Characterisation of Solar Electricity Import Corridors from MENA to Europe

Total Page:16

File Type:pdf, Size:1020Kb

Characterisation of Solar Electricity Import Corridors from MENA to Europe Characterisation of Solar Electricity Import Corridors from MENA to Europe Potential, Infrastructure and Cost Characterisation of Solar Electricity Import Corridors from MENA to Europe Potential, Infrastructure and Cost July 2009 Report prepared in the frame of the EU project ‘Risk of Energy Availability: Common Corridors for Europe Supply Security (REACCESS)’ carried out under the 7th Framework Programme (FP7) of the European Commission (Theme - Energy-2007-9. 1-01: Knowledge tools for energy-related policy making, Grant agreement no.: 212011). Franz Trieb, Marlene O’Sullivan, Thomas Pregger, Christoph Schillings, Wolfram Krewitt German Aerospace Center (DLR), Stuttgart, Germany Institute of Technical Thermodynamics Department Systems Analysis & Technology Assessment Pfaffenwaldring 38-40 D-70569 Stuttgart, Germany Characterisation of Solar Electricity Import Corridors TABLE OF CONTENTS 1 INTRODUCTION...................................................................................................1 2 STATUS OF KNOWLEDGE - RESULTS FROM RECENT STUDIES .................2 3 EXPORT POTENTIALS – RESOURCES AND PRODUCTION.........................19 3.1 SOLAR ENERGY RESOURCES IN POTENTIAL EXPORT COUNTRIES.........19 3.1.1 Solar Energy Resource Assessment .........................................................19 3.1.2 Land Resource Assessment ......................................................................39 3.1.3 Potentials for Solar Electricity Generation in MENA ..................................48 3.1.4 Potentials for Solar Electricity Generation World Wide..............................49 3.2 PRODUCTION TECHNOLOGIES, CAPACITIES AND COSTS .........................53 3.2.1 Solar Energy for Power Generation ...........................................................53 3.2.2 Overview of Concentrating Solar Power Technology ................................58 3.2.3 Current CSP Project Development ............................................................69 3.2.4 CSP Plant Performance Model ..................................................................76 3.2.5 CSP Production Potentials in MENA and the World Regions....................79 3.3 CONCENTRATING SOLAR POWER PLANT COST MODEL............................83 4 IMPORT INFRASTRUCTURES..........................................................................87 4.1 TRANSMISSION TECHNOLOGIES, CAPACITIES AND COSTS......................87 4.1.1 HVDC versus HVAC ..................................................................................87 4.1.2 Characteristics of HVDC Technologies for Long Distance Transport ........89 4.2 PRESENT STATUS OF INFRASTRUCTURES..................................................92 4.2.1 Transmission Systems in and around Europe ...........................................92 4.2.2 Existing HVDC Transmission Lines ...........................................................98 4.3 DEVELOPMENTS IN THE FUTURE ................................................................100 Characterisation of Solar Electricity Import Corridors 4.3.1 Definition of Sites for CSP Exports ..........................................................100 4.3.2 Definition of Sites for CSP Imports ..........................................................102 4.3.3 Site Exclusion for HVDC Lines ................................................................104 4.3.4 Weighting of Non-Exclusive Land Characteristics ...................................108 5 ASSESSMENT OF FRAMEWORK CONDITIONS...........................................126 5.1 POLITICAL FRAMEWORK CONDITIONS .......................................................126 5.1.1 General European Directives...................................................................126 5.1.2 Union for the Mediterranean and Mediterranean Solar Plan ...................129 5.2 FINANCIAL FRAMEWORK CONDITIONS, OWNERSHIP STRUCTURE........133 5.2.1 Ownership Structure of Transmission Lines ............................................133 5.2.2 Ownership Structure of Production Plants ...............................................135 5.3 TRENDS OF COMPETING REGIONS .............................................................138 5.3.1 Electricity Demand Trends in MENA........................................................138 5.3.2 Chances and Limitations of Electricity Exports from MENA to Europe....146 6 REFERENCES..................................................................................................147 Characterisation of Solar Electricity Import Corridors 1 INTRODUCTION This report describes methodology, information sources and results of an analysis of solar electricity export potentials of MENA (Middle East and North Africa) countries and possible import corridors to EU27+. The analysis was done in the frame of the EU project ‘Risk of Energy Availability: Common Corridors for Europe Supply Security (REACCESS)’ carried out under the 7th Framework Programme (FP7) of the European Commission (Theme - Energy-2007-9. 