Konarka Technologies

Total Page:16

File Type:pdf, Size:1020Kb

Konarka Technologies Colorado Renewable Energy Collaboratory Partners for Clean Energy Center for Revolutionary Solar Photoconversion updateSummer 2010 CRSP Research Profile Plasma Sheds Light on Mysteries of PV Efficiency Stars are made of plasma, an ionized gas comprising a complex mixture of gas-phase species. So it’s remarkable that CRSP researchers are using plasmas to create photovoltaic (PV) devices that can better convert energy from our own star, the sun, into power we can use here on Earth. A CRSP research team, made up of re- searchers from CSU and NREL, has been using plasmas to modify PV materials and improve the interfaces between the layers of materials in thin-film solar cells. The goal is to increase efficiency in PV devices. Ellen Fisher is an analytical/materials The CRSP plasma processing project team Ina Martin (left) and Ellen Fisher are shown chemist and the project’s principle investiga- includes Ina Martin, an analytical chemist at in the laboratory with a low-pressure rf plasma reactor. The two chemists work to- tor at CSU. “We know we can use plasmas NREL. Her role is to extend the character- gether on a CRSP project that uses plasmas to change materials and get different device ization of the modified materials and evalu- results, but we need to know exactly how it to modify PV materials and improve the ate the resulting devices under real-world interfaces between the layers of materials in works,” she says. conditions. The rest of the team includes thin-film solar cells. Credit: Jeff Shearer. The team is developing new materials for Michael Elliott, a CSU electrochemist with solar cells by taking known materials, such a background in PV device testing; Patrick McCurdy, a CSU staff scientist who special- chemistry, applying these results to as titanium dioxide (TiO2), and improv- ing their properties. Such improvements izes in surface science and who helps ana- PV devices, then using the device perfor- include applying plasmas to modify material lyze data; and CSU graduate student Dan mance to determine what additional modifica- surfaces to reduce “electron traps.” So Pulsipher, who performs research in the lab. tions need to be made to the materials.” when photons strike and free up electrons CRSP has funded the plasma processing To learn more about the project, visit to make electricity, more electrons can flow project through mid-2010, but the project will www.chm.colostate.edu/erf/photovoltaics.htm through the material. The more free-flowing need additional funding to continue. Fisher electrons there are, the more electricity is seeking additional sources of funding, in- is produced relative to the amount of sun cluding from the U.S. Department of Energy The Center for Revolutionary exposure. (DOE), and hopes any further work could Photoconversion (CRSP) For example, a promising PV technology is be a large component of a new graduate student’s thesis. is dedicated to the basic and applied the TiO2-based, dye-sensitized solar cell. research necessary to create revolutionary Such cells can now be produced on a vari- “The entire world needs to replace fossil fuel new solar energy technologies as well as ety of inexpensive substrates, making them energy sources with clean renewable en- educational and training opportunities. ideal for building-integrated PV applications. ergy,” she says. “This project is so interesting The research underpins renewable energy Each dye cell consists of a photoanode, because ultimately, it’s a part of a worldwide technologies, commonly called third- such as TiO2, a dye sensitizer, an electro- effort and everyone working on PV has dif- generation solar photon conversion, for lyte, and a photocathode. These cells cur- ferent approaches. Collectively, we’re bound the highly efficient and cost-competitive rently have an efficiency of 11%; solid-state to find solutions to this very real problem.” production of both electricity and fuels dye cells have an efficiency of about 5%. via direct solar processes. The CRSP Martin concurs, adding, “So much of PV re- The CRSP team has learned that by using participating research institutions are the search is a materials science problem. As a a plasma process on the TiO surface, they National Renewable Energy Laboratory 2 scientist, I also find it satisfying to participate may be able to modify the dye/TiO interface (NREL), University of Colorado at Boulder 2 in the process of improving materials prop- to make it amenable to new dyes, and to (CU), Colorado State University (CSU), boost the overall cell performance. erties through understanding the gas-phase and Colorado School of Mines (CSM). 