Fantastic Plastic

Total Page:16

File Type:pdf, Size:1020Kb

Fantastic Plastic INDUSTRY PERSPECTIVE | TECHNOLOGY FOCUS OrgANIC MATERIALS Fantastic plastic Polymer materials could bring down the cost of electricity production using photovoltaic technology to below $1 per watt for the first time, and enable mass-market, portable applications for photovoltaic technology. Russell Gaudiana* and Transparent packaging † Transparent Christoph Brabec electrode Konarka Technologies, 100 Foot of John Street, Boott Mill South, 3rd Floor Lowell, Massachusetts Printed active 01852, USA material e-mail: *[email protected]; †[email protected] Primary uch of the early work on electrode photoactive materials for Light photovoltaics focused on M Substrate crystalline silicon, which dominates Transparent packaging the commercial solar-energy field Electrons today. Several other materials, such as Transparent electrode amorphous silicon (a-Si), cadmium Active material External load telluride (CdTe) and copper indium (polymer blend) gallium selenide (CIGS), are also now in various stages of commercialization, and Primary electrode are known as thin-film technologies. The Substrate lower manufacturing costs and higher production throughput of these materials End view Angle view KONARKA potentially translate into lower electricity costs. Current thin-film technologies are expected to bring costs reasonably close to Figure 1 Polymer-based photovoltaic cells can be manufactured using standard printing processes. $1 per watt of electricity produced at peak solar power. There is, however, another technology that has the potential to and nanorods, metal oxides stained with dissolved in organic solvents or water, bring this cost down even further. Bulk dye molecules, as well as combinations are applied to a plastic sheet by means of heterojunction technology, using organic of these. a coating applicator. semiconductors and roll-to-roll coating Of all these technology platforms, Various printing and coating and printing techniques, could become organic photovoltaics is generating technologies have proven their the technology that makes solar energy considerable interest (Box 1). As compatibility with organic affordable to the general public. The the name implies, this technology semiconductor processing, among them technology uses abundantly available comprises carbon-based materials as gravure printing, flexo printing, screen non-toxic materials, is based on a donor and acceptor molecules. The printing, slot die coating and, most scalable production process with high most popular class of organic donor recently, ink-jet printing. The printing productivity, and requires low investment molecules are conjugated polymers, solvent is evaporated when heated to from the manufacturer. such as polythiophenes, polyfluorenes moderate temperatures, producing a A bulk heterojunction is a blend of or polycarbazoles. The material choice dried layer of the photoactive polymer. p- and n-type semiconductors, which for acceptors is much narrower — for The modules are encapsulated between forms molecular p–n diodes all over more than ten years substituted thin, flexible over-laminates, which the bulk layer. On light absorption, fullerenes have given by far the best protect the active layers from mechanical photo-induced charges are produced photovoltaic performance. abrasion and the environment. Capital by ultrafast charge transfer (within a The feature that differentiates this costs are very low, and the printing and few femtoseconds) between the two technology from all of the others is coating processes can be done at high semiconductor types. Various material its compatibility with high-speed and speed with no obvious limitation in the systems have been suggested for bulk low-temperature roll-to-roll processing. substrate width. The processing steps are heterojunction solar cells, including: The processes are typical of those used summarized in Fig. 1. organic semiconductors, inorganic and in the printing and coating industry in The combination of low-temperature organic semiconductor nanoparticles that solutions of the active materials, processing paired with high production nature photonics | VOL 2 | MAY 2008 | www.nature.com/naturephotonics 287 © 2008 Nature Publishing Group INDUSTRY PERSPECTIVE | TECHNOLOGY FOCUS INDUSTRY PERSPECTIVE | TECHNOLOGY FOCUS 10 12 been made to the polymer structures 8 10 over the past few years (Fig. 2). These modifications include the incorporation 8 6 of comonomers that withdraw electrons 6 from the sea of electrons on the polymer 4 4 backbone, causing a large shift in the Current (mA) 2 Current (mA) absorption band towards the infrared. 