.9 7.5 107 768.4 0.18 0.16 315 2797 7.2 108 774.7 0.19 0.17 320 2857.8 6.8 109 780.8 0.18 0.16 323 2894 5.9 110 787 0.17 0.17 328 2952.8 5.8 111 793.3 0.2 0.16 331 2988.8 6 112 799.4 0.18 0.17 336 3049.1 5.7 113 805.2 0.19 0.16 339 3084.8 6.3 114 811.2 0.17 0.16 344 3144.8 5.7 115 817.1 0.19 0.17 347 3181.1 4.8 116 823.5 0.16 0.15 352 3241.3 6.7 117 830.1 0.17 0.15 355 3276.7 6.2 118 836.5 0.19 0.15 360 3338.4 7.6 119 842.9 0.19 0.16 363 3374.9 7.1 120 849.3 0.19 0.15 368 3434.1 8.8 121 855.5 0.19 0.16 371 3469.1 8.4 122 861.6 0.17 0.16 376 3529.2 8.8 123 867.8 0.2 0.16 379 3564.7 7 124 873.9 0.19 0.16 384 3625.1 8.8 125 880.3 0.18 0.16 387 3661.1 7.6 126 886.4 0.17 0.17 392 3720.8 7.3 127 892.5 0.17 0.16 395 3757.1 6.7 128 898.8 0.18 0.17 400 3815.9 6.3 129 905 0.17 0.16 403 3852.1 6.4 130 911.2 0.18 0.16 408 3912.4 6.4 131 917.6 0.18 0.16 411 3949.6 6.7 132 924 0.19 0.16 416 4010.8 6.5 133 930.2 0.19 0.16 419 4047.4 6.3 134 936.7 0.19 0.16 424 4108.7 5.9 135 942.9 0.17 0.16 427 4145.4 7.6 136 949 0.19 0.16 432 4206.3 6.9 137 955.2 0.19 0.16 435 4243.8 7.9 138 961.3 0.19 0.16 440 4303 7.5 139 967.6 0.15 0.16 443 4338.1 9.2 99 Age (cal Bulk Density Sed. rate Depth Age (cal Depth (cm) yr BP) (g/cm3) (cm/yr) (cm) yr BP) BSi(%) 140 973.8 0.19 0.16 448 4397.2 7.1 141 979.6 0.18 0.18 451 4432.9 8.4 142 985.5 0.19 0.16 456 4493.4 6.6 143 991.6 0.18 0.16 459 4531.5 8.2 144 997.3 0.2 0.16 464 4598.5 7.6 145 1003.3 0.15 0.17 467 4642.6 8.8 146 1009.8 0.22 0.15 474 4747.5 6.6 147 1016.4 0.17 0.15 477 4793 5.9 148 1023 0.2 0.15 482 4868.3 9.1 149 1029.3 0.23 0.15 485 4913.5 15 150 1035.8 0.23 0.14 490 4993.6 6 151 1045.1 0.24 0.1 493 5037.1 8.3 152 1054.2 0.25 0.11 498 5113.1 8.7 153 1063.3 0.19 0.1 501 5159.2 6.5 154 1072.1 0.18 0.11 506 5232.9 5.8 155 1081.4 0.23 0.1 509 5278.9 4.4 156 1090.2 0.23 0.11 514 5353.3 4.3 157 1099.3 0.26 0.11 517 5397.6 4.1 158 1108.4 0.21 0.11 522 5471.7 4.5 159 1117.4 0.26 0.1 525 5517.5 4.4 160 1126.4 0.23 0.11 530 5595.3 10.2 161 1135.5 0.21 0.11 533 5639.8 5.7 162 1144.7 0.2 0.11 538 5713.4 2.4 163 1153.7 0.2 0.11 541 5759.7 3.4 164 1162.7 0.18 0.1 546 5835.9 4.1 165 1171.8 0.24 0.11 549 5882.1 4.5 166 1180.8 0.26 0.11 554 5963.5 4.1 167 1189.5 0.21 0.1 557 6013 3.9 168 1198.5 0.22 0.1 562 6094.2 3.9 169 1207.5 0.23 0.1 565 6143.2 3.4 170 1216.3 0.21 0.1 570 6226.1 3.5 171 1225.3 0.22 0.1 573 6276.8 3.2 172 1234.2 0.28 0.1 578 6359.7 3 173 1243.3 0.26 0.1 581 6408.8 3.2 174 1252.3 0.25 0.1 586 6490.8 3.4 175 1261.5 0.1 0.1 589 6541.6 3.5 176 1270.5 0.23 0.11 594 6624.1 4.6 177 1279.6 0.19 0.11 597 6673.4 4.1 178 1288.7 0.25 0.11 602 6755 4.3 179 1297.7 0.21 0.11 605 6803.8 3.8 180 1306.9 0.22 0.11 610 6888.1 4.3 100 Age (cal Bulk Density Sed. rate Depth Age (cal Depth (cm) yr BP) (g/cm3) (cm/yr) (cm) yr BP) BSi(%) 181 1315.6 0.17 0.1 613 6936.3 5.1 182 1324.2 0.17 0.1 618 7023 3.3 183 1333.1 0.18 0.1 621 7084.7 3.5 184 1342 0.18 0.11 626 7207.6 2.6 185 1350.6 0.18 0.1 629 7283.5 2.5 186 1359.6 0.18 0.11 633 7382.6 6.7 187 1368.6 0.17 0.11 638 7507.2 4.3 188 1377.7 0.18 0.11 641 7582.2 4.7 189 1386.7 0.19 0.11 646 7709.9 2.5 190 1395.7 0.2 0.11 649 7785.8 2.5 191 1404.8 0.2 0.11 654 7914.1 2.7 192 1413.8 0.19 0.11 657 7991.4 2.5 193 1423 0.2 0.11 662 8117.8 2.3 194 1432.2 0.21 0.11 665 8194.1 2.1 195 1441.4 0.21 0.11 670 8320.9 2.1 196 1449.8 0.21 0.11 673 8398.1 2.4 197 1458.6 0.22 0.11 678 8524.3 2.3 198 1467.6 0.22 0.1 681 8599.1 2.1 199 1476.3 0.22 0.11 686 8725.5 2.9 200 1485.2 0.21 0.11 689 8804 2.9 201 1494.2 0.23 0.11 694 8970.1 4 202 1503 0.21 0.1 697 9075.6 3.7 203 1511.9 0.21 0.11 702 9251.8 3 204 1521.1 0.22 0.1 705 9359.7 3.6 205 1529.8 0.24 0.1 710 9533.4 3.9 206 1538.7 0.24 0.11 713 9636.5 3.7 207 1547.6 0.24 0.1 718 9814.2 4.1 208 1556.5 0.24 0.1 721 9921.8 4.3 209 1565.3 0.24 0.11 210 1574.3 0.24 0.1 211 1583.2 0.26 0.11 212 1592.2 0.24 0.11 213 1601.5 0.25 0.11 214 1610.4 0.24 0.11 215 1619.6 0.23 0.11 216 1628.3 0.23 0.1 217 1637.4 0.25 0.11 218 1646.5 0.25 0.1 219 1655.5 0.24 0.11 220 1664.3 0.25 0.1 221 1673.2 0.24 0.11 101 Age (cal Bulk Density Sed. rate Depth (cm) yr BP) (g/cm3) (cm/yr) 222 1681.8 0.23 0.11 223 1690.9 0.24 0.11 224 1699.6 0.24 0.11 225 1708.5 0.23 0.11 226 1720.2 0.23 0.08 227 1731.6 0.21 0.08 228 1743.1 0.22 0.08 229 1754.6 0.21 0.08 230 1766 0.21 0.08 231 1778.1 0.21 0.08 232 1790.6 0.23 0.08 233 1803.2 0.22 0.08 234 1815.5 0.23 0.08 235 1827.8 0.22 0.08 236 1840.1 0.23 0.08 237 1852.5 0.22 0.08 238 1865 0.23 0.08 239 1877.5 0.23 0.08 240 1890 0.23 0.08 241 1902.3 0.22 0.08 242 1914.6 0.23 0.08 243 1927.1 0.22 0.08 244 1939.5 0.22 0.08 245 1951.8 0.22 0.08 246 1963.8 0.21 0.08 247 1976 0.21 0.08 248 1988 0.23 0.08 249 2000.3 0.21 0.08 250 2012.3 0.23 0.08 251 2024.2 0.22 0.08 252 2036.1 0.2 0.08 253 2048.4 0.21 0.08 254 2060.6 0.21 0.08 255 2072.8 0.21 0.08 256 2085.1 0.21 0.08 257 2097.2 0.21 0.08 258 2109.6 0.21 0.08 259 2122 0.19 0.08 260 2134.3 0.19 0.08 261 2146.6 0.21 0.08 262 2158.9 0.2 0.08 102 Age (cal Bulk Density Sed. rate Depth (cm) yr BP) (g/cm3) (cm/yr) 263 2171.2 0.21 0.08 264 2183.4 0.19 0.08 265 2195.4 0.2 0.08 266 2207.3 0.21 0.08 267 2219.5 0.23 0.08 268 2231.6 0.21 0.08 269 2243.7 0.22 0.08 270 2255.5 0.23 0.08 271 2267.8 0.22 0.08 272 2280.1 0.22 0.08 273 2292.5 0.21 0.08 274 2304.8 0.21 0.08 275 2316.7 0.22 0.08 276 2329.5 0.22 0.08 277 2341.9 0.22 0.08 278 2354.9 0.24 0.08 279 2367.2 0.25 0.08 280 2379.4 0.22 0.08 281 2392.1 0.24 0.08 282 2404.5 0.24 0.08 283 2416.5 0.22 0.08 284 2428.7 0.18 0.08 285 2441.1 0.25 0.08 286 2453.1 0.22 0.08 287 2465.3 0.21 0.08 288 2477.6 0.2 0.08 289 2489.5 0.2 0.08 290 2501.6 0.2 0.08 291 2513.1 0.2 0.08 292 2525 0.19 0.08 293 2536.5 0.21 0.08 294 2548.4 0.22 0.08 295 2560 0.2 0.08 296 2572.6 0.2 0.08 297 2584.6 0.22 0.08 298 2597.1 0.2 0.08 299 2609.3 0.2 0.08 300 2621.6 0.2 0.08 301 2633.6 0.2 0.08 302 2645.5 0.2 0.08 303 2657.2 0.21 