The Economics of Solar Power
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Konarka Technologies
Colorado Renewable Energy Collaboratory Partners for Clean Energy Center for Revolutionary Solar Photoconversion updateSummer 2010 CRSP Research Profile Plasma Sheds Light on Mysteries of PV Efficiency Stars are made of plasma, an ionized gas comprising a complex mixture of gas-phase species. So it’s remarkable that CRSP researchers are using plasmas to create photovoltaic (PV) devices that can better convert energy from our own star, the sun, into power we can use here on Earth. A CRSP research team, made up of re- searchers from CSU and NREL, has been using plasmas to modify PV materials and improve the interfaces between the layers of materials in thin-film solar cells. The goal is to increase efficiency in PV devices. Ellen Fisher is an analytical/materials The CRSP plasma processing project team Ina Martin (left) and Ellen Fisher are shown chemist and the project’s principle investiga- includes Ina Martin, an analytical chemist at in the laboratory with a low-pressure rf plasma reactor. The two chemists work to- tor at CSU. “We know we can use plasmas NREL. Her role is to extend the character- gether on a CRSP project that uses plasmas to change materials and get different device ization of the modified materials and evalu- results, but we need to know exactly how it to modify PV materials and improve the ate the resulting devices under real-world interfaces between the layers of materials in works,” she says. conditions. The rest of the team includes thin-film solar cells. Credit: Jeff Shearer. The team is developing new materials for Michael Elliott, a CSU electrochemist with solar cells by taking known materials, such a background in PV device testing; Patrick McCurdy, a CSU staff scientist who special- chemistry, applying these results to as titanium dioxide (TiO2), and improv- ing their properties. -
Perspectives on Solar Energy, Mining and Agro-Food in Chile
Chapter 3 Transforming industries: Perspectives on solar energy, mining and agro-food in Chile The shifting global geopolitical and technological landscape coupled with changes in consumers’ preferences is opening up a window of opportunity for Chile. The country could transform its economy, enlarge its knowledge base and increase productivity by leveraging on its natural assets in new, more innovative ways. However, the world is moving fast and opportunities will not be permanently available. To tap into them, a strategic approach and a shared vision between government, business and society is needed. Chile has started to do so through strategic initiatives that identify future opportunities and clarify gaps to be addressed. This chapter presents the Chilean experience in solar energy, mining and agro-food; in each case it presents a snapshot of key trends and future scenarios, developed through multi-stakeholder consultations, it describes the current policy approach and it identifies reforms to move forward. PRODUCTION TRANSFORMATION POLICY REVIEW OF CHILE: REAPING THE BENEFITS OF NEW FRONTIERS © OECD AND UNITED NATIONS 2018 103 3. Transforming industries: Perspectives on solar energy, mining and agrO-food in Chile Unleashing the potential of solar energy in Chile This section presents a snapshot of the rise of solar energy in the country and summarises the results of public-private consultations on the opportunities presented by solar for Chile. It describes the current policy approach and it identifies reforms to move forward. Solar energy is gaining ground in Chile Solar energy is becoming globally competitive thanks to falling prices. Investment in the development of renewable energies globally is surpassing investment in fossil fuel technologies (OECD, 2018; IEA, 2016). -
Comparative Analysis and Design of a Solar-Based Parabolic Trough–ORC Cogeneration Plant for a Commercial Center