1-01: Knowledge tools for energy- related policy making, Grant agreement no.: 212011). The study conducted as Task 2.3 in Work package 2 focuses on solar power as an additional and virtually limitless energy resource in contrast to fossil resources which were analysed in other Tasks of the REACCESS project. The interconnection of electric power transmission grids among the Mediterranean countries, including EU-countries as well as countries from the MENA region promises an increased level of energy security. The huge solar resources in the MENA countries, significant improvements in solar electricity generation and power transmission technologies, and the growing need for the decarbonisation of European electricity supply leads to increased interest in an EU- MENA electricity grid interconnection. The objective of this analysis was to specify the long term potential for solar electricity import from MENA countries into the EU, and to provide detailed technical and cost data for electricity generation and power transmission options. Concentrating solar power (CSP) plants including high temperature heat storage and high voltage direct current (HVDC) lines as transmission technology represent the key technologies for implementing this most promising option for import of renewable energy to EU27. The report documents the data basis which was used for the identification and characterisation of potentials and corridors provided for REACCESS project as an input for risk assessment and scenario studies using multi-regional TIMES energy system models. Annex A lists identified solar resources and electricity generation potentials of possible supply regions and Annex B gives an overview of identified and characterised corridors for imports into EU27. Page 1 Characterisation of Solar Electricity Import Corridors 2 STATUS OF KNOWLEDGE - RESULTS FROM RECENT STUDIES Methodologies and results of the study TRANS-CSP (Trieb et al., 2006) commissioned by the German Federal Ministry of the Environment, Nature Conservation and Nuclear Safety (BMU) were used as basis for work in WP2 Task “Electricity supply”. The TRANS-CSP study analysed the renewable electricity potentials in Europe and their capability to provide firm power capacity on demand. The concept includes an interconnection of the electricity grids of Europe, the Middle East and North Africa (EUMENA) and evaluates the potential and benefits of solar power imports from the South. The results of the TRANS-CSP study can be summarized in the following statements: A well balanced mix of renewable energy sources backed by fossil fuels can provide sustainable, competitive and secure electricity for Europe. For the total region, the scenario starts with a reported share of 20 % renewable electricity in the year 2000 and reaches 80 % in 2050. An efficient future backup is necessary to complement the renewable electricity mix, providing firm capacity on demand by quickly reacting, natural gas fired peaking plants, and an efficient grid infrastructure is required to distribute renewable electricity from the best centres of production to the main centres of demand. After initiation, a change to a sustainable energy mix leads to less expensive power generation than a business as usual strategy in a time span of about 15 years. Imported fuels with escalating cost will be increasingly substituted by renewable, mostly domestic energy sources. The negative socio-economic impacts of fossil fuel price escalation can be reversed by 2020 if an adequate political and legal framework is established at time. Feed-in tariffs like the German or Spanish Renewable Energy Acts are very effective instruments for the market introduction of renewables. If tariff additions are subsequently reduced to zero, they can be considered a public investment rather than a subsidy. Solar electricity generated by concentrating solar thermal power stations in MENA and transferred to Europe via high voltage direct current transmission can provide firm capacity for base load, intermediate and peaking power, effectively complementing European electricity sources. Starting between 2020 and 2025 with a transfer of 60 TWh/y, solar electricity imports could subsequently be extended to 700 TWh/y by 2050. High solar irradiance in MENA and low transmission losses of 10-15 % will yield competitive import solar electricity costs of around 0.05 €2000/kWh. Page 2 Characterisation of Solar Electricity Import Corridors Carbon emissions can be reduced to 25 % compared to the year 2000. 1 % of the European land would be required
Recommended publications
  • Perspectives on Solar Energy, Mining and Agro-Food in Chile
    Chapter 3 Transforming industries: Perspectives on solar energy, mining and agro-food in Chile The shifting global geopolitical and technological landscape coupled with changes in consumers’ preferences is opening up a window of opportunity for Chile. The country could transform its economy, enlarge its knowledge base and increase productivity by leveraging on its natural assets in new, more innovative ways. However, the world is moving fast and opportunities will not be permanently available. To tap into them, a strategic approach and a shared vision between government, business and society is needed. Chile has started to do so through strategic initiatives that identify future opportunities and clarify gaps to be addressed. This chapter presents the Chilean experience in solar energy, mining and agro-food; in each case it presents a snapshot of key trends and future scenarios, developed through multi-stakeholder consultations, it describes the current policy approach and it identifies reforms to move forward. PRODUCTION TRANSFORMATION POLICY REVIEW OF CHILE: REAPING THE BENEFITS OF NEW FRONTIERS © OECD AND UNITED NATIONS 2018 103 3. Transforming industries: Perspectives on solar energy, mining and agrO-food in Chile Unleashing the potential of solar energy in Chile This section presents a snapshot of the rise of solar energy in the country and summarises the results of public-private consultations on the opportunities presented by solar for Chile. It describes the current policy approach and it identifies reforms to move forward. Solar energy is gaining ground in Chile Solar energy is becoming globally competitive thanks to falling prices. Investment in the development of renewable energies globally is surpassing investment in fossil fuel technologies (OECD, 2018; IEA, 2016).