0.08 103 Age (cal Bulk Density Sed. rate Depth (cm) yr BP) (g/cm3) (cm/yr) 304 2669 0.21 0.08 305 2681 0.21 0.08 306 2692.8 0.2 0.09 307 2705 0.27 0.09 308 2717.2 0.33 0.09 309 2729.5 0.31 0.09 310 2741.5 0.29 0.09 311 2753.2 0.33 0.08 312 2765 0.32 0.08 313 2776.4 0.37 0.08 314 2788.1 0.33 0.08 315 2799.6 0.32 0.08 316 2810.9 0.33 0.08 317 2822.4 0.32 0.08 318 2833.7 0.33 0.08 319 2845.7 0.31 0.08 320 2857.4 0.33 0.08 321 2869.3 0.25 0.08 322 2881.6 0.33 0.08 323 2894.1 0.33 0.08 324 2906.1 0.34 0.08 325 2918.8 0.34 0.08 326 2930.8 0.33 0.08 327 2942.6 0.28 0.08 328 2954.7 0.35 0.08 329 2966.8 0.36 0.08 330 2978.6 0.37 0.08 331 2990.6 0.34 0.09 332 3002.7 0.34 0.09 333 3014.8 0.35 0.08 334 3026.8 0.37 0.08 335 3038.7 0.37 0.08 336 3050.7 0.38 0.08 337 3062.7 0.36 0.08 338 3074.2 0.36 0.08 339 3086.3 0.34 0.08 340 3098 0.36 0.08 341 3109.8 0.37 0.08 342 3121.9 0.34 0.08 343 3134.1 0.36 0.08 344 3146.2 0.33 0.09 104 Age (cal Bulk Density Sed. rate Depth (cm) yr BP) (g/cm3) (cm/yr) 345 3158.4 0.32 0.08 346 3170.3 0.34 0.08 347 3182.5 0.32 0.08 348 3194.8 0.29 0.09 349 3206.7 0.27 0.08 350 3218.9 0.34 0.08 351 3230.7 0.31 0.08 352 3242.8 0.32 0.08 353 3254.8 0.28 0.08 354 3266.9 0.32 0.08 355 3279.2 0.29 0.08 356 3291 0.27 0.09 357 3302.7 0.3 0.08 358 3314.6 0.26 0.09 359 3326.6 0.29 0.08 360 3338.3 0.34 0.09 361 3350.6 0.3 0.08 362 3362.8 0.29 0.08 363 3375 0.32 0.09 364 3387.1 0.25 0.08 365 3398.8 0.21 0.08 366 3411.5 0.29 0.08 367 3424.2 0.31 0.08 368 3436.6 0.29 0.08 369 3449.4 0.28 0.08 370 3461.7 0.27 0.08 371 3473.6 0.24 0.08 372 3485.8 0.29 0.08 373 3497.9 0.31 0.09 374 3509.6 0.3 0.08 375 3521.8 0.31 0.09 376 3534.3 0.31 0.08 377 3546.4 0.31 0.08 378 3558.4 0.22 0.08 379 3570.6 0.21 0.08 380 3582.8 0.27 0.08 381 3595.3 0.33 0.08 382 3607.7 0.31 0.08 383 3619.8 0.32 0.08 384 3631.9 0.32 0.08 385 3644.1 0.27 0.08 105 Age (cal Bulk Density Sed. rate Depth (cm) yr BP) (g/cm3) (cm/yr) 386 3656.4 0.26 0.08 387 3668.8 0.31 0.08 388 3680.9 0.3 0.08 389 3693.2 0.31 0.08 390 3705.6 0.29 0.08 391 3717.6 0.31 0.08 392 3729.8 0.3 0.08 393 3741.7 0.28 0.09 394 3753.5 0.25 0.08 395 3766.1 0.31 0.08 396 3777.9 0.29 0.08 397 3789.9 0.28 0.08 398 3802 0.31 0.08 399 3814.1 0.3 0.08 400 3826.1 0.32 0.08 401 3837.2 0.32 0.08 402 3849 0.33 0.08 403 3861 0.24 0.08 404 3872.4 0.33 0.08 405 3884.2 0.31 0.08 406 3896.2 0.32 0.08 407 3908.7 0.29 0.08 408 3920.9 0.37 0.08 409 3933 0.32 0.08 410 3944.9 0.31 0.08 411 3957.2 0.3 0.08 412 3968.9 0.32 0.08 413 3980.9 0.32 0.08 414 3992.8 0.32 0.08 415 4004.5 0.32 0.08 416 4016.2 0.3 0.08 417 4028.1 0.32 0.08 418 4039.9 0.29 0.08 419 4051.6 0.31 0.08 420 4063.5 0.35 0.08 421 4075 0.38 0.09 422 4087 0.38 0.08 423 4099.2 0.28 0.08 424 4111.2 0.38 0.09 425 4123.1 0.38 0.08 426 4135.3 0.33 0.08 106 Age (cal Bulk Density Sed. rate Depth (cm) yr BP) (g/cm3) (cm/yr) 427 4147 0.37 0.08 428 4159.1 0.33 0.08 429 4171.2 0.37 0.08 430 4183.1 0.32 0.08 431 4195.2 0.32 0.09 432 4207.2 0.34 0.08 433 4218.9 0.32 0.08 434 4230.9 0.38 0.08 435 4242.7 0.32 0.08 436 4255 0.26 0.08 437 4267 0.31 0.08 438 4279.2 0.3 0.08 439 4291.8 0.36 0.08 440 4304 0.32 0.08 441 4316.2 0.26 0.08 442 4328.8 0.32 0.08 443 4341.1 0.28 0.08 444 4353.4 0.26 0.08 445 4365.9 0.25 0.08 446 4377.8 0.32 0.08 447 4390.2 0.29 0.08 448 4402.4 0.29 0.08 449 4414.8 0.31 0.08 450 4426.9 0.29 0.08 451 4438.3 0.27 0.08 452 4450.1 0.23 0.09 453 4461.7 0.25 0.09 454 4473.4 0.33 0.08 455 4485.2 0.41 0.09 456 4497.1 0.28 0.08 457 4509 0.29 0.08 458 4521.6 0.32 0.08 459 4533.3 0.31 0.08 460 4545.4 0.23 0.09 461 4559.6 0.21 0.07 462 4573.9 0.28 0.07 463 4587.9 0.23 0.07 464 4602.1 0.33 0.07 465 4616.5 0.3 0.07 466 4631.4 0.33 0.06 467 4646.5 0.24 0.06 107 Age (cal Bulk Density Sed. rate Depth (cm) yr BP) (g/cm3) (cm/yr) 468 4661.2 0.21 0.06 469 4676.5 0.29 0.06 470 4690.8 0.26 0.06 471 4706.1 0.26 0.06 472 4721.5 0.26 0.07 473 4736.4 0.25 0.07 474 4751.6 0.25 0.06 475 4767 0.24 0.07 476 4781.6 0.25 0.06 477 4796.9 0.23 0.06 478 4811.2 0.3 0.06 479 4826.6 0.2 0.06 480 4841.5 0.24 0.06 481 4857.3 0.22 0.07 482 4873.4 0.21 0.07 483 4888.9 0.25 0.07 484 4905 0.21 0.06 485 4920.6 0.26 0.07 486 4935.2 0.28 0.06 487 4949.9 0.27 0.06 488 4964.8 0.29 0.06 489 4979.9 0.24 0.06 490 4995.3 0.26 0.06 491 5010.5 0.24 0.07 492 5025.6 0.22 0.07 493 5040.9 0.25 0.07 494 5055.9 0.26 0.07 495 5070.9 0.23 0.07 496 5086.2 0.28 0.06 497 5101.7 0.26 0.06 498 5117.3 0.23 0.06 499 5132.8 0.25 0.07 500 5148.3 0.29 0.06 501 5163.9 0.28 0.06 502 5179.1 0.22 0.06 503 5195.1 0.22 0.06 504 5210.8 0.27 0.06 505 5226 0.27 0.06 506 5241.5 0.3 0.06 507 5257.3 0.31 0.06 508 5273.1 0.29 0.06 108 Age (cal Bulk Density Sed. rate Depth (cm) yr BP) (g/cm3) (cm/yr) 509 5289 0.33 0.06 510 5304.3 0.33 0.06 511 5319.3 0.31 0.07 512 5334.4 0.32 0.07 513 5349.4 0.34 0.07 514 5364 0.34 0.07 515 5378.7 0.34 0.07 516 5394 0.34 0.06 517 5409.1 0.36 0.06 518 5424.4 0.37 0.06 519 5439.8 0.38 0.06 520 5455.2 0.39 0.06 521 5470 0.39 0.06 522 5485.1 0.39 0.06 523 5499.8 0.38 0.07 524 5514.8 0.37 0.07 525 5529.8 0.37 0.07 526 5544.3 0.36 0.06 527 5559 0.36 0.06 528 5573.9 0.36 0.06 529 5588.4 0.34 0.06 530 5603.1 0.36 0.06 531 5617.9 0.36 0.07 532 5632.7 0.36 0.07 533 5647.5 0.35 0.07 534 5662 0.36 0.06 535 5676.7 0.37 0.06 536 5691.7 0.4 0.07 537 5706.7 0.4 0.07 538 5721.7 0.42 0.07 539 5736.8 0.41 0.07 540 5752.1 0.41 0.07 541 5766.7 0.39 0.07 542 5781.3 0.38 0.06 543 5795.7 0.38 0.07 544 5810.2 0.38 0.06 545 5824.8 0.4 0.06 546 5839.4 0.4 0.07 547 5853.8 0.4 0.07 548 5868.3 0.37 0.07 549 5883.1 0.43 0.07 109 Age (cal Bulk Density Sed. rate Depth (cm) yr BP) (g/cm3) (cm/yr) 550 5898.2 0.39 0.07 551 5914.3 0.37 0.07 552 5931 0.37 0.07 553 5947.5 0.38 0.07 554 5964.3 0.38 0.07 555 5980.3 0.38 0.07 556 5996.9 0.4 0.07 557 6013.8 0.41 0.07 558 6030.6 0.42 0.07 559 6047.3 0.43 0.07 560 6063.2 0.41 0.07 561 6079.8 0.43 0.07 562 6096.4 0.44 0.07 563 6112.9 