2 Some of these modifications result in 0 0 absorption at wavelengths as long as 1,000 nm and more, enabling the cell –2 –2 –0.2 0.0 0.2 0.4 0.6 0.8 1.0 –0.2 –0.10.0 0.1 0.2 0.3 0.4 0.5 0.6 to absorb more than 50% of the total L radiation from the Sun. In addition, the NRE Voltage (V) Voltage (V) structures are versatile enough, from a molecular architecture standpoint, Figure 2 These plots show record efficiencies achieved with organic photovoltaic technology as certified by the that the entire visible spectrum can be National Renewable Energy Lab (NREL). a, Results for a device with an active area of 1.024 cm2 and an efficiency covered as well. Modelling indicates of 5.21%. b, Results for a device with an active area of 0.685 cm2 and an efficiency of 5.24%. that some of these polymers, when combined with fullerene, will exhibit cell efficiencies between 7% and 10%. Even higher efficiency values are throughput suggests that attractive no complete life-cycle analysis has been expected for tandem or multiple junction energy payback times — the time it takes completed, but expectations are that the geometries, where solar cells of different to generate energy equivalent to that energy payback time can be as low as a bandgaps are stacked on top of each outlaid during fabrication — should be few weeks. other and interconnected in series. Each possible. With large-volume manufacture The efficiency of organic photovoltaic cell absorbs at a different wavelength, and reasonable efficiencies of 5% to technology is low when compared with reducing the amount of uncaptured 10%, these printed solar cells should silicon or compound semiconductor radiation that is lost as heat and enabling have the potential to go significantly technologies. However, many significant higher efficiencies. The materials for below $1 per watt of electricity. So far, modifications and improvements have tandem cells can come from a variety of Box 1 The structure of an organic photovoltaic cell All photovoltaic cells have several the near infrared. As the active-layer common features: they must have two p-type carrier: coating is a fraction of a micrometre electrodes and a layer of photoactive electron donators thick (100–200 nm), the polymers must material that absorbs light (a photon) have a very high absorptivity as well. + and generates current (an electron). When choosing which polymers to use Positive charge + + The key to the success of organic e– as the donor and acceptor molecules, e– photovoltaics is its two-component Negative charge e– material scientists must look at the active layer, which on coating and different energy states of the molecular drying forms a very unique morphology electrons in the donor and the acceptor n-type carriers: (shown schematically in Fig. B1) molecule. All charge carriers need electron acceptors Primary electrode referred to as a bulk heterojunction. to be transported across the bulk to The main feature of this heterojunction the electrodes before recombination morphology is the intertwining of takes place. At typical carrier lifetimes phases of each of the components, which of a few microseconds, charge- spontaneously occurs when the solvent Figure B1 The mechanism of charge transfer and carrier mobilities of 10–3 cm2 V–1 s–1 is evaporated. In current designs of transport in a bulk heterojunction structure. or higher are required for loss-free polymer photovoltaic cells, one of the carrier collection. components is a polymer that has three These selection criteria significantly functions: to absorb light; to inject an narrow down the polymeric structures electron into the second component; External quantum efficiencies of up to that have potential for efficient and to carry the resultant hole to one 80% have already been demonstrated, photovoltaic energy conversion. Finding of the electrodes. The other component though today’s power-conversion suitable polymers for this application is a fullerene derivative. Its function is efficiency is only in the regime of 5–6%. is challenging because a compromise to accept an electron and carry it to the The current generated by the cell must always be reached between the other electrode. The primary advantage is related to the absorption spectrum choice of bandgap (which dominates of the bulk heterojunction is the very of the polymer, which is determined the short-circuit current) and the position high surface area that is formed between by its molecular structure. The of the electronic levels (which dominates the two phases, which directly affects structural design of these molecules the open-circuit voltage). The product of the efficiency of charge transfer between is adjusted to absorb broadly across the short-circuit current and the open- the polymer and the fullerene phases. the solar spectrum from the blue to circuit voltage dominates the efficiency. 288 nature photonics | VOL 2 | MAY 2008 | www.nature.com/naturephotonics