    [Show full text]
  • Fire Fighter Safety and Emergency Response for Solar Power Systems
    Fire Fighter Safety and Emergency Response for Solar Power Systems Final Report A DHS/Assistance to Firefighter Grants (AFG) Funded Study Prepared by: Casey C. Grant, P.E. Fire Protection Research Foundation The Fire Protection Research Foundation One Batterymarch Park Quincy, MA, USA 02169-7471 Email: [email protected] http://www.nfpa.org/foundation © Copyright Fire Protection Research Foundation May 2010 Revised: October, 2013 (This page left intentionally blank) FOREWORD Today's emergency responders face unexpected challenges as new uses of alternative energy increase. These renewable power sources save on the use of conventional fuels such as petroleum and other fossil fuels, but they also introduce unfamiliar hazards that require new fire fighting strategies and procedures. Among these alternative energy uses are buildings equipped with solar power systems, which can present a variety of significant hazards should a fire occur. This study focuses on structural fire fighting in buildings and structures involving solar power systems utilizing solar panels that generate thermal and/or electrical energy, with a particular focus on solar photovoltaic panels used for electric power generation. The safety of fire fighters and other emergency first responder personnel depends on understanding and properly handling these hazards through adequate training and preparation. The goal of this project has been to assemble and widely disseminate core principle and best practice information for fire fighters, fire ground incident commanders, and other emergency first responders to assist in their decision making process at emergencies involving solar power systems on buildings. Methods used include collecting information and data from a wide range of credible sources, along with a one-day workshop of applicable subject matter experts that have provided their review and evaluation on the topic.
    [Show full text]
  • Special Case in Corsica, the Clocks Tick Differently Than on the French Mainland
    $034*$" Special case In Corsica, the clocks tick differently than on the French mainland. Compared to other regions in France, the fourth largest Mediterranean island enjoys a high degree of autonomy. This fact is also felt by the representatives of the solar sector. n the day that PV gained momentum in France, Corsica started to become attractive Ofor the solar sector. The island enjoys excep- tional solar radiation levels and offers feed-in tariffs comparable to the French overseas departments and territories. Suddenly, the industry representatives conditions and infrastructure, including the project’s took off to Corsica with plans for new projects. But the consistency with regional landscapes and the Corsicans are quite proud of their autonomy, says economic benefits for the region. “An important Angela Saade, PV expert for Hespul, an association aspect is also whether the planners want to install for Renewable Energy and Energy Efficiency. Local the system on an agricultural surface. Based on this authorities have a strong influence on the licensing of catalogue, a number of 20 solar projects have been solar parks. “The so-called Assemblée de Corse approved by the Assemblée de Corse in the past.” consists of representatives from the different regions However, more compliance with the required who participate in the political decision-making, criteria does not imply that the project will be including when it comes to permits for a solar park”, successful. In a next step, the project has to be explains Saade. presented to the authorities of the relevant municipality, which has to approve of the construction White Owl Capital, a Regional restrictions plans.