0.45 0.07 564 6129.6 0.43 0.07 565 6145.7 0.45 0.07 566 6161.8 0.42 0.07 567 6178.3 0.44 0.07 568 6194.4 0.42 0.07 569 6210.6 0.42 0.07 570 6226.9 0.42 0.07 571 6243.3 0.43 0.07 572 6259.8 0.45 0.07 573 6276.3 0.45 0.07 574 6292.9 0.43 0.07 575 6309.3 0.45 0.07 576 6325.5 0.47 0.07 577 6341.9 0.45 0.07 578 6358.4 0.47 0.07 579 6374.9 0.47 0.07 580 6391.5 0.45 0.07 581 6407.6 0.45 0.07 582 6423.9 0.46 0.07 583 6440 0.48 0.07 584 6456.4 0.45 0.07 585 6472.7 0.46 0.07 586 6488.9 0.45 0.07 587 6505.5 0.48 0.07 588 6522.2 0.43 0.07 589 6538.9 0.41 0.07 590 6555.9 0.43 0.07 110 Age (cal Bulk Density Sed. rate Depth (cm) yr BP) (g/cm3) (cm/yr) 591 6572.5 0.43 0.07 592 6589.2 0.45 0.07 593 6606 0.43 0.07 594 6622.4 0.4 0.07 595 6638.5 0.41 0.07 596 6654.8 0.45 0.07 597 6671.5 0.41 0.07 598 6687.8 0.48 0.07 599 6704.3 0.39 0.07 600 6720.7 0.39 0.07 601 6737.4 0.42 0.07 602 6754.2 0.43 0.07 603 6771 0.4 0.07 604 6787.6 0.42 0.07 605 6804 0.44 0.07 606 6820.7 0.48 0.07 607 6837.6 0.45 0.07 608 6854.5 0.43 0.07 609 6871.2 0.42 0.07 610 6888 0.38 0.07 611 6904.3 0.34 0.07 612 6920.6 0.34 0.07 613 6936.9 0.35 0.07 614 6953.3 0.39 0.07 615 6970 0.42 0.07 616 6988.1 0.41 0.08 617 7006.4 0.42 0.08 618 7024.5 0.47 0.08 619 7042.7 0.48 0.08 620 7060.8 0.49 0.08 621 7085.9 0.45 0.1 622 7110.8 0.45 0.1 623 7135.1 0.48 0.1 624 7158.8 0.51 0.1 625 7182.3 0.54 0.11 626 7207.3 0.52 0.1 627 7232.2 0.54 0.1 628 7257.2 0.55 0.1 632 7352 0.34 0.1 633 7375.6 0.29 0.11 634 7399.4 0.35 0.11 111 Age (cal Bulk Density Sed. rate Depth (cm) yr BP) (g/cm3) (cm/yr) 635 7423.2 0.4 0.11 636 7448.6 0.39 0.1 637 7473.5 0.35 0.1 638 7498.7 0.39 0.1 639 7523.8 0.42 0.1 640 7549.1 0.35 0.1 641 7573.8 0.31 0.1 642 7598.7 0.29 0.1 643 7623.7 0.43 0.1 644 7648.4 0.47 0.1 645 7672.9 0.47 0.1 646 7698 0.48 0.1 647 7722.9 0.47 0.11 648 7747.6 0.47 0.1 649 7772.3 0.5 0.1 650 7796.7 0.52 0.11 651 7822.1 0.52 0.1 652 7847.3 0.52 0.1 653 7872.1 0.5 0.1 654 7897.5 0.52 0.1 655 7922.8 0.53 0.1 656 7947.8 0.54 0.1 657 7972.5 0.53 0.1 658 7997.8 0.53 0.1 659 8022.9 0.55 0.1 660 8048.1 0.59 0.1 661 8073.6 0.56 0.1 662 8099.2 0.57 0.1 663 8124.4 0.57 0.1 664 8149.9 0.58 0.1 665 8175 0.56 0.1 666 8200.1 0.59 0.1 667 8225.4 0.58 0.1 668 8250.5 0.59 0.1 669 8275.7 0.58 0.1 670 8300.9 0.6 0.1 671 8325.8 0.6 0.1 672 8350.7 0.57 0.1 673 8376.4 0.58 0.11 674 8401.1 0.58 0.11 675 8426.3 0.57 0.11 112 Age (cal Bulk Density Sed. rate Depth (cm) yr BP) (g/cm3) (cm/yr) 676 8450.9 0.58 0.1 677 8475.9 0.58 0.1 678 8500.6 0.56 0.1 679 8525.5 0.57 0.1 680 8550.2 0.57 0.1 681 8575.4 0.59 0.1 682 8600 0.55 0.1 683 8625 0.55 0.1 684 8649.4 0.54 0.1 685 8674.3 0.54 0.1 686 8700.1 0.54 0.11 687 8725.8 0.55 0.1 688 8751.6 0.55 0.1 689 8777.3 0.54 0.1 690 8802.8 0.54 0.1 691 8837.5 0.52 0.08 692 8872.1 0.51 0.08 693 8907.1 0.5 0.08 694 8942 0.49 0.08 695 8976.9 0.51 0.08 696 9013.6 0.53 0.08 697 9051.3 0.51 0.08 698 9088.6 0.49 0.08 699 9125.7 0.49 0.08 700 9162.1 0.49 0.08 701 9197.2 0.48 0.08 702 9232.8 0.48 0.08 703 9268.6 0.48 0.08 704 9304.4 0.47 0.08 705 9339.5 0.48 0.08 706 9374.8 0.46 0.08 707 9409.3 0.49 0.08 708 9443.9 0.47 0.08 709 9479.1 0.48 0.08 710 9514.7 0.47 0.08 711 9550.1 0.48 0.08 712 9585.8 0.48 0.08 713 9621.4 0.48 0.08 714 9656.9 0.49 0.08 715 9692.2 0.47 0.08 716 9729.5 0.47 0.08 113 Age (cal Bulk Density Sed. rate Depth (cm) yr BP) (g/cm3) (cm/yr) 717 9766.6 0.47 0.08 718 9803.9 0.47 0.08 719 9841.1 0.46 0.08 720 9877.9 0.45 0.08 721 9915 0.45 0.08 722 9952.4 0.47 0.08 723 9989.7 0.48 0.08 722 9963 0.48 0.08

Avg. Atomspheric Avg. RH Avg. Wind Avg. Gust Avg. Wind Date Temp. (°C) (%) Speed (m/s) Speed (m/s) Direction ø Rain (mm) 6/14/15 17.5 72.2 0.55 2.9 208.7 0.25 6/15/15 13.5 77.0 1.21 5.5 238.6 0 6/16/15 12.4 61.0 0.86 4.2 252.7 0 6/17/15 11.4 63.4 0.51 3.0 222.9 0 6/18/15 11.9 83.3 0.29 3.1 137.9 2.01 6/19/15 13.8 86.4 0.01 1.5 163.3 1.77 6/20/15 14.8 79.2 0.09 1.4 235.8 1.25 6/21/15 15.3 72.2 0.02 0.9 194.7 3.05 6/22/15 14.8 85.7 0.03 0.9 185.6 7.36 6/23/15 15.3 82.3 0.36 2.7 128.7 1.77 6/24/15 15.0 87.7 0.51 3.8 169.2 13.47 6/25/15 13.6 79.7 0.46 3.7 202.9 0 6/26/15 13.5 76.8 0.26 2.7 212.1 0 6/27/15 13.6 74.2 0.51 3.1 243.0 0 6/28/15 15.2 76.4 0.15 2.1 245.6 0 6/29/15 17.0 67.7 0.20 2.0 223.1 0 6/30/15 17.4 72.4 0.36 2.4 250.7 0 7/1/15 16.2 81.2 0.04 2.0 267.6 0 7/2/15 18.3 67.3 0.14 1.5 265.7 0 7/3/15 20.7 66.4 0.76 3.2 243.4 0 7/4/15 21.5 59.6 1.02 4.2 238.3 0 7/5/15 19.3 71.9 0.07 1.9 255.1 0 7/6/15 17.9 74.3 0.43 2.8 136.9 19.31 7/7/15 16.4 80.9 1.84 7.1 235.3 5.84 7/8/15 16.6 86.1 0.39 3.4 179.1 0.25 7/9/15 16.2 78.9 0.61 4.1 217.2 0.25 7/10/15 12.8 92.3 0.21 2.8 175.3 10.67 7/11/15 13.9 91.9 0.05 1.4 259.8 2.28 114 Avg. Atomspheric Avg. RH Avg. Wind Avg. Gust Avg. Wind Date Temp. (°C) (%) Speed (m/s) Speed (m/s) Direction ø Rain (mm) 7/12/15 14.2 91.6 0.20 2.0 260.1 4.31 7/13/15 13.9 84.5 0.03 1.1 194.2 0.25 7/14/15 15.4 79.1 0.07 1.3 256.3 0 7/15/15 16.2 76.1 0.18 1.8 254.6 0 7/16/15 16.5 78.3 0.35 2.1 244.4 0 7/17/15 15.6 79.2 0.24 2.5 236.9 0 7/18/15 15.2 84.8 0.19 1.8 204.6 0.75 7/19/15 17.1 75.3 1.20 4.9 231.9 0 7/20/15 13.6 86.9 0.13 1.7 217.5 0 7/21/15 16.9 76.2 0.50 2.9 242.4 0 7/22/15 15.9 84.9 1.14 4.9 212.5 0.25 7/23/15 16.8 87.0 0.22 2.4 209.8 0 7/24/15 16.2 75.8 1.38 5.1 237.5 0 7/25/15 15.8 74.8 0.17 1.9 169.9 0 7/26/15 18.9 73.4 0.55 4.1 147.9 0 7/27/15 15.9 71.5 0.54 3.4 217.0 0 7/28/15 16.1 69.9 0.02 1.1 128.9 0 7/29/15 15.9 86.2 0.24 2.0 184.9 3.29 7/30/15 14.2 88.6 0.33 3.2 179.5 5.57 7/31/15 14.3 91.4 0.36 3.8 217.3 14.23 8/1/15 14.4 88.5 0.60 3.3 230.4 4.56 8/2/15 15.3 78.9 0.43 3.1 219.4 0 8/3/15 16.5 74.0 0.39 2.6 217.9 0 8/4/15 16.5 72.7 0.03 1.1 209.2 0 8/5/15 19.5 66.9 0.26 2.6 81.2 0 8/6/15 23.0 69.8 0.23 2.5 160.6 0 8/7/15 21.2 75.1 0.06 1.3 197.2 0 8/8/15 21.2 78.1 0.41 2.6 185.8 15.25 8/9/15 19.8 89.9 0.02 1.1 216.3 8.63 8/10/15 19.5 79.7 0.02 0.7 203.5 0 8/11/15 21.3 