Recommended publications
  • Konarka Technologies
    Colorado Renewable Energy Collaboratory Partners for Clean Energy Center for Revolutionary Solar Photoconversion updateSummer 2010 CRSP Research Profile Plasma Sheds Light on Mysteries of PV Efficiency Stars are made of plasma, an ionized gas comprising a complex mixture of gas-phase species. So it’s remarkable that CRSP researchers are using plasmas to create photovoltaic (PV) devices that can better convert energy from our own star, the sun, into power we can use here on Earth. A CRSP research team, made up of re- searchers from CSU and NREL, has been using plasmas to modify PV materials and improve the interfaces between the layers of materials in thin-film solar cells. The goal is to increase efficiency in PV devices. Ellen Fisher is an analytical/materials The CRSP plasma processing project team Ina Martin (left) and Ellen Fisher are shown chemist and the project’s principle investiga- includes Ina Martin, an analytical chemist at in the laboratory with a low-pressure rf plasma reactor. The two chemists work to- tor at CSU. “We know we can use plasmas NREL. Her role is to extend the character- gether on a CRSP project that uses plasmas to change materials and get different device ization of the modified materials and evalu- results, but we need to know exactly how it to modify PV materials and improve the ate the resulting devices under real-world interfaces between the layers of materials in works,” she says. conditions. The rest of the team includes thin-film solar cells. Credit: Jeff Shearer. The team is developing new materials for Michael Elliott, a CSU electrochemist with solar cells by taking known materials, such a background in PV device testing; Patrick McCurdy, a CSU staff scientist who special- chemistry, applying these results to as titanium dioxide (TiO2), and improv- ing their properties.
    [Show full text]
  • Commercialization Potential of Dye-Sensitized Mesoscopic Solar Cells
    Commercialization Potential of Dye-Sensitized Mesoscopic Solar Cells by Kwan Wee Tan B.Eng (Materials Engineering) Nanyang Technological University, 2006 SUBMITTED TO THE DEPARTMENT OF MATERIALS SCIENCE AND ENGINEERING IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF ENGINEERING IN MATERIALS SCIENCE AND ENGINEERING AT THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY SEPTEMBER 2008 © 2008 Kwan Wee Tan. All rights reserved. The author hereby grants to MIT permission to reproduce and to distribute publicly paper and electronic copies of this thesis document in whole or in part in any medium now known or hereafter created. Signature of Author ……………………………………………………………………….... Department of Materials Science and Engineering July 16, 2008 Certified by ...……………………………………………………………………………..... Yet-Ming Chiang Kyocera Professor of Ceramics Thesis Supervisor Certified by ...……………………………………………………………………………..... Chee Cheong Wong Associate Professor, Nanyang Technological University Thesis Supervisor Accepted by ……………………………………………………………………………….... Samuel M. Allen POSCO Professor of Physical Metallurgy Chair, Departmental Committee for Graduate Students 1 Commercialization Potential of Dye-Sensitized Mesoscopic Solar Cells By Kwan Wee Tan Submitted to the Department of Materials Science and Engineering on July 16, 2008 in partial fulfillment of the requirements for the Degree of Master of Engineering in Materials Science and Engineering ABSTRACT The price of oil has continued to rise, from a high of US$100 per barrel at the beginning 2008 to a new record of above US$140 in the recent weeks (of July). Coupled with increasing insidious greenhouse gas emissions, the need to harness abundant and renewable energy sources is never more urgent than now. The sun is the champion of all energy sources and photovoltaic cell production is currently the world’s fastest growing energy market.