    [Show full text]
  • The Economics of Solar Power
    The Economics of Solar Power Solar Roundtable Kansas Corporation Commission March 3, 2009 Peter Lorenz President Quanta Renewable Energy Services SOLAR POWER - BREAKTHROUGH OR NICHE OPPORTUNITY? MW capacity additions per year CAGR +82% 2000-08 Percent 5,600-6,000 40 RoW US 40 +43% Japan 10 +35% 2,826 Spain 55 1,744 1,460 1,086 598 Germany 137 241 372 427 2000 01 02 03 04 05 06 07 2008E Demand driven by attractive economics • Strong regulatory support • Increasing power prices • Decreasing solar system prices • Good availability of capital Source: McKinsey demand model; Solarbuzz 1 WE HAVE SEEN SOME INTERESTING CHANGES IN THE U.S. RECENTLY 2 TODAY’S DISCUSSION • Solar technologies and their evolution • Demand growth outlook • Perspectives on solar following the economic crisis 3 TWO KEY SOLAR TECHNOLOGIES EXIST Photovoltaics (PV) Concentrated Solar Power (CSP) Key • Uses light-absorbing material to • Uses mirrors to generate steam characteristics generate current which powers turbine • High modularity (1 kW - 50 MW) • Low modularity (20 - 300 MW) • Uses direct and indirect sunlight – • Only uses direct sunlight – specific suitable for almost all locations site requirements • Incentives widely available • Incentives limited to few countries • Mainly used as distributed power, • Central power only limited by some incentives encourage large adequate locations and solar farms transmission access ~ 10 Global capacity ~ 0.5 GW, 2007 Source: McKinsey analysis; EPIA; MarketBuzz 4 THESE HAVE SEVERAL SUB-TECHNOLOGIES Key technologies Sub technologiesDescription
    [Show full text]
  • Department of Energy Loan Guarantee Program: Update on Loan Guarantee Applicants
    Department of Energy Loan Guarantee Program: Update on Loan Guarantee Applicants Passed as part of the Energy Policy Act of 2005, the Department of Energy’s (DOE) Title XVII Loan Guarantee Program has $34 billion in authority to give loan guarantees to innovative technologies.1 The 1705 program also had about $2.4 billion in American Reinvestment and Recovery Act funds to pay for the credit subsidy cost for renewable and energy efficiency projects, but those funds expired on September 30, 2011. So far, the DOE has finalized $15.1 billion worth of loans and committed another $15 billion. Over the life of the program, the DOE loan programs office has received a total of 460 applications as a result of nine solicitations with an median requested loan amount of $141 million—and a high of $12 billion to support the development of a nuclear power plant.2 Below is a list of those applicants which have received conditionally committed or finalized loans based largely on our independent research. There are also companies that are in the process of applying for a loan and companies which have withdrawn or defaulted for financial reasons. Nuclear Power Facilities Current DOE loan guarantee authority for the financing of nuclear projects is set at $18.5 billion with an additional $4 billion now identified for uranium enrichment (see see front-end nuclear cycle below).1 President Obama has requested more. In both his FY2011 and FY2012 budgets, he included an additional $36 billion in loan guarantee authority for nuclear reactors. In late 2009 and early 2010, reports indicated that the final contenders for the first nuclear loan guarantee were: UniStar Nuclear Energy, SCANA Energy, Southern Company, and NRG Energy.
    [Show full text]
  • Solar Thermal and Concentrated Solar Power Barometers 1 – EUROBSERV’ER –JUIN 2017 – EUROBSERV’ER BAROMETERS POWER SOLAR CONCENTRATED and THERMAL SOLAR
    1 2 - 4.6% The decrease of the solar thermal market in the European Union in 2016 Evacuated tube solar collectors, solar thermal installation in Ireland SOLAR THERMAL AND CONCENTRATED SOLAR POWER BAROMETERS A study carried out by EurObserv’ER. solar solar concentrated and thermal power barometers solar solar concentrated and thermal power barometers he European solar thermal market is still losing pace. According to the Tpreliminary estimates from EurObserv’ER, the solar thermal segment dedicated to heat production (domestic hot water, heating and heating networks) contracted by a further 4.6% in 2016 down to 2.6 million m2. The sector is pinning its hopes on the development of the collective solar segment that includes industrial solar heat and solar district heating to offset the under-performing individual home segment. ince 2014 European concentrated solar power capacity for producing Selectricity has been more or less stable. New project constructions have been a long time coming, but this could change at the end of 2017 and in 2018 essentially in Italy. 51 millions m2 2 313.7 MWth The cumulated surfaces of solar thermal Total CSP capacity in operation Glenergy Solar in operation in the European Union in 2016 in the European Union in 2016 SOLAR THERMAL AND CONCENTRATED SOLAR POWER BAROMETERS – EUROBSERV’ER – JUIN 2017 SOLAR THERMAL AND CONCENTRATED SOLAR POWER BAROMETERS – EUROBSERV’ER – JUIN 2017 3 4 The world largest solar thermal Tabl. n° 1 district heating solution - Silkeborg, Denmark (in operation end 2016) Main solar thermal markets outside European Union Total cumulative capacity Annual Installed capacity (in MWth) in operation (in MWth) 2015 2016 2015 2016 China 30 500 27 664 309 500 337 164 United States 760 682 17 300 17 982 Turkey 1 500 1 467 13 600 15 067 India 770 894 6 300 7 194 Japan 100 50 2 400 2 450 Rest of the world 6 740 6 797 90 944 97 728 Total world 39 640 36 660 434 700 471 360 Source: EurObserv’ER 2017 new build, because of the construction is now causing great concern, where as a water production.