75.7 0.05 1.2 99.8 0 8/12/15 23.0 72.7 0.00 1.2 151.8 0.25 8/13/15 18.0 75.6 0.18 1.9 287.6 0 8/14/15 15.4 74.3 0.06 1.2 269.0 0 8/15/15 16.7 74.3 0.00 1.2 219.8 0 8/16/15 15.0 74.3 0.17 2.2 146.2 0 8/17/15 15.2 69.8 0.23 2.8 52.6 0 8/18/15 13.9 73.3 0.26 2.3 67.7 0 8/19/15 13.4 72.1 0.08 1.2 85.3 0 8/20/15 15.3 68.4 0.02 0.8 93.1 0 115 Avg. Atomspheric Avg. RH Avg. Wind Avg. Gust Avg. Wind Date Temp. (°C) (%) Speed (m/s) Speed (m/s) Direction ø Rain (mm) 8/21/15 16.8 67.5 0.00 0.9 167.6 0 8/22/15 17.3 71.0 0.00 0.9 97.3 0 8/23/15 17.7 71.7 0.14 1.5 117.4 0 8/24/15 19.5 67.7 0.30 2.4 82.0 0 8/25/15 21.2 61.2 0.18 2.2 92.8 0 8/26/15 18.2 77.3 0.87 4.2 216.3 2.29 8/27/15 18.1 75.6 0.27 2.0 182.7 0 8/28/15 16.7 88.7 0.57 3.3 173.0 3.3 8/29/15 15.9 84.6 1.18 5.0 239.8 1.26 8/30/15 14.8 88.8 0.40 2.9 240.0 0.76 8/31/15 14.9 85.5 0.04 1.0 232.3 0 9/1/15 13.1 94.1 0.23 2.6 104.4 5.58 9/2/15 12.9 97.8 0.18 2.9 76.2 10.4 9/3/15 15.3 92.3 0.00 1.1 228.4 0.25 9/4/15 14.3 86.5 0.02 0.7 197.6 0 9/5/15 13.3 92.2 0.12 2.5 158.8 9.91 9/6/15 12.9 88.3 0.14 2.1 158.2 0.5 9/7/15 12.0 98.0 0.00 0.7 238.8 6.08 9/8/15 12.7 91.2 0.00 1.1 310.0 1.01 9/9/15 13.5 84.4 0.00 0.9 187.9 0.25 9/10/15 12.2 82.3 0.00 0.8 257.7 0 9/11/15 12.6 83.7 0.02 0.8 131.3 0 9/12/15 13.1 83.3 0.14 1.9 66.7 0 9/13/15 13.1 72.0 0.35 3.0 90.0 0 9/14/15 13.8 76.5 0.37 3.2 108.0 0 9/15/15 12.4 84.2 0.52 3.9 112.4 0.51 9/16/15 13.9 96.1 0.10 2.2 104.8 0 9/17/15 18.0 89.6 0.29 2.8 109.3 0.25 9/18/15 16.8 86.0 1.06 5.4 181.9 3.04 9/19/15 14.6 82.0 1.01 5.2 218.6 0 9/20/15 13.8 88.9 0.09 2.2 186.7 1.27 9/21/15 11.8 98.9 0.00 0.8 187.0 10.16 9/22/15 12.2 93.9 0.06 2.3 188.7 5.08 9/23/15 11.8 89.0 0.20 2.9 112.3 0 9/24/15 16.2 84.7 0.13 2.1 129.8 0 9/25/15 13.0 95.7 0.00 0.2 159.8 0.5 9/26/15 12.6 90.5 0.01 0.9 241.9 0 9/27/15 8.9 90.7 0.00 0.7 249.0 0 9/28/15 9.5 92.6 0.02 1.0 281.2 0.5 9/29/15 9.1 85.7 0.01 1.0 262.5 0 116 Avg. Atomspheric Avg. RH Avg. Wind Avg. Gust Avg. Wind Date Temp. (°C) (%) Speed (m/s) Speed (m/s) Direction ø Rain (mm) 9/30/15 8.8 88.5 0.68 3.0 209.4 0 10/1/15 10.7 93.2 0.87 3.7 235.1 0 10/2/15 13.7 85.9 2.05 7.0 239.6 0 10/3/15 11.0 79.6 0.27 2.5 250.4 0 10/4/15 10.0 89.1 0.10 1.6 170.7 0 10/5/15 9.0 86.6 0.00 1.1 264.7 0 10/6/15 3.3 79.4 0.06 1.5 204.3 0 10/7/15 1.3 83.1 0.00 0.5 275.3 0 10/8/15 1.6 82.0 0.01 0.6 242.3 0 10/9/15 0.7 85.1 0.02 0.7 278.5 0 10/10/15 2.1 78.3 0.04 0.9 283.2 0 10/11/15 2.7 80.7 0.02 0.7 285.4 0 10/12/15 4.3 88.2 0.00 0.4 195.2 0 10/13/15 6.3 87.2 0.00 0.3 69.6 0 10/14/15 5.3 88.0 0.04 0.6 143.6 0 10/15/15 4.9 84.8 0.04 0.7 198.8 0 10/16/15 2.6 86.8 0.04 1.0 105.0 0 10/17/15 5.2 80.7 0.00 0.4 104.8 0 10/18/15 2.5 99.3 0.00 0.5 142.0 0 10/19/15 5.9 94.0 0.01 1.4 76.2 0 10/20/15 2.7 97.0 0.06 1.5 71.7 0 10/21/15 5.0 82.3 0.30 3.0 121.0 0 10/22/15 4.2 93.1 0.60 4.7 163.9 0 10/23/15 7.6 98.6 0.62 4.3 194.1 4.31 10/24/15 7.6 90.4 0.13 2.1 281.9 0 10/25/15 5.1 97.0 0.19 2.3 186.3 2.54 10/26/15 6.8 90.7 0.82 3.9 283.8 0 10/27/15 5.0 94.8 0.30 2.8 268.5 0.5 10/28/15 -0.7 87.6 0.02 0.5 269.0 0 10/29/15 -0.4 79.3 0.13 1.7 130.8 0 10/30/15 -0.1 82.3 0.02 0.6 68.4 0 10/31/15 1.4 87.1 0.18 2.0 149.1 0 11/1/15 6.1 93.6 1.31 4.8 220.1 0 11/2/15 9.3 92.4 1.13 5.0 241.4 0 11/3/15 8.8 96.4 0.89 4.0 230.6 0 11/4/15 8.2 98.4 0.92 4.3 243.9 0.25 11/5/15 5.5 95.5 0.07 1.1 226.9 0 11/6/15 2.2 100.0 0.01 1.3 125.4 0 11/7/15 3.7 98.8 0.65 3.5 154.8 3.8 11/8/15 5.5 100.0 0.74 3.9 173.0 7.6 117 Avg. Atomspheric Avg. RH Avg. Wind Avg. Gust Avg. Wind Date Temp. (°C) (%) Speed (m/s) Speed (m/s) Direction ø Rain (mm) 11/9/15 6.1 99.6 0.44 3.0 226.8 2.53 11/10/15 6.3 99.9 0.29 3.0 217.3 3.28 11/11/15 6.0 95.4 0.41 3.3 252.3 0.51 11/12/15 4.4 99.8 0.10 1.8 169.3 4.82 11/13/15 5.7 97.6 0.42 2.5 226.9 0 11/14/15 5.5 99.5 0.79 3.7 181.2 8.88 11/15/15 3.9 100.0 0.00 1.1 186.3 2.52 11/16/15 3.8 100.0 0.09 1.4 159.6 0.5 11/17/15 4.7 99.9 0.88 3.7 153.3 5.57 11/18/15 4.3 100.0 0.35 2.2 140.1 4.32 11/19/15 5.8 99.9 0.60 3.8 192.5 1.01 11/20/15 4.9 99.6 0.14 2.2 228.7 4.56 11/21/15 1.6 92.9 0.74 4.0 242.9 0 11/22/15 -0.6 89.8 0.35 2.0 219.9 0 11/23/15 -1.8 99.5 0.00 0.0 165.6 0 11/24/15 -0.9 99.9 0.19 1.6 166.9 0 11/25/15 -1.2 96.1 0.00 0.0 168.5 0 11/26/15 -3.0 90.5 0.00 0.0 157.7 0 11/27/15 1.7 97.7 1.60 4.5 194.6 3.56 11/28/15 0.9 89.6 1.84 6.0 176.1 0 11/29/15 0.2 97.2 0.94 3.6 166.6 0 11/30/15 2.7 97.3 1.94 6.3 172.0 5.32 12/1/15 2.0 96.8 0.69 4.1 232.6 2.52 12/2/15 1.8 96.1 0.65 4.0 263.3 0.5 12/3/15 3.2 99.7 0.71 3.5 191.1 1.51 12/4/15 5.9 97.4 1.59 5.4 190.1 3.04 12/5/15 6.4 90.4 3.14 9.4 230.8 7.88 12/6/15 7.4 98.0 4.24 10.5 221.4 20.08 12/7/15 7.0 82.1 3.14 10.2 261.3 1.26 12/8/15 1.6 93.5 0.20 2.4 239.8 0 12/9/15 1.1 99.3 1.47 5.1 189.4 0.25 12/10/15 5.9 92.4 2.66 7.4 223.1 0.25 12/11/15 4.5 99.0 2.06 5.9 202.9 11.95 12/12/15 1.8 100.0 0.37 2.5 167.4 1.76 12/13/15 1.3 100.0 0.02 1.5 198.1 0.5 12/14/15 0.4 100.0 0.38 2.5 264.7 1.52 12/15/15 -1.1 97.6 0.12 0.9 238.8 0.5 12/16/15 2.2 94.5 1.25 5.1 244.0 0 12/17/15 0.5 93.9 0.41 2.8 196.8 0 12/18/15 2.3 100.0 0.60 2.3 161.7 1.77 118 Avg. Atomspheric Avg. RH Avg. Wind Avg. Gust Avg. Wind Date Temp. (°C) (%) Speed (m/s) Speed (m/s) Direction ø Rain (mm) 12/19/15 7.4 97.8 1.95 6.5 240.1 1.01 12/20/15 8.9 99.0 2.23 6.5 221.3 0.25 12/21/15 8.8 91.5 2.90 7.6 224.3 0 12/22/15 6.0 95.4 1.54 5.6 224.7 2.52 12/23/15 7.1 96.8 1.84 6.3 229.8 6.85 12/24/15 5.9 92.3 1.92 7.0 244.9 1.01 12/25/15 4.8 93.4 2.28 6.8 201.3 1.76 12/26/15 2.9 81.5 1.97 6.6 254.9 1.77 12/27/15 -4.1 80.9 0.12 0.8 262.6 0 12/28/15 -4.8 84.9 0.00 0.1 163.4 0 12/29/15 -5.3 94.5 0.00 0.0 169.3 0 12/30/15 -8.3 95.0 0.00 0.0 114.3 0 12/31/15 -10.7 93.5 0.00 0.0 104.0 0 1/1/16 -10.1 90.3 0.00 0.0 75.2 0 1/2/16 -16.1 90.0 0.00 0.0 50.5 0 1/3/16 -11.1 95.2 0.00 0.0 255.0 0 1/4/16 -12.4 94.8 0.00 0.0 74.5 0 1/5/16 -15.8 93.0 0.00 0.0 205.1 0 1/6/16 -15.3 93.4 0.00 0.0 68.2 0 1/7/16 -24.1 88.3 