1 CRSP Research Profile cells and carefully verified that the SHG measurement was truly an interface signal. Postdoc Research a Critical Lasers Reveal These results will be the basis of new exper- Success Factor for CRSP iments that will probe how interfaces change The three research profiles featured Nature of Interface under illumination by sunlight, which, in turn, in this issue of CRSP Update have a could lead to breakthroughs in efficiency and common thread: each one benefits from Surfaces, Processes lower the costs of PV devices. research contributions by postdoctoral This interface research, like the plasma candidates. Postdocs are able to As PV materials become thinner and rely process research, has been funded through dedicate themselves to specific research on complex material systems, a critical chal- mid-2010. In the future, Teplin hopes to assignments, making them an important lenge is understanding how the interfaces obtain funding to apply SHG techniques to part of scientific research in general and between semiconductors work. While one organic solar cells, which are made of very for CRSP in particular. CRSP team is using plasma to explore inexpensive polymers and show promise This makes for a two-way street of the these interfaces (see page 1), another is us- to dramatically reduce the cost of photo- best kind. The research laboratories ing an advanced optical technique to unlock voltaics. These devices are almost entirely benefit from a tailored, focused research the secrets of interface physics. controlled by interfaces that separate power- effort, and the postdocs—who earn their Charles “Chaz” Teplin of NREL and Charles generating charges that are excited by coveted positions because they are the Rogers of CU are both physicists leading a sunlight. This separation frees the electrons most talented among their peers—have research team that is using lasers to study to produce electricity, but the process is an opportunity to work with the world’s how electrons and electron holes move from poorly understood and SHG experiments leading scientists while advancing their one material to another in semiconducting may provide crucial new insights that would own careers. interfaces called heterojunctions. be helpful to device engineers. Postdocs have strengthened the linkages When light is shined on a surface, a small Teplin and Rogers work with Howard Branz, among CRSP research members. Ina portion is reflected at twice the original an NREL principal scientist. Long He, a CU Martin completed her degree at CSU, joining NREL as a postdoc working in frequency. With the help of modern, pulsed graduate student, conducts the actual labo- thin crystalline-silicon solar cells. She lasers, it is possible to collect this “second ratory experiments. Matt Page, a scientist has now moved on to Case Western as harmonic generation” or SHG light. The with NREL’s heterojunction research team, an associate professor and is setting up intensity of the SHG light arises only as provides the samples for study. Together, the a renewable energy laboratory there. a result of the interface properties of the team hopes to develop a tool that is useful Andrew Herring was an NREL postdoc materials under illumination. Thus, SHG for every PV technology. in electrochemical reduction of carbon experiments can monitor interesting inter- “The combination of fundamental and ap- dioxide before joining the faculty at CSM. face processes. This interface sensitivity is plied work really appeals to me,” says Teplin. Charles Teplin completed his degree unusual; most PV measurement techniques “As a scientist, I want to understand how with Chuck Rogers at CU and joined sense mainly bulk properties and yield little the devices work, but it’s wonderful to be NREL as a postdoc looking at cladding information about interfaces. working on something that will help new PV layers for glass. Today, he is a senior During the course of the research, the team technologies make it to market.” scientist at NREL and collaborator in a performed SHG experiments on silicon solar 2009 CRSP project with Rogers. CRSP Member Companies Abengoa Solar Applied Materials Ascent Solar Technologies DuPont Evident Technologies G24 Innovations General Motors Konarka Lockheed Martin Motech Industries Sharp Tokyo Electron Total Toyota To inquire about CRSP membership, send e-mail to: CRSPinfo@ Long He, a graduate student at CU, uses lasers and measures their second harmonic generation coloradocollaboratory.org light to study how electrons and electron holes move from one material to another in semicon- ducting interfaces called heterojunctions. Credit: Hsiangsheng Ku. 2 CRSP Research Profile plines to bear including theoretical modeling, computational analysis, and surface char- CRSP News & Events Harvesting acterization. The principal investigators are John Turner of NREL and Andrew Herring, New CRSP Leadership Team—Early Visible Light for Mark Lusk, and Thomas Furtak of CSM. in 2010, CRSP welcomed some A key member of the research team is S. new members to its leadership Solar Hydrogen Kishore Pilli, a postdoc at CSM, who may team. Craig Taylor of CSM replaced have had the toughest assignment. “His job Arthur Nozik of NREL as the CRSP Production was to figure out if the POM absorbs vis- scientific director. John Benner and ible light, and if not, work within the design Kaitlyn VanSant, both of NREL, came Using hydrogen as a fuel confers a host of space to make it absorb light,” says Andrew onboard as CRSP managing director benefits.