energies Article Comparative Analysis and Design of a Solar-Based Parabolic Trough–ORC Cogeneration Plant for a Commercial Center Eduardo A. Pina , Luis M. Serra * , Miguel A. Lozano , Adrián Hernández and Ana Lázaro Group of Thermal Engineering and Energy Systems (GITSE) of Aragon Institute of Engineering Research (I3A), Department of Mechanical Engineering, Universidad de Zaragoza, Calle María de Luna sn, 50018 Zaragoza, Spain; [email protected] (E.A.P.); [email protected] (M.A.L.); [email protected] (A.H.); [email protected] (A.L.) * Correspondence: [email protected]; Tel.: +34-976-761913 Received: 24 August 2020; Accepted: 10 September 2020; Published: 14 September 2020 Abstract: This paper performs technical, economic and environmental feasibility analyses of two different solar cogeneration plants, consisting of a solar system (a parabolic trough collector field coupled with thermal energy storage), an Organic Rankine Cycle (ORC), and mechanical chillers, that should cover the electrical and cooling demands of a commercial center located in Zaragoza (Spain). System A is hybridized with an auxiliary biomass boiler that complements the solar system’s thermal production, providing a constant heat supply to the ORC, which operates at full load during the operating hours of the solar system. In contrast, system B is not hybridized with biomass, so the ORC is fully driven by the solar system, operating at partial load according to the solar resource availability. Both systems are connected to the electrical grid, allowing electricity purchases and sales when needed. The design procedure involves the sizing of the equipment as well as the modelling of the hourly behavior of each system throughout the year. -
Network Development Plan 2016 – 2025
NOVEMBER 2015 NETWORK DEVELOPMENT PLAN 2016 – 2025 A Ten-Year Plan for the Swedish National Grid. SVENSKA KRAFTNÄT Our society is dependent on electricity. Svenska kraftnät is responsible for ensuring that Sweden has a safe, environmentally sound and cost-effective transmission system for electricity – today and in the future. We achieve this in the short term by monitoring the electrical system around the clock, and in the long term by building new power lines to meet tomorrow’s electricity needs. Cover photo Tomas Ärlemo Org. Nr 202100-4284 SVENSKA KRAFTNÄT Box 1200 172 24 Sundbyberg Sweden Sturegatan 1 Tel +46 10-475 80 00 Fax +46 10-475 89 50 www.svk.se/en PREFACE The board of Svenska kraftnät decided in April 2013 on a long-term plan document for the development of the Swedish National Grid. Long-term plan 2025 described the challenges for Svenska kraftnät in the 10 to 15 years term. The purpose was, among other things, to increase the transparency of Svenska kraftnät’s planning and to provide an opportunity for the various stakeholders in the electricity market to influence it. Until then, the national network planning mainly consisted of the three-year investment and financing plans that Svenska kraftnät annually provide to the Government. These plans are, however, primarily a description of how investments already decided are expected to turn out over the next three financial years. They do not give an account of the Administration’s long-term priorities and the grounds for them. A certain network planning is conducted also at Nordic level in order to identify grid reinforcements with specific benefit for the whole of the Nordic electricity market. -
Oraşe Inteligente – Experienţă Şi Practică La
Regneală H. S. SOLAR ENERGY FIELD WELCOMES NEW TRENDS IN THE EUROPEAN UNION. CASE STUDY: ROMANIA SOLAR ENERGY FIELD WELCOMES NEW TRENDS IN THE EUROPEAN UNION. CASE STUDY: ROMANIA Horaţiu Sorin REGNEALĂ The Bucharest University of Economic Studies, Romania regnealăhoraţ[email protected] 5 Abstract In 2012 and 2013, solar energy has become the most important source of renewable energy in the European 201 Union, whose main role is to produce electric power. Business models in the solar energy field, as well as the perception on the legal context, that is a major source of influence for the companies in the field, have been a main subject of debate in Romania and the European Union, but have not been scientifically researched. The purpose of this paper is to develop a comparative study on the situation of business models in the Romanian field of solar energy, between the years 2013 and 2014, as well as the development of photovoltaic industry forecasts June / 2 in Romania in the coming years. In order to perform this study, we used the method of Delphi based on questionnaires and interviews with experts in this field of activity. This study is a continuation of the research carried out last year (Tanţău et al., 2014) and illustrate the major changes in the Romanian field of photovoltaic Issue Issue energy, after modifying the law No. 220/2008 by Emergency Ordinance of the Romanian Government No. 57/2013 and the appearance of Decision of the Government No. 994/2013. The study treats the new directions in the field 5 of photovoltaic energy in Romania representing the basic pylon of the future trends of business models in the photovoltaic industry, that were not previously provided in the scientific literature. -
Q2/Q3 2020 Solar Industry Update
Q2/Q3 2020 Solar Industry Update David Feldman Robert Margolis December 8, 2020 NREL/PR-6A20-78625 Executive Summary Global Solar Deployment PV System and Component Pricing • The median estimate of 2020 global PV system deployment projects an • The median residential quote from EnergySage in H1 2020 fell 2.4%, y/y 8% y/y increase to approximately 132 GWDC. to $2.85/W—a slower rate of decline than observed in any previous 12- month period. U.S. PV Deployment • Even with supply-chain disruptions, BNEF reported global mono c-Si • Despite the impact of the pandemic on the overall economy, the United module pricing around $0.20/W and multi c-Si module pricing around States installed 9.0 GWAC (11.1 GWDC) of PV in the first 9 months of $0.17/W. 2020—its largest first 9-month total ever. • In Q2 2020, U.S. mono c-Si module prices fell, dropping to their lowest • At the end of September, there were 67.9 GWAC (87.1 GWDC) of solar PV recorded level, but they were still trading at a 77% premium over global systems in the United States. ASP. • Based on EIA data through September 2020, 49.4 GWAC of new electric Global Manufacturing generating capacity are planned to come online in 2020, 80% of which will be wind and solar; a significant portion is expected to come in Q4. • Despite tariffs, PV modules and cells are being imported into the United States at historically high levels—20.6 GWDC of PV modules and 1.7 • EIA estimates solar will install 17 GWAC in 2020 and 2021, with GWDC of PV cells in the first 9 months of 2020. -
Solar Thermal and Concentrated Solar Power Barometers 1 – EUROBSERV’ER –JUIN 2017 – EUROBSERV’ER BAROMETERS POWER SOLAR CONCENTRATED and THERMAL SOLAR
1 2 - 4.6% The decrease of the solar thermal market in the European Union in 2016 Evacuated tube solar collectors, solar thermal installation in Ireland SOLAR THERMAL AND CONCENTRATED SOLAR POWER BAROMETERS A study carried out by EurObserv’ER. solar solar concentrated and thermal power barometers solar solar concentrated and thermal power barometers he European solar thermal market is still losing pace. According to the Tpreliminary estimates from EurObserv’ER, the solar thermal segment dedicated to heat production (domestic hot water, heating and heating networks) contracted by a further 4.6% in 2016 down to 2.6 million m2. The sector is pinning its hopes on the development of the collective solar segment that includes industrial solar heat and solar district heating to offset the under-performing individual home segment. ince 2014 European concentrated solar power capacity for producing Selectricity has been more or less stable. New project constructions have been a long time coming, but this could change at the end of 2017 and in 2018 essentially in Italy. 51 millions m2 2 313.7 MWth The cumulated surfaces of solar thermal Total CSP capacity in operation Glenergy Solar in operation in the European Union in 2016 in the European Union in 2016 SOLAR THERMAL AND CONCENTRATED SOLAR POWER BAROMETERS – EUROBSERV’ER – JUIN 2017 SOLAR THERMAL AND CONCENTRATED SOLAR POWER BAROMETERS – EUROBSERV’ER – JUIN 2017 3 4 The world largest solar thermal Tabl. n° 1 district heating solution - Silkeborg, Denmark (in operation end 2016) Main solar thermal markets outside European Union Total cumulative capacity Annual Installed capacity (in MWth) in operation (in MWth) 2015 2016 2015 2016 China 30 500 27 664 309 500 337 164 United States 760 682 17 300 17 982 Turkey 1 500 1 467 13 600 15 067 India 770 894 6 300 7 194 Japan 100 50 2 400 2 450 Rest of the world 6 740 6 797 90 944 97 728 Total world 39 640 36 660 434 700 471 360 Source: EurObserv’ER 2017 new build, because of the construction is now causing great concern, where as a water production. -