0.00 0.0 163.2 0 1/8/16 -23.4 88.1 0.00 0.0 177.4 0 1/9/16 -19.7 90.0 0.00 0.0 47.4 0 1/10/16 -14.2 93.5 0.00 0.0 54.9 0 1/11/16 -9.3 96.7 0.10 2.8 87.9 0 1/12/16 -8.5 97.4 0.00 0.3 88.1 0 1/13/16 -10.3 96.7 0.00 0.0 269.1 0 1/14/16 -12.9 95.3 0.00 0.0 254.0 0 1/15/16 -12.7 95.4 0.00 0.0 229.5 0 1/16/16 -10.3 97.0 0.00 0.0 206.4 0 1/17/16 -8.2 97.7 0.00 0.0 221.2 0 1/18/16 -2.7 99.5 0.06 1.1 219.2 0 1/19/16 -4.5 98.4 0.00 0.1 170.1 0 1/20/16 -6.8 98.3 0.00 0.0 143.1 0 1/21/16 -7.5 96.1 0.00 0.0 182.7 0 1/22/16 -11.8 94.8 0.00 0.0 261.5 0 1/23/16 -13.5 94.4 0.00 0.0 146.9 0 1/24/16 -8.2 96.8 0.01 0.6 163.6 0 1/25/16 -2.1 100.0 0.01 0.5 235.3 0 1/26/16 -0.2 100.0 1.26 4.5 180.0 14.21 1/27/16 2.6 100.0 1.65 5.0 202.5 2.51 119 Avg. Atomspheric Avg. RH Avg. Wind Avg. Gust Avg. Wind Date Temp. (°C) (%) Speed (m/s) Speed (m/s) Direction ø Rain (mm) 1/28/16 3.6 98.5 2.74 7.5 213.9 7.35 1/29/16 2.0 95.1 2.39 7.5 235.3 1.78 1/30/16 4.5 95.2 3.22 8.3 210.8 7.36 1/31/16 2.1 97.7 1.20 4.2 217.0 1.51 2/1/16 0.3 99.6 0.76 3.8 216.3 1.25 2/2/16 2.3 96.5 3.19 8.6 207.5 7.88 2/3/16 2.0 99.9 1.65 5.0 226.4 9.63 2/4/16 -0.3 98.1 0.66 2.4 224.0 0.25 2/5/16 -0.2 94.1 1.23 5.2 252.5 0.25 2/6/16 -1.8 92.1 0.77 2.7 218.3 0.51 2/7/16 1.9 99.6 1.35 4.8 169.1 0.76 2/8/16 1.7 96.4 1.66 5.2 158.8 0.76 2/9/16 4.3 97.5 1.96 5.8 158.8 5.82 2/10/16 4.2 95.6 2.05 6.3 139.6 3.3 2/11/16 2.6 99.6 1.35 5.2 126.1 7.34 2/12/16 0.7 99.8 0.83 3.8 155.3 6.86 2/13/16 1.4 98.7 1.09 4.5 135.9 0.75 2/14/16 0.5 99.6 0.36 3.2 96.6 4.83 2/15/16 0.4 100.0 0.01 0.6 202.3 3.29 2/16/16 -1.0 93.2 0.33 1.8 290.4 0.25 2/17/16 -1.8 95.2 0.36 1.4 211.9 0.25 2/18/16 -2.1 82.2 1.14 3.9 125.7 0 2/19/16 -0.3 99.7 0.28 1.0 132.8 0 2/20/16 -0.3 99.7 1.28 4.3 138.4 0.5 2/21/16 0.2 99.5 2.06 5.6 141.3 0.5 2/22/16 0.4 100.0 0.57 2.5 193.6 0.5 2/23/16 0.4 99.5 0.58 2.6 219.1 5.07 2/24/16 0.2 95.5 1.19 3.9 214.2 3.55 2/25/16 0.3 95.2 0.82 3.4 190.4 1.77 2/26/16 0.4 92.7 1.48 4.5 194.2 2.53 2/27/16 -0.3 96.6 0.98 3.1 227.0 2.53 2/28/16 0.0 89.5 1.35 3.8 197.4 2.29 2/29/16 -2.6 94.9 0.11 1.2 205.7 0.5 3/1/16 -5.5 90.1 0.21 1.3 62.3 0.51 3/2/16 -6.1 83.7 0.15 1.1 44.1 0.25 3/3/16 -3.3 84.6 0.10 1.6 61.5 1.01 3/4/16 -0.5 80.5 0.45 3.2 72.5 0 3/5/16 -0.5 92.6 0.01 1.0 188.9 0 3/6/16 1.1 87.2 0.40 2.4 152.9 0.25 3/7/16 2.4 97.1 0.71 3.4 125.2 2.54 120 Avg. Atomspheric Avg. RH Avg. Wind Avg. Gust Avg. Wind Date Temp. (°C) (%) Speed (m/s) Speed (m/s) Direction ø Rain (mm) 3/8/16 0.8 100.0 0.01 0.7 124.1 6.85 3/9/16 0.5 96.9 0.01 1.3 270.7 14.72 3/10/16 -0.7 93.8 0.29 1.8 86.5 0 3/11/16 -1.0 94.9 0.29 2.6 66.3 0 3/12/16 -0.6 85.6 0.07 1.4 180.5 0 3/13/16 -2.9 97.1 0.25 1.8 292.3 0 3/14/16 0.9 96.3 0.32 2.9 272.2 0 3/15/16 1.2 89.9 0.03 1.3 102.0 0.25 3/16/16 0.9 98.0 0.92 4.0 243.3 0 3/17/16 3.3 87.5 0.88 4.4 271.1 0 3/18/16 -1.8 84.5 0.97 4.6 294.5 1 3/19/16 -4.7 72.9 0.25 2.1 272.8 0 3/20/16 -4.0 80.6 0.17 1.2 250.9 0.25 3/21/16 -1.6 83.2 0.03 1.1 187.3 1.01 3/22/16 -3.2 80.5 0.16 1.5 146.4 0 3/23/16 -2.7 60.6 0.30 1.8 110.4 0 3/24/16 -1.3 54.3 0.16 1.3 140.5 0 3/25/16 1.5 60.6 0.51 3.0 158.5 0 3/26/16 4.0 79.1 0.19 2.2 182.2 0 3/27/16 5.3 79.9 0.33 1.8 157.0 0 3/28/16 6.8 61.0 0.58 2.9 142.0 0 3/29/16 6.1 49.3 0.80 3.7 116.1 0 3/30/16 3.5 77.5 0.20 1.8 147.6 0 3/31/16 3.4 94.9 0.23 1.5 233.3 4.57 4/1/16 3.2 91.8 0.20 2.3 272.8 0 4/2/16 3.7 74.3 0.91 4.1 278.3 0 4/3/16 5.1 69.8 0.37 2.3 223.2 0 4/4/16 5.0 74.9 0.38 2.9 82.9 0 4/5/16 7.0 61.6 0.29 2.4 97.9 0 4/6/16 10.4 65.3 1.37 4.6 153.5 2.29 4/7/16 9.3 76.1 1.35 4.5 197.3 0 4/8/16 7.5 72.6 0.76 3.3 208.4 2.79 4/9/16 4.2 83.4 0.36 1.9 220.1 0 4/10/16 5.2 76.4 0.17 1.6 301.6 0 4/11/16 6.4 65.6 0.43 2.2 144.3 0 4/12/16 8.3 57.8 0.13 1.5 150.5 0 4/13/16 8.6 60.6 0.49 2.8 72.5 0 4/14/16 4.7 75.7 0.61 3.8 256.8 1.51 4/15/16 3.2 62.8 0.65 2.5 280.1 0 4/16/16 7.6 62.2 1.00 3.3 157.8 0 121 Avg. Atomspheric Avg. RH Avg. Wind Avg. Gust Avg. Wind Date Temp. (°C) (%) Speed (m/s) Speed (m/s) Direction ø Rain (mm) 4/17/16 8.8 77.6 0.84 4.0 151.0 2.02 4/18/16 5.9 88.2 1.93 5.8 219.4 3.3 4/19/16 6.2 83.6 1.42 4.8 200.9 2.02 4/20/16 3.9 92.0 0.90 4.0 272.5 5.58 4/21/16 5.1 75.4 1.20 4.3 270.8 0.25 4/22/16 4.6 84.8 0.16 1.7 131.1 3.55 4/23/16 3.6 87.8 0.50 2.6 255.2 3.3 4/24/16 2.9 96.5 0.50 3.2 132.4 8.63 4/25/16 4.2 82.0 0.66 3.2 177.8 1.27 4/26/16 2.5 98.9 0.31 2.6 299.8 10.39 4/27/16 7.7 77.3 0.77 3.6 167.7 0.25 4/28/16 8.5 78.3 1.03 4.5 100.5 0.25 4/29/16 8.3 68.0 0.26 2.3 96.6 0 4/30/16 9.3 63.4 0.26 1.7 104.1 0 5/1/16 10.9 60.4 0.32 2.0 54.6 0 5/2/16 12.6 61.5 0.20 1.5 74.1 0 5/3/16 13.7 61.7 0.20 1.5 103.8 0 5/4/16 15.0 55.5 0.26 1.9 66.7 0 5/5/16 14.7 53.3 0.40 2.0 256.2 0 5/6/16 14.9 45.9 0.20 1.5 293.8 0 5/7/16 15.5 44.5 0.11 1.3 281.0 0 5/8/16 16.4 48.4 0.20 1.6 191.2 0 5/9/16 17.0 49.8 0.11 1.3 238.3 0 5/10/16 16.9 53.1 0.46 2.2 286.7 0 5/11/16 13.4 58.6 0.40 2.3 267.9 0 5/12/16 11.1 56.2 0.56 3.2 101.7 0 5/13/16 14.1 45.2 0.66 3.7 114.2 0

Avg. Daily Avg. Daily Lake Normalized Lake Date Temp. (°C) Level Change (cm) Level Change 5/10/15 12.6 1.13 0.05 5/11/15 12.9 1.13 0.05 5/12/15 12.9 1.12 0.04 5/13/15 12.9 1.12 0.04 5/14/15 12.5 1.13 0.05 5/15/15 12.6 1.13 0.05 5/16/15 12.9 1.13 0.05 5/17/15 12.8 1.22 0.14 5/18/15 12.6 1.22 0.14 5/19/15 13.0 1.22 0.14 122 Avg. Daily Avg. Daily Lake Normalized Lake Date Temp. (°C) Level Change (cm) Level Change 5/20/15 13.9 1.22 0.14 5/21/15 14.4 1.23 0.15 5/22/15 14.3 1.23 0.15 5/23/15 14.4 1.24 0.16 5/24/15 14.1 1.23 0.15 5/25/15 15.2 1.22 0.14 5/26/15 15.5 1.22 0.14 5/27/15 15.3 1.22 0.14 5/28/15 15.2 1.22 0.14 5/29/15 16.1 1.22 0.14 5/30/15 16.3 1.21 0.13 5/31/15 16.8 1.21 0.13 6/1/15 16.6 1.21 0.13 6/2/15 17.3 1.21 0.13 6/3/15 17.5 1.21 0.13 6/4/15 16.7 1.21 0.13 6/5/15 16.6 1.2 0.12 6/6/15 17.6 1.19 0.11 6/7/15 18.3 1.18 0.1 6/8/15 18.0 1.18 0.1 6/9/15 17.8 1.18 0.1 6/10/15 17.9 1.18 0.1 6/11/15 17.8 1.18 0.1 6/12/15 18.1 1.18 0.1 6/13/15 18.7 