Recommended publications
  • The Economics of Solar Power
    The Economics of Solar Power Solar Roundtable Kansas Corporation Commission March 3, 2009 Peter Lorenz President Quanta Renewable Energy Services SOLAR POWER - BREAKTHROUGH OR NICHE OPPORTUNITY? MW capacity additions per year CAGR +82% 2000-08 Percent 5,600-6,000 40 RoW US 40 +43% Japan 10 +35% 2,826 Spain 55 1,744 1,460 1,086 598 Germany 137 241 372 427 2000 01 02 03 04 05 06 07 2008E Demand driven by attractive economics • Strong regulatory support • Increasing power prices • Decreasing solar system prices • Good availability of capital Source: McKinsey demand model; Solarbuzz 1 WE HAVE SEEN SOME INTERESTING CHANGES IN THE U.S. RECENTLY 2 TODAY’S DISCUSSION • Solar technologies and their evolution • Demand growth outlook • Perspectives on solar following the economic crisis 3 TWO KEY SOLAR TECHNOLOGIES EXIST Photovoltaics (PV) Concentrated Solar Power (CSP) Key • Uses light-absorbing material to • Uses mirrors to generate steam characteristics generate current which powers turbine • High modularity (1 kW - 50 MW) • Low modularity (20 - 300 MW) • Uses direct and indirect sunlight – • Only uses direct sunlight – specific suitable for almost all locations site requirements • Incentives widely available • Incentives limited to few countries • Mainly used as distributed power, • Central power only limited by some incentives encourage large adequate locations and solar farms transmission access ~ 10 Global capacity ~ 0.5 GW, 2007 Source: McKinsey analysis; EPIA; MarketBuzz 4 THESE HAVE SEVERAL SUB-TECHNOLOGIES Key technologies Sub technologiesDescription
    [Show full text]
  • Q2/Q3 2020 Solar Industry Update
    Q2/Q3 2020 Solar Industry Update David Feldman Robert Margolis December 8, 2020 NREL/PR-6A20-78625 Executive Summary Global Solar Deployment PV System and Component Pricing • The median estimate of 2020 global PV system deployment projects an • The median residential quote from EnergySage in H1 2020 fell 2.4%, y/y 8% y/y increase to approximately 132 GWDC. to $2.85/W—a slower rate of decline than observed in any previous 12- month period. U.S. PV Deployment • Even with supply-chain disruptions, BNEF reported global mono c-Si • Despite the impact of the pandemic on the overall economy, the United module pricing around $0.20/W and multi c-Si module pricing around States installed 9.0 GWAC (11.1 GWDC) of PV in the first 9 months of $0.17/W. 2020—its largest first 9-month total ever. • In Q2 2020, U.S. mono c-Si module prices fell, dropping to their lowest • At the end of September, there were 67.9 GWAC (87.1 GWDC) of solar PV recorded level, but they were still trading at a 77% premium over global systems in the United States. ASP. • Based on EIA data through September 2020, 49.4 GWAC of new electric Global Manufacturing generating capacity are planned to come online in 2020, 80% of which will be wind and solar; a significant portion is expected to come in Q4. • Despite tariffs, PV modules and cells are being imported into the United States at historically high levels—20.6 GWDC of PV modules and 1.7 • EIA estimates solar will install 17 GWAC in 2020 and 2021, with GWDC of PV cells in the first 9 months of 2020.