Solar Is Driving a Global Shift in Electricity Markets
SOLAR IS DRIVING A GLOBAL SHIFT IN ELECTRICITY MARKETS Rapid Cost Deflation and Broad Gains in Scale May 2018 Tim Buckley, Director of Energy Finance Studies, Australasia ([email protected]) and Kashish Shah, Research Associate ([email protected]) Table of Contents Executive Summary ......................................................................................................... 2 1. World’s Largest Operational Utility-Scale Solar Projects ........................................... 4 1.1 World’s Largest Utility-Scale Solar Projects Under Construction ............................ 8 1.2 India’s Largest Utility-Scale Solar Projects Under Development .......................... 13 2. World’s Largest Concentrated Solar Power Projects ............................................... 18 3. Floating Solar Projects ................................................................................................ 23 4. Rooftop Solar Projects ................................................................................................ 27 5. Solar PV With Storage ................................................................................................. 31 6. Corporate PPAs .......................................................................................................... 39 7. Top Renewable Energy Utilities ................................................................................. 44 8. Top Solar Module Manufacturers .............................................................................. 49 Conclusion ..................................................................................................................... -
Characterisation of Solar Electricity Import Corridors from MENA to Europe
Characterisation of Solar Electricity Import Corridors from MENA to Europe Potential, Infrastructure and Cost Characterisation of Solar Electricity Import Corridors from MENA to Europe Potential, Infrastructure and Cost July 2009 Report prepared in the frame of the EU project ‘Risk of Energy Availability: Common Corridors for Europe Supply Security (REACCESS)’ carried out under the 7th Framework Programme (FP7) of the European Commission (Theme - Energy-2007-9. 1-01: Knowledge tools for energy-related policy making, Grant agreement no.: 212011). Franz Trieb, Marlene O’Sullivan, Thomas Pregger, Christoph Schillings, Wolfram Krewitt German Aerospace Center (DLR), Stuttgart, Germany Institute of Technical Thermodynamics Department Systems Analysis & Technology Assessment Pfaffenwaldring 38-40 D-70569 Stuttgart, Germany Characterisation of Solar Electricity Import Corridors TABLE OF CONTENTS 1 INTRODUCTION...................................................................................................1 2 STATUS OF KNOWLEDGE - RESULTS FROM RECENT STUDIES .................2 3 EXPORT POTENTIALS – RESOURCES AND PRODUCTION.........................19 3.1 SOLAR ENERGY RESOURCES IN POTENTIAL EXPORT COUNTRIES.........19 3.1.1 Solar Energy Resource Assessment .........................................................19 3.1.2 Land Resource Assessment ......................................................................39 3.1.3 Potentials for Solar Electricity Generation in MENA ..................................48 3.1.4 Potentials for Solar Electricity -
Financing the Transition to Renewable Energy in the European Union