    [Show full text]
  • Medium Temperature Solar Collectors DATABASE
    Medium temperature solar collectors DATABASE Task 11.1- Small scale and low cost installations for power and industrial process heat applications Subtask 11.1.1 Medium temperature (150 – 250 ºC) solar collectors for industrial or distributed applications STAGE-STE Project Scientific and Technological Alliance for Guaranteeing the European Excellence in Concentrating Solar Thermal Energy Grant agreement number: 609837 Start date of project: 01/02/2014 Duration of project: 48 months WP11 – Task 11.1.1 D11.0 State of the art of medium temperature solar collectors and new developments Due date: July / 2015 Submitted July / 2015 File name: STAGE-STE Deliverable 11.0.pdf Partner responsible TECNALIA Person responsible I.Iparraguirre(Tecnalia) A. Huidobro (Tecnalia), I. Iparraguirre(Tecnalia) T. Osorio (Univ. Evora), F. Sallaberry Author(s): (CENER), A. Fernández-García (CIEMAT-PSA) L. Valenzuela (CIEMAT-PSA), P. Horta (Fraunhofer ISE) Dissemination Level PU List of content Executive Summary ................................................................................................................................. 3 1 Subtask 11.1.1. ................................................................................................................................ 4 1.1. Introduction ...................................................................................................................................4 1.2. Methodology .................................................................................................................................4
    [Show full text]
  • Concentrating Solar Power Global Outlook 09 Why Renewable Energy Is Hot COVER PIC © GREENPEACE / MARKEL REDONDO
    Concentrating Solar Power Global Outlook 09 Why Renewable Energy is Hot COVER PIC © GREENPEACE / MARKEL REDONDO Contents Foreword 5 For more information contact: Executive Summary 7 [email protected] Written by: Section 1 CSP: the basics 13 Written by Dr. Christoph Richter, The concept 11 Sven Teske and Rebecca Short Requirements for CSP 14 Edited by: How it works – the technologies 15 Rebecca Short and The Writer Section 2 CSP electricity technologies and costs 17 Designed by: Types of generator 17 Toby Cotton Parabolic trough 20 Central receiver 24 Acknowledgements: Many thanks to Jens Christiansen Parabolic dish 28 and Tania Dunster Fresnel linear reflector 30 at onehemisphere.se Cost trends for CSP 32 Heat storage technologies 33 Printed on 100% recycled post-consumer waste. Section 3 Other applications of CSP technologies 35 Process Heat 35 JN 238 Desalination 35 Solar Fuels 36 Published by Cost Considerations 37 Greenpeace International Section 4 Market Situation by Region 39 Ottho Heldringstraat 5 Middle East and India 42 1066 AZ Amsterdam Africa 44 The Netherlands Europe 46 Tel: +31 20 7182000 Fax: +31 20 5148151 Americas 49 greenpeace.org Asia - Pacific 50 SolarPACES Section 5 Global Concentrated Solar Power Outlook Scenarios 53 SolarPACES Secretariate The Scenarios 53 Apartado 39 Energy efficiency projections 54 E-04200 Tabernas Core Results 54 Spain Full Results 55 solarpaces.org Main Assumptions and Parameters 66 [email protected] Section 6 CSP for Export: The Mediterranean Region 69 ESTELA Mediterranean Solar Plan 2008
    [Show full text]
  • Background Report Prepared by Arizona State University NINETY-NINTH ARIZONA TOWN HALL