    [Show full text]
  • Technical Program Monday, June 15Th
    42ND IEEE PHOTOVOLTAIC SPECIALISTS CONFERENCE TECHNICAL PROGRAM MONDAY, JUNE 15TH 2 MONDAY, JUNE 15TH Monday, June 15, 2015 Keynote - Keynote 8:15 - 8:30 AM Empire Ballroom Highlights & Announcements Chair(s): Alexandre Freundlich 8:15 Conference Welcome Steven Ringel1, Alexandre Freundlich2 1General Conference Chair , 2Program Chair 8:20 IEEE Electron Device Society and IEEE Photonics Society Welcome Address Dalma Novak1, Christopher Jannuzzi2 1IEEE Photonics Society , 2IEEE Electron Device Society 8:25 Technical Program Highlights Alexandre Freundlich 42nd IEEE PVSC Program Chair Area 3 - Plenary 8:30 - 9:00 AM Empire Ballroom Area 3 Plenary Chair(s): Paul Sharps (1) Challenges and Perspectives of CPV Technology Andreas W. Bett Fraunhofer ISE, Freiburg, Germany Area 2 - Plenary 9:00 - 9:30 AM Empire Ballroom Area 2 Plenary Chair(s): Sylvain Marsillac (2) Polarization Probes Polycrystalline PV Performance Precisely Robert W. Collins University of Toledo, Toledo, OH, United States Area 9 - Plenary 9:30 - 10:00 AM Empire Ballroom Area 9 Plenary Chair(s): Clifford Hansen 9:30 (3) Challenges and Opportunities of High-Performance Solar Cells and PV Modules in Large Volume Production Pierre J. Verlinden State Key Laboratory of PV Science and Technology, Trina Solar, Changzhou, China 3 MONDAY, JUNE 15TH Break 10:00 - 10:30 AM Empire Ballroom Foyer (Level 2) Coffee Break Keynote - Keynote 10:30 - 12:00 PM Empire Ballroom Opening Keynotes 10:30 (4) Opening Remarks Steven A. Ringel 42nd IEEE PVSC Conference Chair 10:40 (5) Keynote I: Changing
    [Show full text]
  • Commercialization Potential of Dye-Sensitized Mesoscopic Solar Cells
    Commercialization Potential of Dye-Sensitized Mesoscopic Solar Cells by Kwan Wee Tan B.Eng (Materials Engineering) Nanyang Technological University, 2006 SUBMITTED TO THE DEPARTMENT OF MATERIALS SCIENCE AND ENGINEERING IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF ENGINEERING IN MATERIALS SCIENCE AND ENGINEERING AT THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY SEPTEMBER 2008 © 2008 Kwan Wee Tan. All rights reserved. The author hereby grants to MIT permission to reproduce and to distribute publicly paper and electronic copies of this thesis document in whole or in part in any medium now known or hereafter created. Signature of Author ……………………………………………………………………….... Department of Materials Science and Engineering July 16, 2008 Certified by ...……………………………………………………………………………..... Yet-Ming Chiang Kyocera Professor of Ceramics Thesis Supervisor Certified by ...……………………………………………………………………………..... Chee Cheong Wong Associate Professor, Nanyang Technological University Thesis Supervisor Accepted by ……………………………………………………………………………….... Samuel M. Allen POSCO Professor of Physical Metallurgy Chair, Departmental Committee for Graduate Students 1 Commercialization Potential of Dye-Sensitized Mesoscopic Solar Cells By Kwan Wee Tan Submitted to the Department of Materials Science and Engineering on July 16, 2008 in partial fulfillment of the requirements for the Degree of Master of Engineering in Materials Science and Engineering ABSTRACT The price of oil has continued to rise, from a high of US$100 per barrel at the beginning 2008 to a new record of above US$140 in the recent weeks (of July). Coupled with increasing insidious greenhouse gas emissions, the need to harness abundant and renewable energy sources is never more urgent than now. The sun is the champion of all energy sources and photovoltaic cell production is currently the world’s fastest growing energy market.