Bi-regional economic perspectives EU-LAC Foundation Miguel Vazquez, Michelle Hallack, Gustavo Andreão, Alberto Tomelin, Felipe Botelho, Yannick Perez and Matteo di Castelnuovo. iale Luigi Bocconi Financing the transition to renewable energy in the European Union, Latin America and the Caribbean Financing the transition to renewable energy in European Union, Latin America and Caribbean EU-LAC / Università Commerc EU-LAC FOUNDATION, AUGUST 2018 Große Bleichen 35 20354 Hamburg, Germany www.eulacfoundation.org EDITION: EU-LAC Foundation AUTHORS: Miguel Vazquez, Michelle Hallack, Gustavo Andreão, Alberto Tomelin, Felipe Botelho, Yannick Perez and Matteo di Castelnuovo GRAPHIC DESIGN: Virginia Scardino | https://www.behance.net/virginiascardino PRINT: Scharlau GmbH DOI: 10.12858/0818EN Note: This study was financed by the EU-LAC Foundation. The EU-LAC Foundation is funded by its members, and in particular by the European Union. The contents of this publication are the sole responsibility of the authors and cannot be considered as the point of view of the EU- LAC Foundation, its member states or the European Union. This book was published in 2018. This publication has a copyright, but the text may be used free of charge for the purposes of advocacy, campaigning, education, and research, provided that the source is properly acknowledged. The co- pyright holder requests that all such use be registered with them for impact assessment purposes. For copying in any other circumstances, or for reuse in other publications, or for translation and adaptation, -
Technical Program Monday, June 15Th
42ND IEEE PHOTOVOLTAIC SPECIALISTS CONFERENCE TECHNICAL PROGRAM MONDAY, JUNE 15TH 2 MONDAY, JUNE 15TH Monday, June 15, 2015 Keynote - Keynote 8:15 - 8:30 AM Empire Ballroom Highlights & Announcements Chair(s): Alexandre Freundlich 8:15 Conference Welcome Steven Ringel1, Alexandre Freundlich2 1General Conference Chair , 2Program Chair 8:20 IEEE Electron Device Society and IEEE Photonics Society Welcome Address Dalma Novak1, Christopher Jannuzzi2 1IEEE Photonics Society , 2IEEE Electron Device Society 8:25 Technical Program Highlights Alexandre Freundlich 42nd IEEE PVSC Program Chair Area 3 - Plenary 8:30 - 9:00 AM Empire Ballroom Area 3 Plenary Chair(s): Paul Sharps (1) Challenges and Perspectives of CPV Technology Andreas W. Bett Fraunhofer ISE, Freiburg, Germany Area 2 - Plenary 9:00 - 9:30 AM Empire Ballroom Area 2 Plenary Chair(s): Sylvain Marsillac (2) Polarization Probes Polycrystalline PV Performance Precisely Robert W. Collins University of Toledo, Toledo, OH, United States Area 9 - Plenary 9:30 - 10:00 AM Empire Ballroom Area 9 Plenary Chair(s): Clifford Hansen 9:30 (3) Challenges and Opportunities of High-Performance Solar Cells and PV Modules in Large Volume Production Pierre J. Verlinden State Key Laboratory of PV Science and Technology, Trina Solar, Changzhou, China 3 MONDAY, JUNE 15TH Break 10:00 - 10:30 AM Empire Ballroom Foyer (Level 2) Coffee Break Keynote - Keynote 10:30 - 12:00 PM Empire Ballroom Opening Keynotes 10:30 (4) Opening Remarks Steven A. Ringel 42nd IEEE PVSC Conference Chair 10:40 (5) Keynote I: Changing -
CPXX802 En.Pdf
SCIENTIFIC SUPPORT PLAN FOR A SUSTAINABLE DEVELOPMENT POLICY (SPSD II) Part 1: Sustainable production and consumption patterns FINAL REPORT T THE ROLE OF RENEWABLE ENERGY TECHNOLOGIES IN SECURING ELECTRICAL SUPPLY IN BELGIUM CP/XX/802 March 2006 Paula Souto Pérez – Joris Soens – Edwin Haesen Ronnie Belmans - Johan Driesen K. U. Leuven – ESAT / ELECTA Achim Woyte – Geert Palmers 3 E Jo Neyens Imec Pépin Tchouate U. C. L. Rue de la Science 8 Wetenschapsstraat 8 B-1000 Brussels Belgium Tel: +32 (0)2 238 34 11 – Fax: +32 (0)2 230 59 12 http://www.belspo.be Contact person: Mrs. Anne Fierens Secretariat: +32 (0)2 238 36 60 Neither the Belgian Science Policy nor any person acting on behalf of the Belgian Science Policy is responsible for the use which might be made of the following information. The authors are responsible for the content. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without indicating the reference. Project CP/XX/802 – “The role of renewable energy technologies in securing electrical supply in Belgium” Contents CONTENTS........................................................................................................ 3 TECHNICAL REPORT....................................................................................... 6 1 WORK PACKAGE 1: PROJECT COORDINATION (K.U.LEUVEN) ........... 6 2 WORK PACKAGE 2: INVENTORY OF ELECTRICAL ASPECTS INFLUENCING THE SECURITY OF THE SUPPLY (K.U.LEUVEN)