    [Show full text]
  • Opportunities and Risks of Nanotechnologies Report in Co-Operation with the OECD International Futures Programme Contents
    Small sizes that matter: Small sizes that matter: Opportunities and risks of Nanotechnologies Report in co-operation with the OECD International Futures Programme Contents 1. Executive Summary 3 1.1. Nanotechnology and the market place 3 1.2. Investments in nanotechnology 4 1.3. The environmental, health and safety discussion related to nanoparticles 4 1.4. Allianz’s position on industrial insurance cover 5 2. What is nanotechnology and what makes it different? 6 2.1. Introduction 6 2.2. Nanomaterials: basic building blocks 8 2.3. Nano tools and fabrication techniques 11 2.4. Present and future areas of application 12 3. Market prospects and opportunities 14 3.1. Sectoral example: Medicine 15 3.2. Sectoral example: Food and agriculture 17 3.3. Sectoral example: Semiconductors and computing 18 3.4. Sectoral example: Textiles 20 3.5. Sectoral example: Energy 21 3.6. Nanotechnology and the situation of developing countries 22 4. Players 24 5. Nanotechnology programs of governments 26 6. What are the risks of Nanotechnology? 27 6.1. Broad range of technologies, variety of risks 27 6.2. Positive effects on human health and the environment 28 6.3. Manufactured nanoparticles 28 6.4. Nanoparticles and human health 30 6.5. Nanoparticles and the environment 35 6.6. Explosion hazards of nanoparticles 36 6.7. Self replication of miniature machines 37 6.8. Regulatory considerations of authorities and other stakeholders 38 6.9. Position of the industry 39 6.10. Position of pressure groups 40 6.11. Position of reinsurers and insurers 40 7. Chances and risks for the Allianz Group 41 7.1.
    [Show full text]
  • Photovoltaic Thin Film Cells 2009
    i Photovoltaic Thin Film Cells 2009 France Innovation Scientifique & Transfert FRINNOV 83 Boulevard Exelmans 75016 PARIS, FRANCE Tel.: +33 (0)1 40 51 00 90 Fax: +33 (0)1 40 51 78 58 www.frinnov.fr Patent Mapping - A new tool to decipher market trends MULTI-CLIENT PATENT LANDSCAPE ANALYSIS IP Overview is a report that analyses all patent families filed on a given thematic Available reports in engineering sciences are Carbon nanotubes, Photovoltaic cells (3 reports), LiMPO4 batteries TAILOR-MADE PATENT LANDSCAPE ANALYSIS IP Overview On Demand is similar to IP Overview but 100% tailored to your needs Ask your questions and we will answer by a specific analysis of the patent landscape of your area of interest CUSTUMIZED STUDIES OF PATENT PORTFOLIOS Position your patent portfolio or the one of your competitors PRIOR-ART SEARCH Need more information? Free access to the interactive database Contact us at [email protected] is provided for studies published since 2010 Photovoltaic Thin Film Cells CContents METHODOLOGY 11 INTRODUCTION 12 1. BRIEF OUTLINE OF THE PHOTOVOLTAICS MARKET 14 2. GLOBAL OVERVIEW OF PHOTOVOLTAIC PATENTS 17 2.1. Technological segmentation 18 2.2. Segmentation by application 20 2.3. Zoom on companies involved in the market 22 2.4. Zoom on CANON 24 2.4.1. History of patent application filings and ambitions 24 2.4.2. Segmentation of the patent portfolio 25 2.4.3. Filing policy 26 2.4.4. Analysis of the patent portfolio 28 3. THIN FILM CELL PATENTS - WORLD ANALYSIS 31 3.1. Protection strategies 31 3.1.1.
    [Show full text]
  • Nov 0 1 2011 Libraries Archives
    Design and implementation of a continuous improvement framework, focusing on material and information flow, for the manufacturing of Organic Photovoltaics. by Susheel Teja Gogineni B.E. in Mechanical Engineering M.Sc. in Mathematics Birla Institute of Technology and Science, Pilani, India, 2009 Submitted to the Department of Mechanical Engineering MASSACHUSETS INSTITUTE in partial fulfillment of the requirements for the degree of OF TECHNOLOGY Master of Engineering in Manufacturing NOV 0 1 2011 at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY LIBRARIES September 2011 ARCHIVES @2011 Susheel Teja Gogineni All rights reserved. The author hereby grants MIT permission to reproduce and distribute publicly paper and electronic copies of this thesis document in whole or in part Author....... /........................................................ Susheel Teja Gogineni Department of Mechanical Engineering August 18, 2011 Certified by ....... 6 -1 David E. Hardt Ralph E. and Eloise F Cross Professor of Mechanical Engineering Thesis Supervisor Accepted by .... David E. Hardt Ralph E. and Eloise F. Cross Professor of Mechanical Engineering Chairman, Committee on Graduate Students Design and implementation of a continuous improvement framework, focusing on material and information flow, for the manufacturing of Organic Photovoltaics. by Susheel Teja Gogineni B.S. in Mechanical Engineering, M.Sc. in Mathematics Birla Institute of Technology and Science, 2009 Submitted to the Department of Mechanical Engineering in partial fulfillment of the requirements for the degree of Master of Engineering in Manufacturing Abstract Konarka Technologies is an organic photo voltaic solar panel manufacturing startup and is currently in the process of ramping up their production volumes. The MIT team has worked on numerous improvement activities that helped improve different aspects of the manufacturing plant.