    [Show full text]
  • Fantastic Plastic
    INDUSTRY PERSPECTIVE | TECHNOLOGY FOCUS OrgANIC MATERIALS Fantastic plastic Polymer materials could bring down the cost of electricity production using photovoltaic technology to below $1 per watt for the first time, and enable mass-market, portable applications for photovoltaic technology. Russell Gaudiana* and Transparent packaging † Transparent Christoph Brabec electrode Konarka Technologies, 100 Foot of John Street, Boott Mill South, 3rd Floor Lowell, Massachusetts Printed active 01852, USA material e-mail: *[email protected]; †[email protected] Primary uch of the early work on electrode photoactive materials for Light photovoltaics focused on M Substrate crystalline silicon, which dominates Transparent packaging the commercial solar-energy field Electrons today. Several other materials, such as Transparent electrode amorphous silicon (a-Si), cadmium Active material External load telluride (CdTe) and copper indium (polymer blend) gallium selenide (CIGS), are also now in various stages of commercialization, and Primary electrode are known as thin-film technologies. The Substrate lower manufacturing costs and higher production throughput of these materials End view Angle view KONARKA potentially translate into lower electricity costs. Current thin-film technologies are expected to bring costs reasonably close to Figure 1 Polymer-based photovoltaic cells can be manufactured using standard printing processes. $1 per watt of electricity produced at peak solar power. There is, however, another technology that has the potential to
    [Show full text]
  • Opportunities and Risks of Nanotechnologies Report in Co-Operation with the OECD International Futures Programme Contents
    Small sizes that matter: Small sizes that matter: Opportunities and risks of Nanotechnologies Report in co-operation with the OECD International Futures Programme Contents 1. Executive Summary 3 1.1. Nanotechnology and the market place 3 1.2. Investments in nanotechnology 4 1.3. The environmental, health and safety discussion related to nanoparticles 4 1.4. Allianz’s position on industrial insurance cover 5 2. What is nanotechnology and what makes it different? 6 2.1. Introduction 6 2.2. Nanomaterials: basic building blocks 8 2.3. Nano tools and fabrication techniques 11 2.4. Present and future areas of application 12 3. Market prospects and opportunities 14 3.1. Sectoral example: Medicine 15 3.2. Sectoral example: Food and agriculture 17 3.3. Sectoral example: Semiconductors and computing 18 3.4. Sectoral example: Textiles 20 3.5. Sectoral example: Energy 21 3.6. Nanotechnology and the situation of developing countries 22 4. Players 24 5. Nanotechnology programs of governments 26 6. What are the risks of Nanotechnology? 27 6.1. Broad range of technologies, variety of risks 27 6.2. Positive effects on human health and the environment 28 6.3. Manufactured nanoparticles 28 6.4. Nanoparticles and human health 30 6.5. Nanoparticles and the environment 35 6.6. Explosion hazards of nanoparticles 36 6.7. Self replication of miniature machines 37 6.8. Regulatory considerations of authorities and other stakeholders 38 6.9. Position of the industry 39 6.10. Position of pressure groups 40 6.11. Position of reinsurers and insurers 40 7. Chances and risks for the Allianz Group 41 7.1.