1.15 0.07 6/14/15 19.3 1.09 0.01 6/15/15 19.1 1.1 0.02 6/16/15 18.5 1.1 0.02 6/17/15 18.0 1.1 0.02 6/18/15 17.5 1.1 0.02 6/19/15 17.1 1.11 0.03 6/20/15 17.4 1.12 0.04 6/21/15 17.8 1.13 0.05 6/22/15 18.2 1.14 0.06 6/23/15 18.6 1.14 0.06 6/24/15 18.6 1.15 0.07 6/25/15 17.9 1.16 0.08 6/26/15 17.7 1.15 0.07 6/27/15 17.6 1.14 0.06 6/28/15 18.2 1.13 0.05 6/29/15 19.0 1.13 0.05 123 Avg. Daily Avg. Daily Lake Normalized Lake Date Temp. (°C) Level Change (cm) Level Change 6/30/15 19.8 1.12 0.04 7/1/15 20.3 1.12 0.04 7/2/15 20.3 1.12 0.04 7/3/15 21.0 1.11 0.03 7/4/15 22.3 1.11 0.03 7/5/15 22.6 1.11 0.03 7/6/15 22.8 1.11 0.03 7/7/15 21.4 1.14 0.06 7/8/15 20.2 1.14 0.06 7/9/15 19.9 1.14 0.06 7/10/15 19.3 1.15 0.07 7/11/15 18.8 1.15 0.07 7/12/15 19.0 1.16 0.08 7/13/15 18.8 1.16 0.08 7/14/15 19.0 1.15 0.07 7/15/15 19.4 1.15 0.07 7/16/15 20.1 1.14 0.06 7/17/15 20.6 1.14 0.06 7/18/15 20.3 1.13 0.05 7/19/15 20.3 1.13 0.05 7/20/15 19.8 1.13 0.05 7/21/15 19.6 1.12 0.04 7/22/15 19.9 1.12 0.04 7/23/15 19.3 1.12 0.04 7/24/15 19.3 1.12 0.04 7/25/15 19.3 1.11 0.03 7/26/15 19.6 1.11 0.03 7/27/15 19.5 1.11 0.03 7/28/15 19.4 1.11 0.03 7/29/15 19.6 1.11 0.03 7/30/15 19.3 1.12 0.04 7/31/15 18.8 1.13 0.05 8/1/15 18.6 1.14 0.06 8/2/15 18.5 1.14 0.06 8/3/15 18.6 1.13 0.05 8/4/15 19.0 1.13 0.05 8/5/15 19.7 1.13 0.05 8/6/15 20.5 1.12 0.04 8/7/15 21.0 1.12 0.04 8/8/15 21.8 1.12 0.04 8/9/15 22.0 1.14 0.06 124 Avg. Daily Avg. Daily Lake Normalized Lake Date Temp. (°C) Level Change (cm) Level Change 8/10/15 21.8 1.14 0.06 8/11/15 22.0 1.14 0.06 8/12/15 22.2 1.14 0.06 8/13/15 22.3 1.13 0.05 8/14/15 21.6 1.13 0.05 8/15/15 21.4 1.13 0.05 8/16/15 21.2 1.12 0.04 8/17/15 20.5 1.12 0.04 8/18/15 20.1 1.12 0.04 8/19/15 19.7 1.11 0.03 8/20/15 19.6 1.11 0.03 8/21/15 19.7 1.11 0.03 8/22/15 19.9 1.11 0.03 8/23/15 20.3 1.1 0.02 8/24/15 20.5 1.1 0.02 8/25/15 20.7 1.1 0.02 8/26/15 20.9 1.1 0.02 8/27/15 20.4 1.1 0.02 8/28/15 20.2 1.1 0.02 8/29/15 19.4 1.1 0.02 8/30/15 18.9 1.11 0.03 8/31/15 18.6 1.11 0.03 9/1/15 18.4 1.11 0.03 9/2/15 17.5 1.12 0.04 9/3/15 17.3 1.13 0.05 9/4/15 17.4 1.13 0.05 9/5/15 17.5 1.13 0.05 9/6/15 17.2 1.13 0.05 9/7/15 17.0 1.13 0.05 9/8/15 16.7 1.14 0.06 9/9/15 16.6 1.13 0.05 9/10/15 16.4 1.13 0.05 9/11/15 16.4 1.13 0.05 9/12/15 16.4 1.12 0.04 9/13/15 16.3 1.12 0.04 9/14/15 16.2 1.12 0.04 9/15/15 15.8 1.12 0.04 9/16/15 15.6 1.11 0.03 9/17/15 15.9 1.11 0.03 9/18/15 16.2 1.11 0.03 9/19/15 15.7 1.11 0.03 125 Avg. Daily Avg. Daily Lake Normalized Lake Date Temp. (°C) Level Change (cm) Level Change 9/20/15 15.6 1.11 0.03 9/21/15 15.6 1.12 0.04 9/22/15 15.3 1.12 0.04 9/23/15 15.0 1.12 0.04 9/24/15 15.1 1.11 0.03 9/25/15 15.2 1.12 0.04 9/26/15 15.2 1.12 0.04 9/27/15 14.8 1.12 0.04 9/28/15 14.5 1.11 0.03 9/29/15 14.2 1.11 0.03 9/30/15 13.8 1.11 0.03 10/1/15 13.4 1.11 0.03 10/2/15 13.3 1.1 0.02 10/3/15 13.3 1.1 0.02 10/4/15 13.1 1.11 0.03 10/5/15 12.9 1.1 0.02 10/6/15 12.4 1.11 0.03 10/7/15 11.7 1.11 0.03 10/8/15 11.1 1.1 0.02 10/9/15 10.5 1.1 0.02 10/10/15 10.1 1.1 0.02 10/11/15 9.6 1.1 0.02 10/12/15 9.3 1.1 0.02 10/13/15 9.2 1.1 0.02 10/14/15 9.1 1.1 0.02 10/15/15 9.0 1.1 0.02 10/16/15 8.6 1.1 0.02 10/17/15 8.4 1.1 0.02 10/18/15 8.1 1.1 0.02 10/19/15 8.0 1.09 0.01 10/20/15 7.8 1.09 0.01 10/21/15 7.6 1.09 0.01 10/22/15 7.4 1.09 0.01 10/23/15 7.2 1.1 0.02 10/24/15 7.4 1.1 0.02 10/25/15 7.2 1.11 0.03 10/26/15 7.2 1.11 0.03 10/27/15 7.0 1.11 0.03 10/28/15 6.7 1.11 0.03 10/29/15 6.1 1.11 0.03 10/30/15 5.7 1.11 0.03 126 Avg. Daily Avg. Daily Lake Normalized Lake Date Temp. (°C) Level Change (cm) Level Change 10/31/15 5.3 1.11 0.03 11/1/15 5.1 1.1 0.02 11/2/15 5.4 1.1 0.02 11/3/15 5.7 1.1 0.02 11/4/15 6.1 1.1 0.02 11/5/15 6.2 1.1 0.02 11/6/15 5.9 1.1 0.02 11/7/15 5.8 1.1 0.02 11/8/15 5.7 1.11 0.03 11/9/15 5.8 1.12 0.04 11/10/15 5.8 1.12 0.04 11/11/15 5.9 1.12 0.04 11/12/15 5.7 1.13 0.05 11/13/15 5.7 1.13 0.05 11/14/15 5.7 1.14 0.06 11/15/15 5.6 1.14 0.06 11/16/15 5.5 1.14 0.06 11/17/15 5.4 1.13 0.05 11/18/15 5.3 1.14 0.06 11/19/15 5.3 1.14 0.06 11/20/15 5.4 1.15 0.07 11/21/15 5.3 1.16 0.08 11/22/15 4.7 1.16 0.08 11/23/15 4.3 1.15 0.07 11/24/15 4.1 1.14 0.06 11/25/15 3.7 1.14 0.06 11/26/15 3.1 1.13 0.05 11/27/15 2.9 1.12 0.04 11/28/15 2.8 1.13 0.05 11/29/15 2.5 1.13 0.05 11/30/15 2.5 1.13 0.05 12/1/15 2.4 1.14 0.06 12/2/15 2.4 1.13 0.05 12/3/15 2.4 1.13 0.05 12/4/15 2.5 1.14 0.06 12/5/15 2.8 1.15 0.07 12/6/15 3.3 1.16 0.08 12/7/15 3.8 1.19 0.11 12/8/15 3.7 1.19 0.11 12/9/15 3.3 1.18 0.1 12/10/15 3.3 1.17 0.09 127 Avg. Daily Avg. Daily Lake Normalized Lake Date Temp. (°C) Level Change (cm) Level Change 12/11/15 3.5 1.17 0.09 12/12/15 3.5 1.18 0.1 12/13/15 3.4 1.17 0.09 12/14/15 3.2 1.17 0.09 12/15/15 3.0 1.16 0.08 12/16/15 3.1 1.15 0.07 12/17/15 3.2 1.15 0.07 12/18/15 3.1 1.14 0.06 12/19/15 3.5 1.14 0.06 12/20/15 3.8 1.14 0.06 12/21/15 4.4 1.14 0.06 12/22/15 4.6 1.14 0.06 12/23/15 4.7 1.14 0.06 12/24/15 4.8 1.14 0.06 12/25/15 4.7 1.13 0.05 12/26/15 4.6 1.14 0.06 12/27/15 4.1 1.13 0.05 12/28/15 4.0 1.13 0.05 12/29/15 3.9 1.12 0.04 12/30/15 3.7 1.11 0.03 12/31/15 3.7 1.11 0.03 1/1/16 3.6 1.11 0.03 1/2/16 3.4 1.11 0.03 1/3/16 3.4 1.1 0.02 1/4/16 3.4 1.11 0.03 1/5/16 3.3 1.11 0.03 1/6/16 3.3 1.11 0.03 1/7/16 3.3 1.11 0.03 1/8/16 3.3 1.11 0.03 1/9/16 3.3 1.1 0.02 1/10/16 3.3 1.1 0.02 1/11/16 3.3 1.09 0.01 1/12/16 3.3 1.1 0.02 1/13/16 3.3 1.1 0.02 1/14/16 3.3 1.1 0.02 1/15/16 3.3 1.1 0.02 1/16/16 3.3 1.09 0.01 1/17/16 3.3 1.09 0.01 1/18/16 3.3 1.09 0.01 1/19/16 3.3 1.09 0.01 1/20/16 3.3 1.09 0.01 128 Avg. Daily Avg. Daily Lake Normalized Lake Date Temp. (°C) Level Change (cm) Level Change 1/21/16 3.3 1.08 0 1/22/16 3.3 1.08 0 1/23/16 3.3 1.08 0 1/24/16 3.3 1.08 0 1/25/16 3.3 1.09 0.01 1/26/16 3.3 1.09 0.01 1/27/16 3.3 1.1 0.02 1/28/16 3.3 1.12 0.04 1/29/16 3.3 1.15 0.07 1/30/16 3.2 1.17 0.09 1/31/16 3.2 1.2 0.12 2/1/16 3.2 1.2 0.12 2/2/16 3.1 1.2 0.12 2/3/16 3.1 1.23 0.15 2/4/16 3.1 1.25 0.17 2/5/16 3.1 1.23 