    [Show full text]
  • Konarka Reference Documents
    Konarka Sukant Tripathy Sukant Tripathy, Professor at the University of Massachusetts Lowell, died on December 12, 2000 in a swimming accident in Hawaii after lecturing at a conference of the Polymer Chemistry Division of the American Chemical Society. Sukant was born in Bihar, India, and he did his undergraduate work at the Indian Institute of Technology at Kharagpur. He received his Ph.D. in polymer science from Case Western Reserve University in 1981, and then joined GTE Laboratories. At GTE Labs, he became manager of the organic and polymer science department. In 1985, he joined the chemistry faculty at the University of Massachusetts Lowell. He founded and served as director of the Center for Advanced Materials from 1992. He also served the University as provost and vice chancellor for academic affairs from 1994 to 1996. Sukant Tripathy was recognized around the world for his research in thin polymer films and their electrical and linear and nonlinear optical properties. In 1993, he was awarded the Carl S. Marvel Creative Polymer Chemistry Award of the American Chemical Society Division of Polymer Chemistry. He had published more than 200 papers in the areas of interest and held two dozen patents. https://www.tandfonline.com/doi/abs/10.1080/10601320802391015?journalCode=lmsa20 Journal of Macromolecular Science: Tribute at ten years after his death Sukant Tripathy Editorial and in Memoriam Russell A. Gaudiana Pages 881-883 | Published online: 19 Nov 2008 It seems impossible that it has been ten years since death in December of 2000 and that this is the tenth symposium in his honor.
    [Show full text]
  • Foundations for Innovation: Photovoltaic Technologies for the 21St Century
    Foundations for Innovation: Photovoltaic Technologies for the 21st Century December 2010 Report of the Steering Committee for Advancing Solar Photovoltaic Technologies STEERING COMMITTEE FOR ADVANCING PHOTOVOLTAIC TECHNOLOGIES This report was prepared through the collaborative efforts of the individuals noted below. It reflects their expert contributions as well as the many excellent ideas generated at the Grand Challenges for Advanced Photovoltaic Technologies and Measurements Workshop held on May 12-13, 2010 in Denver, Colorado.1 Committee Co-chairs Roger G. Little, CEO, Spire Corporation Robert W. Collins, Distinguished University Professor and NEG Endowed Chair of Silicate and Materials Science, University of Toledo Steering Committee Members Tim Anderson, University of Florida Benny Buller, First Solar Gilles Dennler, Konarka Technologies, Inc. Markus Gloeckler, First Solar Nasser H. Karam, Spectrolab, Inc. Sarah Kurtz, National Renewable Energy Laboratory Dana C. Olson, National Renewable Energy Laboratory Tom Surek, Surek PV Consulting John Wohlgemuth, National Renewable Energy Laboratory 1. Workshop Summary Report: Grand Challenges for Advanced Photovoltaic Technologies and Measurements. July 2010. http://events.energetics.com/NISTGrandChallenges2010/pdfs/AdvPV_ WorkshopReport.pdf This report was prepared as an account of work cosponsored by the National Institute of Standards and Technology (NIST). The views and opinions expressed herein do not necessarily state or reflect those of NIST. Certain commercial entities, equipment, or materials may be identified in this document in order to illustrate a point or concept. Such identification is not intended to imply recommendation or endorsement by NIST, nor is it intended to imply that the entities, materials, or equipment are necessarily the best available for the purpose.