    [Show full text]
  • AB INITIO Advertised Before Acceptance Under Section 20(1) Proviso 1189611 04/04/2003 AB INITIO SOFTWARE LLC 201 SPRING STREET, LEXINGTON, MASSACHUSETTS 02421, U.S.A
    Trade Marks Journal No: 1843 , 02/04/2018 Class 9 AB INITIO Advertised before Acceptance under section 20(1) Proviso 1189611 04/04/2003 AB INITIO SOFTWARE LLC 201 SPRING STREET, LEXINGTON, MASSACHUSETTS 02421, U.S.A. MANUFACTURERS, MERCHANTS AND DISTRIBUTORS A CORPORATION DULY ORGANISED AND EXISTING UNDER THE LAWS OF THE STATE OF DELAWARE, U.S.A. Address for service in India/Agents address: ARCHER & ANGEL K - 4, SOUTH EXTENSION - II, NEW DELHI - 110 049. Used Since :15/07/2002 KOLKATA COMPUTER SOFTWARE, NAMELY, GENERAL PURPOSE PROGRAMMING PLATFORM FOR PROCESSING LARGE VOLUMES OF DATA; COMPUTER SOFTWARE FOR DATA WAREHOUSING, BATCH PROCESSING, CLICKSTREAM PROCESSING, DATA MANAGEMENT, DATA TRANSFORMATION, AND ANALYTICS APPLICATIONS; COMPUTER SOFTWARE FOR THE MANAGEMENT AND MAINTENANCE OF A DATA PROCESSING REPOSITORY FOR METADATA, APPLICATION PROGRAMS, AND APPLICATION PROGRAM EXECUTION RESULTS; COMPUTER SOFTWARE FOR COMMUNICATING AND PROCESSING DATA AMONG MULTIPLE COMPUTER SYSTEMS AND OPERATING SYSTEMS; COMPUTER SOFTWARE, NAMELY COMPUTER SCRIPTING PROGRAMS FOR ALLOWING A USER TO WRITE PROGRAMS AND FOR DISPLAYING, MANIPULATING, AND UPDATING INFORMATION FROM DIFFERENT SOURCES OF DATA; COMPUTER SOFTWARE FOR OPERATING OTHER SOFTWARE ON PARALLEL PROCESSORS; COMPUTER SOFTWARE FOR CONTROLLING AND INTEGRATING ENTERPRISE-WIDE COMPUTER RESOURCES, APPLICATIONS, METADATA, AND DATA; COMPUTER SOFTWARE FOR BUILDING COMPONENT-BASED PARALLEL AND/OR DISTRIBUTED APPLICATIONS; COMPUTER SOFTWARE FOR INTEGRATING THE FUNCTIONS OF MULTIPLE COMPUTERS; COMPUTER SOFTWARE FOR INTERACTING OR CO-OPERATING WITH NATIVE OPERATING SYSTEMS ON MULTIPLE COMPUTERS; COMPUTER SOFTWARE FOR DEVELOPING, COMBINING, INTEGRATING, TRANSFORMING, EXECUTING AND MANAGING PROCESSORS, DATA, AND APPLICATIONS. 2362 Trade Marks Journal No: 1843 , 02/04/2018 Class 9 1862714 15/09/2009 RKKR FOUNDATION PLOT NO.
    [Show full text]
  • Photovoltaic Thin Film Cells 2009
    i Photovoltaic Thin Film Cells 2009 France Innovation Scientifique & Transfert FRINNOV 83 Boulevard Exelmans 75016 PARIS, FRANCE Tel.: +33 (0)1 40 51 00 90 Fax: +33 (0)1 40 51 78 58 www.frinnov.fr Patent Mapping - A new tool to decipher market trends MULTI-CLIENT PATENT LANDSCAPE ANALYSIS IP Overview is a report that analyses all patent families filed on a given thematic Available reports in engineering sciences are Carbon nanotubes, Photovoltaic cells (3 reports), LiMPO4 batteries TAILOR-MADE PATENT LANDSCAPE ANALYSIS IP Overview On Demand is similar to IP Overview but 100% tailored to your needs Ask your questions and we will answer by a specific analysis of the patent landscape of your area of interest CUSTUMIZED STUDIES OF PATENT PORTFOLIOS Position your patent portfolio or the one of your competitors PRIOR-ART SEARCH Need more information? Free access to the interactive database Contact us at [email protected] is provided for studies published since 2010 Photovoltaic Thin Film Cells CContents METHODOLOGY 11 INTRODUCTION 12 1. BRIEF OUTLINE OF THE PHOTOVOLTAICS MARKET 14 2. GLOBAL OVERVIEW OF PHOTOVOLTAIC PATENTS 17 2.1. Technological segmentation 18 2.2. Segmentation by application 20 2.3. Zoom on companies involved in the market 22 2.4. Zoom on CANON 24 2.4.1. History of patent application filings and ambitions 24 2.4.2. Segmentation of the patent portfolio 25 2.4.3. Filing policy 26 2.4.4. Analysis of the patent portfolio 28 3. THIN FILM CELL PATENTS - WORLD ANALYSIS 31 3.1. Protection strategies 31 3.1.1.