0.15 2/6/16 3.1 1.22 0.14 2/7/16 3.1 1.2 0.12 2/8/16 3.2 1.18 0.1 2/9/16 3.2 1.18 0.1 2/10/16 3.2 1.18 0.1 2/11/16 3.2 1.19 0.11 2/12/16 3.2 1.2 0.12 2/13/16 3.3 1.21 0.13 2/14/16 3.3 1.21 0.13 2/15/16 3.3 1.2 0.12 2/16/16 3.4 1.19 0.11 2/17/16 3.4 1.18 0.1 2/18/16 3.5 1.17 0.09 2/19/16 3.5 1.16 0.08 2/20/16 3.5 1.16 0.08 2/21/16 3.5 1.15 0.07 2/22/16 3.5 1.15 0.07 2/23/16 3.5 1.15 0.07 2/24/16 3.5 1.14 0.06 2/25/16 3.5 1.13 0.05 2/26/16 3.5 1.13 0.05 2/27/16 3.5 1.13 0.04 2/28/16 3.4 1.12 0.04 2/29/16 3.4 1.12 0.04 3/1/16 3.4 1.11 0.03 129 Avg. Daily Avg. Daily Lake Normalized Lake Date Temp. (°C) Level Change (cm) Level Change 3/2/16 3.4 1.11 0.03 3/3/16 3.4 1.11 0.03 3/4/16 3.4 1.1 0.02 3/5/16 3.4 1.1 0.02 3/6/16 3.5 1.1 0.02 3/7/16 3.4 1.1 0.02 3/8/16 3.4 1.11 0.03 3/9/16 3.4 1.12 0.04 3/10/16 3.4 1.12 0.04 3/11/16 3.5 1.12 0.04 3/12/16 3.5 1.12 0.04 3/13/16 3.6 1.12 0.04 3/14/16 3.6 1.11 0.03 3/15/16 3.6 1.11 0.03 3/16/16 3.6 1.11 0.03 3/17/16 3.7 1.11 0.03 3/18/16 3.8 1.13 0.05 3/19/16 3.8 1.13 0.05 3/20/16 3.8 1.13 0.05 3/21/16 3.8 1.13 0.05 3/22/16 3.8 1.13 0.05 3/23/16 3.9 1.13 0.05 3/24/16 3.9 1.13 0.05 3/25/16 3.8 1.12 0.04 3/26/16 3.9 1.12 0.04 3/27/16 3.9 1.11 0.03 3/28/16 4.1 1.12 0.04 3/29/16 4.2 1.12 0.04 3/30/16 4.3 1.13 0.05 3/31/16 4.5 1.14 0.06 4/1/16 4.5 1.16 0.08 4/2/16 4.6 1.16 0.08 4/3/16 4.7 1.17 0.09 4/4/16 4.8 1.18 0.1 4/5/16 5.0 1.18 0.1 4/6/16 5.2 1.18 0.1 4/7/16 5.7 1.18 0.1 4/8/16 6.5 1.18 0.1 4/9/16 6.6 1.18 0.1 4/10/16 7.0 1.17 0.09 4/11/16 7.7 1.16 0.08 130 Avg. Daily Avg. Daily Lake Normalized Lake Date Temp. (°C) Level Change (cm) Level Change 4/12/16 7.9 1.15 0.07 4/13/16 8.5 1.14 0.06 4/14/16 8.5 1.14 0.06 4/15/16 7.9 1.13 0.05 4/16/16 8.2 1.12 0.04 4/17/16 8.6 1.12 0.04 4/18/16 8.4 1.12 0.04 4/19/16 8.2 1.12 0.04 4/20/16 8.3 1.12 0.04 4/21/16 8.5 1.12 0.04 4/22/16 8.9 1.12 0.04 4/23/16 8.9 1.12 0.04 4/24/16 8.6 1.12 0.04 4/25/16 8.3 1.12 0.04 4/26/16 8.1 1.13 0.05 4/27/16 8.3 1.14 0.06 4/28/16 9.0 1.14 0.06 4/29/16 9.5 1.14 0.06 4/30/16 10.5 1.13 0.05 5/1/16 11.3 1.12 0.04 5/2/16 11.9 1.12 0.04 5/3/16 12.4 1.11 0.03 5/4/16 13.1 1.11 0.03 5/5/16 13.9 1.1 0.02 5/6/16 14.4 1.1 0.02 5/7/16 14.9 1.1 0.02 5/8/16 15.5 1.1 0.02 5/9/16 16.2 1.1 0.02 5/10/16 16.6 1.1 0.02 5/11/16 17.6 1.1 0.02 5/12/16 17.2 1.1 0.02 5/13/16 16.9 1.1 0.02 5/14/16 16.6 1.1 0.02

Depth Temp. SpC Salinity DO DO (% DO Date (m) (°C) pH (mS/cm) (PSS) (%) Sat.) (mg/L) 8/9/15 0.1 26.0 8.3 0.46 0.22 87.8 103.9 7.1 8/9/15 0.5 25.1 8.3 0.46 0.22 100.2 118.4 8.2 8/9/15 1 24.9 8.3 0.46 0.22 103.7 123.4 8.5 8/9/15 1.5 23.7 8.2 0.47 0.23 101.9 120.3 8.5 8/9/15 2 22.2 8.2 0.48 0.23 107.0 126.2 9.2 131 Depth Temp. SpC Salinity DO DO (% DO Date (m) (°C) pH (mS/cm) (PSS) (%) Sat.) (mg/L) 8/9/15 2.5 20.8 8.0 0.50 0.24 103.3 121.8 9.1 8/9/15 3 18.5 7.8 0.50 0.24 82.1 96.7 7.6 8/9/15 3.5 16.5 7.6 0.51 0.25 41.3 45.7 4.0 8/9/15 4 14.3 7.4 0.53 0.25 23.2 27.3 2.3 8/9/15 4.5 12.2 7.2 0.58 0.28 11.4 13.4 1.2 8/9/15 4.9 11.6 6.8 0.69 0.33 3.6 4.3 0.4

Depth Temp SpC DO DO Date (m) (°C) pH (mS/cm) (mg/L) (%) 5/10/19 0.1 11.7 8.4 0.46 12.7 118.5 5/10/19 0.5 11.7 8.4 0.46 12.7 118.9 5/10/19 1 11.6 8.4 0.46 9.3 102.3 5/10/19 1.5 11.5 8.4 0.46 7.9 98.2 5/10/19 2 11.4 8.4 0.46 7.5 96.4 5/10/19 3 8.4 7.7 0.48 6.3 68.4 5/10/19 4 7.3 7.5 0.49 4.9 57.4

δ18O vs. (‰) δ2H vs. (‰) Name of Lake Date collected VSMOW VSMOW Nuudsaku surface 12/13/14 -10.9 -80.9 Kariste 8/9/14 -9.8 -72.6 Tundre 8/7/14 -7.5 -60.8 Sinijarve 8/7/14 -10.2 -74.5 Torva 8/7/14 -9.3 -71.1 Ruhijarv 8/7/14 -8.5 -66.0 Maekula 7/25/14 -8.7 -64.7 Nuudsaku 7/25/14 -9.8 -70.5 7/25/14 -9.6 -69.0 Kodijarv 7/24/14 -5.4 -48.7 Koverjarv 7/24/14 -7.3 -59.3 Verevi 7/24/14 -9.5 -68.8 Pangodi 7/24/14 -6.8 -54.7 Arbijarv 7/24/14 -10.0 -72.6 Oisu 7/24/14 -9.9 -69.9 Eeisjarv 7/23/14 -4.9 -50.3 Onepalu 7/23/14 -7.7 -62.7 Ojepalu 7/23/14 -4.4 -42.9 Rammu 7/22/14 -6.0 -47.2 Aalupi jarv 5/15/15 -10.6 -75.7 132 δ18O vs. (‰) δ2H vs. (‰) Name of Lake Date collected VSMOW VSMOW Vaike Juusa jarv 5/15/15 -10.3 -74.1 Holstre Jarv 5/16/15 -6.7 -55.5 Muti Jarv 5/16/15 -7.9 -63.9 Loisu Jarv 5/16/15 -10.9 -76.5 Umb Jarv 5/16/15 -6.2 -55.7 Oisu Jarv 5/16/15 -10.3 -73.6 Parnu Jogi 5/17/15 -10.6 -75.1 Reiu Jogi 5/17/15 -10.6 -74.2 Lahkma Jarv 5/17/15 -9.5 -70.4 Vanamoise - Lat. 5/17/15 -9.3 -69.5 Seljametsa Jarv 5/17/15 -6.4 -56.0 Saarde Pais Jarv 5/17/15 -10.4 -73.4 Muuti Lake 5/16/15 -9.9 -72.0 Nuudsaku Outlet 5/16/15 -10.7 -75.4 Nuudsaku Inlet 5/16/15 -10.2 -73.9 Kuningvere 5/11/15 -9.5 -71.7 Jogevamaa 5/11/15 -10.1 -72.8 Viljandi Lake Outflow 5/14/15 -10.5 -74.5 Nouni jarv 5/15/15 -8.1 -63.4 Sinialiku jarv 5/12/15 -10.2 -74.0 Tehis jarv 5/12/15 -10.4 -75.1 Kuremaa jarv 5/1/15 -8.7 -66.2 Parsti Jarv 5/12/15 -10.8 -75.4 Tehis Jarv 5/12/15 -10.7 -76.3 Vidvaoja 5/12/15 -10.5 -75.5 Near Karksi 5/12/15 -10.8 -75.6 Nuudsaku 5/9/15 -10.9 -77.2 Kuningvare Jarv 5/11/15 -9.5 -71.0 Joemoisa 5/11/15 -11.1 -77.6 5/11/15 -8.9 -66.7 Saare jarv 5/11/15 -9.6 -72.3 Saad jarv 5/11/15 -7.6 -59.9 Pangodi Lake 5/10/15 -7.4 -59.5 Pikk jarv 5/11/15 -10.8 -77.7 Prossa jarv 5/11/15 -10.4 -74.6 Viiri jarv 5/17/15 -7.1 -58.2 Maekula jarv 5/17/15 -9.7 -71.0 Kariste jarv 5/17/15 -10.6 -75.2 Haug 6/11/15 -5.8 -56.5 133 δ18O vs. (‰) δ2H vs. (‰) Name of Lake Date collected VSMOW VSMOW Kirjak 6/11/15 -8.3 -67.6 Kaala 6/11/15 -6.7 -57.8 Nomme 6/11/15 -11.6 -82.2 Martiska 6/11/15 -9.3 -73.4 Keila Juga 6/11/15 -10.6 -75.7 Kuradi 6/11/15 -8.0 -65.9 Niinsaare 6/11/15 -7.9 -62.8 Akna 6/11/15 -7.6 -64.4 Nuudsaku 6/13/15 -10.1 -73.8 Pangodi 6/22/15 -5.3 -45.2 Nuudsaku 6/24/15 -10.2 -72.6

Date Summer Precip. collected δ18O vs. VSMOW δ2H vs. VSMOW Karksi rain 8/11/14 -7.8 -62.5 Karksi rain 8/7/14 -7.0 -49.5 Karksi 8/7/14 -6.8 -47.0 Karksi rain 5/13/15 -0.9 -21.4 Parnu rain 6/14/15 -2.2 -12.1 Karksi rain 6/21/15 -5.0 -37.9 Karksi rain 6/24/15 -10.2 -76.4 Karksi rain 5/17/15 -6.3 -45.4 Karksi rain 5/17/15 -6.9 -47.5 Karksi rain 5/18/15 -7.7 -48.6