    [Show full text]
  • A Study of Very Large Solar Desert Systems with the Requirements and Benefits to Those Nations Having High Solar Irradiation Potenial
    A Study of Very Large Solar Desert Systems with the Requirements and Benefits to those Nations Having High Solar Irradiation Potenial July 2006 Peter Meisen President, Global Energy Network Institute (GENI) www.geni.org [email protected] (619)595-0139 Oliver Pochert Research Associate, Global Energy Network Institute (GENI) [email protected] Table of Contents I) Introduction ............................................................................................................. 3 II) Current situation of world energy and environment........................................... 3 a) Outlook for World Supply / Demand by Region................................................ 4 b) The NASA earth at night map ............................................................................. 5 c) Africa’s population in the dark ........................................................................... 7 III) World PV Potential using Desert Utilization...................................................... 8 a) World primary energy supply ............................................................................. 9 b) PV system feasibility in world deserts (Table 1) .............................................. 10 c) Very large scale PV (VLS PV) ........................................................................... 12 IV) Realizing Large Scale PV in the desert -- Genesis Project .............................. 12 a) Life Cycle framework of the case study............................................................ 14 b) Requirements to construct
    [Show full text]
  • Nanotechnology Research Roundtable in Boston Friday, Feb. 15 Discussion to Focus on Medical and Energy Research and Transferring Technology to the Marketplace
    National Science and Technology Council Committee on Technology, Subcommittee on Nanoscale Science, Engineering and Technology (NSET) National Nanotechnology Coordination Office (NNCO) FOR IMMEDIATE RELEASE: February 13, 2008 Contacts: Audrey Haar, National Nanotechnology Coordination Office, [email protected], 443-257- 887 John Carter, U.S. Department of Energy, [email protected], 631-708-6496 Nanotechnology Research Roundtable in Boston Friday, Feb. 15 Discussion to focus on medical and energy research and transferring technology to the marketplace What: Reporters will meet with four of America’s foremost nanotechnology experts for a wide-ranging discussion about using the technology to more effectively treat patients and to better produce and secure energy. Also, an entrepreneur will share his company’s experience taking nanotechnology from the lab to the marketplace, and all participants will discuss the role of the federal government in supporting nanotechnology research through the National Nanotechnology Initiative (NNI) and its member agencies. When: Friday, February 15, 2008, 11 a.m.-12:30 p.m. Where: Boston Marriott Copley Place, Suffolk Room, 110 Huntington Avenue, Boston, Mass. Participants: Dr. Robert Langer is an Institute Professor (the highest honor awarded to a faculty member) at the Massachusetts Institute of Technology and winner of the 2006 United States National Medal of Science. He has written more than 950 articles and has more than 600 issued or pending patents worldwide. Dr. Langer’s work is at the interface of biotechnology and materials science, and he will discuss nanotechnology in medicine, including safety, targeting drugs to tumors, and delivery of genetic medicine. Some of Dr. Langer’s research is funded by the National Science Foundation.
    [Show full text]
  • Commercialization of Novel Organic Solar Cells
    Commercialization of Novel Organic Solar Cells Master of Engineering Final Report Shanel C. Miller 4/10/2012 Faculty Advisors: Dr. Sam Kassegne (Chairman) Dr. Fletcher Miller (Committee Member) Dr. Congcong Zheng (Committee Member) Fellowship awarded by: William J. von Liebig Center for Entrepreneurism and Technology Advancement and U.S. Department of Energy Table of Contents List of Tables .................................................................................................................................. 5 List of Figures ................................................................................................................................. 5 1. Executive Summary .................................................................................................................... 7 1.1 Background ........................................................................................................................... 8 1.2 Objectives ............................................................................................................................ 10 1.3 Mission ................................................................................................................................ 11 2. Device Technology ................................................................................................................... 12 2.1 How do Solar Cells Work?.................................................................................................. 12 2.2 Types of Solar Cells that Exist Today ................................................................................