    [Show full text]
  • Nov 0 1 2011 Libraries Archives
    Design and implementation of a continuous improvement framework, focusing on material and information flow, for the manufacturing of Organic Photovoltaics. by Susheel Teja Gogineni B.E. in Mechanical Engineering M.Sc. in Mathematics Birla Institute of Technology and Science, Pilani, India, 2009 Submitted to the Department of Mechanical Engineering MASSACHUSETS INSTITUTE in partial fulfillment of the requirements for the degree of OF TECHNOLOGY Master of Engineering in Manufacturing NOV 0 1 2011 at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY LIBRARIES September 2011 ARCHIVES @2011 Susheel Teja Gogineni All rights reserved. The author hereby grants MIT permission to reproduce and distribute publicly paper and electronic copies of this thesis document in whole or in part Author....... /........................................................ Susheel Teja Gogineni Department of Mechanical Engineering August 18, 2011 Certified by ....... 6 -1 David E. Hardt Ralph E. and Eloise F Cross Professor of Mechanical Engineering Thesis Supervisor Accepted by .... David E. Hardt Ralph E. and Eloise F. Cross Professor of Mechanical Engineering Chairman, Committee on Graduate Students Design and implementation of a continuous improvement framework, focusing on material and information flow, for the manufacturing of Organic Photovoltaics. by Susheel Teja Gogineni B.S. in Mechanical Engineering, M.Sc. in Mathematics Birla Institute of Technology and Science, 2009 Submitted to the Department of Mechanical Engineering in partial fulfillment of the requirements for the degree of Master of Engineering in Manufacturing Abstract Konarka Technologies is an organic photo voltaic solar panel manufacturing startup and is currently in the process of ramping up their production volumes. The MIT team has worked on numerous improvement activities that helped improve different aspects of the manufacturing plant.
    [Show full text]
  • Konarka Reference Documents
    Konarka Sukant Tripathy Sukant Tripathy, Professor at the University of Massachusetts Lowell, died on December 12, 2000 in a swimming accident in Hawaii after lecturing at a conference of the Polymer Chemistry Division of the American Chemical Society. Sukant was born in Bihar, India, and he did his undergraduate work at the Indian Institute of Technology at Kharagpur. He received his Ph.D. in polymer science from Case Western Reserve University in 1981, and then joined GTE Laboratories. At GTE Labs, he became manager of the organic and polymer science department. In 1985, he joined the chemistry faculty at the University of Massachusetts Lowell. He founded and served as director of the Center for Advanced Materials from 1992. He also served the University as provost and vice chancellor for academic affairs from 1994 to 1996. Sukant Tripathy was recognized around the world for his research in thin polymer films and their electrical and linear and nonlinear optical properties. In 1993, he was awarded the Carl S. Marvel Creative Polymer Chemistry Award of the American Chemical Society Division of Polymer Chemistry. He had published more than 200 papers in the areas of interest and held two dozen patents. https://www.tandfonline.com/doi/abs/10.1080/10601320802391015?journalCode=lmsa20 Journal of Macromolecular Science: Tribute at ten years after his death Sukant Tripathy Editorial and in Memoriam Russell A. Gaudiana Pages 881-883 | Published online: 19 Nov 2008 It seems impossible that it has been ten years since death in December of 2000 and that this is the tenth symposium in his honor.