Date Winter Precip. collected δ18O vs. VSMOW δ2H vs. VSMOW Karksi rain 12/13/14 -15.88 -120.38 Tallinn snow 12/13/14 -15.08 -108.61

Date Summer Well collected δ18O vs. VSMOW δ2H vs. VSMOW TR1 well 8/10/14 -10.3 -73.4 TR2 well 8/10/14 -9.7 -70.9 TR3 well 8/10/14 -9.6 -71.4 TR4 well 8/10/14 -10.0 -72.8 TR5 well 8/10/14 -10.2 -71.9 TR1 well 8/15/14 -10.3 -72.8 TR2 well 8/15/14 -9.9 -72.3 TR3 well 8/15/14 -9.6 -71.9 TR4 well 8/15/14 -10.2 -73.5 TR5 well 8/15/14 -10.0 -70.7 134 Date Summer Well collected δ18O vs. VSMOW δ2H vs. VSMOW TR1 6/13/15 -10.1 -71.1 TR2 6/13/15 -9.6 -68.0 TR3 6/13/15 -9.7 -68.2 TR4 6/13/15 -10.5 -74.0 TR5 6/13/15 -9.6 -70.2 TR3 5/13/15 -6.4 -49.6 TR3 5/13/15 -10.5 -76.0 TR1 5/9/15 -10.1 -69.8 TR2 5/9/15 -9.7 -69.3 TR5 5/9/15 -11.2 -79.2 TR4 5/9/15 -10.3 -70.8 TR3 5/19/15 -9.5 -66.4

Date Winter Well collected δ18O vs. VSMOW δ2H vs. VSMOW TR1 surface 12/14/18 -13.3 -97.6 TR3 surface 12/14/18 -19.0 -141.2 TR5 surface 12/14/18 -9.9 -71.4 TR2 well 12/13/14 -9.6 -71.2 TR3 well 12/13/14 -9.4 -68.2 TR4 well 12/13/14 -14.6 -107.4

Date Rivers & Streams collected δ18O vs. VSMOW δ2H vs. VSMOW Tapa River 7/24/18 -12.0 -82.9 Ohne jogi 5/16/19 -9.6 -68.3 Karmase Tiik 5/16/19 -10.6 -75.5 Vaike Ema jogi 5/16/19 -10.5 -74.9 Vidrike Jarve Hoiuala 5/16/19 -10.4 -75.0 N 58° 29' 22.9' 5/12/19 -10.4 -75.1 River 5/12/19 -10.7 -75.7 Kopu River 5/15/19 -10.8 -76.5

2Theta (°) Intensity A Intensity B Intensity C Intensity D Intensity E 20 615 1070 895 738 846 20.32 712 1053 866 728 855 20.64 701 1112 931 777 882 20.96 716 1078 952 729 874 21.28 675 1143 962 734 833 21.6 736 1037 1008 772 930 21.92 744 1043 1002 718 815 135 2Theta (°) Intensity A Intensity B Intensity C Intensity D Intensity E 22.24 672 1065 1009 729 806 22.56 721 1123 1007 780 807 22.88 958 1295 1064 1126 1196 23.2 783 1079 1020 795 873 23.52 671 1060 958 758 802 23.84 712 1125 1007 750 793 24.16 728 1021 1026 696 784 24.48 705 1055 979 758 744 24.8 691 1008 950 695 819 25.12 695 1052 974 707 754 25.44 650 973 960 753 766 25.76 649 957 922 712 809 26.08 608 985 897 702 791 26.4 808 1159 934 736 856 26.72 659 1039 941 669 797 27.04 592 1029 930 690 772 27.36 604 927 836 686 781 27.68 594 951 875 670 731 28 571 897 803 672 760 28.32 582 922 862 665 795 28.64 607 948 837 660 781 28.96 661 1022 833 834 993 29.28 4955 3300 1726 6948 6044 29.6 654 935 767 803 880 29.92 559 858 792 662 751 30.24 478 882 781 658 675 30.56 504 885 761 596 716 30.88 521 923 722 637 736 31.2 484 876 800 627 701 31.52 495 877 798 678 696 31.84 467 813 748 650 683 32.16 458 848 721 617 703 32.48 494 817 725 620 632 32.8 425 812 650 582 627 33.12 483 797 708 594 631 33.44 414 805 676 588 601 33.76 404 847 704 576 608 34.08 440 769 685 575 607 34.4 393 800 674 557 596 34.72 422 790 636 555 604 35.04 399 805 638 607 612 35.36 392 839 654 614 643 136 2Theta (°) Intensity A Intensity B Intensity C Intensity D Intensity E 35.68 416 854 635 668 616 36 701 857 597 846 773 36.32 342 764 602 563 567 36.64 347 788 541 526 590 36.96 375 750 548 567 593 37.28 330 741 535 517 598 37.6 348 724 550 533 578 37.92 350 715 528 523 585 38.24 341 709 516 532 529 38.56 323 728 514 487 586 38.88 334 720 532 510 527 39.2 518 1003 646 932 808 39.52 400 748 518 573 681 39.84 340 705 528 487 549 40.16 322 725 561 508 519 40.48 344 665 562 462 529 40.8 353 652 520 502 541 41.12 320 705 541 530 500 41.44 326 647 536 519 491 41.76 316 686 557 515 531 42.08 326 675 510 508 504 42.4 335 689 511 512 504 42.72 308 649 532 564 499 43.04 1067 1239 666 1677 1248 43.36 336 709 538 571 539 43.68 325 726 499 496 497 44 301 681 498 497 498 44.32 290 619 503 518 494 44.64 298 709 505 492 510 44.96 285 626 501 470 508 45.28 371 731 511 488 502 45.6 298 689 482 518 510 45.92 295 687 495 470 518 46.24 279 713 482 463 459 46.56 298 635 436 490 497 46.88 337 713 475 545 549 47.2 377 727 476 687 628 47.52 539 859 545 1072 945 47.84 303 685 461 503 536 48.16 346 660 504 509 542 48.48 668 953 598 1285 1069 48.8 305 643 495 517 543 137 2Theta (°) Intensity A Intensity B Intensity C Intensity D Intensity E 49.12 258 582 447 469 504 49.44 267 620 468 511 516 49.76 303 646 448 452 458 50.08 308 629 478 459 438 50.4 241 662 438 491 449 50.72 300 636 463 460 470 51.04 241 631 444 431 471 51.36 259 613 468 474 432 51.68 286 655 446 459 452 52 256 617 471 461 421 52.32 271 597 488 496 450 52.64 255 587 439 424 452 52.96 233 599 491 477 478 53.28 256 634 483 458 433 53.6 230 619 449 455 389 53.92 251 626 442 477 449 54.24 246 627 480 429 434 54.56 239 585 476 463 458 54.88 271 616 467 420 444 55.2 247 586 440 451 468 55.52 269 616 425 433 451 55.84 258 580 448 477 468 56.16 279 603 428 450 431 56.48 412 674 443 656 563 56.8 276 599 409 457 434 57.12 273 609 456 508 502 57.44 454 814 513 806 644 57.76 264 589 439 433 440 58.08 262 592 471 451 462 58.4 272 568 487 417 397 58.72 263 586 449 453 448 59.04 245 617 391 480 463 59.36 262 623 436 434 411 59.68 265 578 447 418 453 60 243 598 433 438 419 60.32 269 619 471 490 439 60.64 422 671 481 737 613 60.96 304 659 452 611 469 61.28 282 600 459 544 482 61.6 268 588 469 470 453 61.92 257 607 425 442 443 62.24 248 573 437 460 433 138 2Theta (°) Intensity A Intensity B Intensity C Intensity D Intensity E 62.56 292 578 423 426 419 62.88 264 560 467 508 399 63.2 279 631 391 501 417 63.52 249 579 417 437 418 63.84 251 546 421 456 449 64.16 230 571 464 448 438 64.48 284 691 448 555 473 64.8 384 647 432 616 561 65.12 247 534 414 442 471 65.44 294 579 421 474 428 65.76 262 600 424 498 468 66.08 236 544 440 439 412 66.4 230 558 402 429 457 66.72 246 546 398 418 418 67.04 234 551 393 410 450 67.36 230 605 430 424 376 67.68 221 569 379 444 407 68 229 533 408 455 451 68.32 227 570 403 441 424 68.64 216 540 377 418 376 68.96 234 554 376 410 408 69.28 220 576 428 439 420 69.6 227 498 377 383 413