    [Show full text]
  • Konarka Technologies, Inc. from Light to Power Enabled by Nanotechnology
    Konarka Technologies, Inc. From Light to Power Enabled by Nanotechnology Innovator of polymer photovoltaic products in a variety of form factors for commercial, industrial and consumer applications Flexible Lightweight Indoor/Outdoor September, 2003 Mission-Designed Low cost © 2003, Konarka Technologies, Inc. September, 2003 Financing Completed $13.5 Million B round, Fall ‘02 Lead: Draper Fisher Jurvetson ~ $18 million in total financing to date Late 2004 C Round Mid-stage institutional equity investors 2 © 2003, Konarka Technologies, Inc. September, 2003 Experienced Leadership and Technical Excellence 30 years as executive with extensive marketing and technology leadership; Western Electric, Motorola, Hadco, Sanmina-SCI Dr. Bill Beckenbaugh President and CEO Randolf Chan Dr. Russell Gaudiana Dr. Erhard Glotzl Howard Berke VP VP Managing Director Kevin McGuire VP (Acting) of Manufacturing and Research and (acting) Controller Business Engineering Development Konarka Austria Development 16 years in high 28 years in R&D CEO volume graphics 20 years in financial leadership in Linz AG and electronics management in high technical coatings Electricity and Gas Avery Dennison, volume electronics 36+ Patents regional utility Raychem, E Ink 3 © 2003, Konarka Technologies, Inc. September, 2003 Expert Advisors 15 world-class technical advisors, including: Dr. Alan Heeger, Nobel Laureate, all-polymer PV Dr. Michael Graetzel, EPFL, dye-based cells Dr. Alan Bard, University of Texas Dr. Serdar Sariciftci, Linz Inst. for Organic Solar Cells Dr. Jack Hanoka, CTO-Evergreen Solar Dr. Elliot Berman, founder SPC, CTO-Arco Solar Dr. Merrill Cohen, GE (retired) Dr. Jayant Kumar, University of Massachusetts Dr. Joan Vrtis, Rose Street Labs, Intel Dr. Frank Shemansky, Consultant, Orchid BioSciences, Motorola, Bruce Anderson, IGNITE! Startups Paul Wormser, Consultant, PV Products Market 4 © 2003, Konarka Technologies, Inc.
    [Show full text]
  • Information Tracking and Sharing in Organic Photovoltaic Panel Manufacturing
    Information Tracking and Sharing in Organic Photovoltaic Panel Manufacturing by Ming Gong B.S. in Chemical Engineering, University of California, Berkeley, 2010 Submitted to the Department of Mechanical Engineering in partial fulfillment of the requirements for the degree of Master of Engineering in Manufacturing ARCHIVES at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY MASSACHUSETTS INSTITUTE OF TECHNOLOGY NOV 0 1 2011 September 2011 LIBRARIES @ 2011 Ming Gong All rights reserved. The author hereby grants MIT permission to reproduce and distribute publicly paper and electronic copies of this thesis document in whole or in part A u th or .......................................................... Mig Gong Department of echanical Engineering August 6, 2011 Certified by............. David E. Hardt Ralph E. and Eloi F. Cross Professor of Mechanical Engineering Thesis Supervisor Accepted by .............. ...... ............... David E. Hardt Ralph E. and Eloise F. Cross Professor of Mechanical Engineering Chairman, Committee for Graduate Students Information Tracking and Sharing in Organic Photovoltaic Panel Manufacturing by Ming Gong B.S. Chemical Engineering, University of California, Berkeley, 2010 Submitted to the Department of Mechanical Engineering in partial fulfillment of the requirements for the degree of Master of Engineering in Manufacturing Abstract The MIT MEng team of four worked with Konarka Technologies, a world leading organic solar panel manufacturer, on production tracking and analysis as well as various operational improvement projects. MIT's collaborative improvement projects at Konarka's manufacturing facility were focused on information system and operations in the finishing processes after solar panels have been coated. This thesis report, however, focuses primarily on information tracking and sharing in Konarka's manufacturing facility, specifically including the barcode tracking system for production tracking, operator interfaces for the system, production tracking (Kanban card) board, and Kaizen continuous improvement board.
    [Show full text]