    [Show full text]
  • Markets & Trends Applications & Installations Industry & Suppliers
    08 | 2016 | 78538 Photo: ARENA Photo: Photo: SolarwattPhoto: Photo: European Parliament/Flickr European Photo: Markets & Trends Industry & Suppliers Applications & Installations UK: Already facing an uphill battle, Made in the EU: Module production Offgrid+storage: Solar, backed by can the U.K.’s solar sector find ways in Europe explored through the lens storage, is proving its worth in the to thrive post-Brexit? Page 22 of five manufacturers. Page 50 vast Australian outback. Page 72 2016 | 08 PHOTOVOLTAIC MARKETS & TECHNOLOGY solar speaks A special In Conversation edition in which industry leaders discuss the markets of today and technology Illustration: Harald SchüttIllustration: Harald of tomorrow. Pages 28 to 46 / Perfect Welding / Solar Energy / Perfect Charging THE FUTURE LIES NOT IN OUR STARS, BUT IN OUR SUN. WE ARE DEVELOPING THE SOLAR TECHNOLOGIES OF THE FUTURE. / We believe in a future where humankind covers 100% of our energy requirements from renewa- 24HRS ble sources: a world of 24 hours of sun. Solar energy plays a key role in this world - both day and SUN night, summer and winter. This future is already fast approaching as more and more people are converting to solar. To drive this major change forward we are developing technologies that help 24hoursofsun.com make solar the cornerstone of our future energy systems. Visit www.fronius.com SE_AD_Stars_Solar_Technologies_EN_72220_2.indd 1 18.05.2016 09:07:27 From the Editor A second half to remember Cue: a collective sigh of relief. Solar’s silly season has passed. magazine/Maximilian Rügamer pv Photo: The eight-week crunch of three major solar events in quick suc- cession – the SNEC, Intersolar Europe and Intersolar North America – is now behind us.
    [Show full text]
  • Conference Programme
    Monday, 25 September 2017 Monday, 25 September 2017 CONFERENCE PROGRAMME ORAL PRESENTATIONS 1AO.1 13:30 - 15:00 Devices & Characterisation Please note, that this Programme may be subject to alteration and the organisers reserve the right to do so without giving prior notice. The current version of the Programme is available at www.photovoltaic-conference.com. Chairpersons: Martin C. Schubert (i) = invited Fraunhofer ISE, Germany Albert Polman AMOLF, Netherlands Monday, 25 September 2017 1AO.1.1 Analysis for Efficiency Potential of High Efficiency Solar Cells M. Yamaguchi OPENING TTI, Nagoya, Japan H. Yamada PLENARY SESSION 1AP.1 NEDO, Kawasaki, Japan Y. Katsumata 08:30 - 09:30 Stairway to High Efficiency JST, Chiyoda, Japan 1AO.1.2 Special Introductory Presentation: Efficiency Limit of a 17.8% Efficiency Nanowire Chairpersons: Solar Cell Nicholas J. Ekins-Daukes J.E.M. Haverkort, D. van Dam, Y. Cui, A. Cavalli, N.J.J. van Hoof, P.J. van Veldhoven & Imperial College London, United Kingdom E.P.A.M. Bakkers John Van Roosmalen Eindhoven University of Technology, Netherlands ECN, Netherlands S.A. Mann & E.C. Garnett AMOLF, Amsterdam, Netherlands 1AP.1.1 Indirect to Direct Bandgap Transition in Methylammonium Lead Halide Perovskite J. Gómez Riva T. Wang, B. Daiber, S.A. Mann, E.C. Garnett & B. Ehrler DIFFER, Eindhoven, Netherlands AMOLF, Amsterdam, Netherlands J.M. Frost & A. Walsh 1AO.1.3 EU PVSEC Student Award Winner Presentation: Multi-Segment Photovoltaic Laser Imperial College London, United Kingdom Power Converters and Their Electrical Losses R. Kimovec & M. Topic 1AP.1.2 EU PVSEC Student Award Winner Presentation: Maximum Power Extraction Enabled University of Ljubljana, Slovenia by Monolithic Tandems Using Interdigitated Back Contact Bottom Cells with Three H.
    [Show full text]