    Arizona’s Energy Future 99th Arizona Town Hall November 6 - 9, 2011 Background Report Prepared by Arizona State University NINETY-NINTH ARIZONA TOWN HALL PREMIER PARTNER CONTRIBUTING PARTNER COLLABORATING PARTNERS SUPPORTING PARTNERS CIVIC PARTNERS CORE Construction Kennedy Partners Ryley, Carlock & Applewhite Sundt Construction One East Camelback, Suite 530, Phoenix, Arizona 85012 Phone: 602.252.9600 Fax: 602.252.6189 Website: www.aztownhall.org Email: [email protected] ARIZONA’S ENERGY FUTURE September 2011 We thank you for making the commitment to participate in the 99th Arizona Town Hall to be held at the Grand Canyon on November 6-9, 2011. You will be discussing and developing consensus with fellow Arizonans on the future of energy in Arizona. An essential element to the success of these consensus-driven discussions is this background report that is provided to all participants before the Town Hall convenes. As they have so often done for past Arizona Town Halls, Arizona State University has prepared a detailed and informative report that will provide a unique and unparalleled resource for your Town Hall panel sessions. Special thanks go to editors Clark Miller and Sharlissa Moore of the Consortium for Science, Policy, and Outcomes at ASU for spearheading this effort and marshaling many talented professionals to write individual chapters. For sharing their wealth of knowledge and professional talents, our thanks go to the many authors who contributed to the report. Our deepest gratitude also goes to University Vice President and Dean of the College of Public Programs for ASU, Debra Friedman, and Director of the School of Public Affairs for ASU, Jonathan Koppell, who made great efforts to ensure that ASU could provide this type of resource to Arizona.
    [Show full text]
  • Financing the Transition to Renewable Energy in the European Union
    Bi-regional economic perspectives EU-LAC Foundation Miguel Vazquez, Michelle Hallack, Gustavo Andreão, Alberto Tomelin, Felipe Botelho, Yannick Perez and Matteo di Castelnuovo. iale Luigi Bocconi Financing the transition to renewable energy in the European Union, Latin America and the Caribbean Financing the transition to renewable energy in European Union, Latin America and Caribbean EU-LAC / Università Commerc EU-LAC FOUNDATION, AUGUST 2018 Große Bleichen 35 20354 Hamburg, Germany www.eulacfoundation.org EDITION: EU-LAC Foundation AUTHORS: Miguel Vazquez, Michelle Hallack, Gustavo Andreão, Alberto Tomelin, Felipe Botelho, Yannick Perez and Matteo di Castelnuovo GRAPHIC DESIGN: Virginia Scardino | https://www.behance.net/virginiascardino PRINT: Scharlau GmbH DOI: 10.12858/0818EN Note: This study was financed by the EU-LAC Foundation. The EU-LAC Foundation is funded by its members, and in particular by the European Union. The contents of this publication are the sole responsibility of the authors and cannot be considered as the point of view of the EU- LAC Foundation, its member states or the European Union. This book was published in 2018. This publication has a copyright, but the text may be used free of charge for the purposes of advocacy, campaigning, education, and research, provided that the source is properly acknowledged. The co- pyright holder requests that all such use be registered with them for impact assessment purposes. For copying in any other circumstances, or for reuse in other publications, or for translation and adaptation,
    [Show full text]
  • Some Dam – Hydro News TM
    5/4/2018 Some Dam – Hydro News TM And Other Stuff i Quote of Note: "Your greatest fears are created by your imagination. Don't give in to them." ~ Winston Churchill Some Dam - Hydro News Newsletter Archive for Current and Back Issues and Search: (Hold down Ctrl key when clicking on this link) http://npdp.stanford.edu/ ‘ After clickinG on link, scroll down under Partners/Newsletters on left click one of the links (Current issue or View Back Issues) “Good wine is a necessity of life.” - -Thomas Jefferson Ron’s wine pick of the week: 2015 Brotte French - Rhone (Red Blend) "Creation Grosset Cairanne" “No nation was ever drunk when wine was cheap.” - - Thomas Jefferson Dams: (New law because of Oroville.) JAMES GALLAGHER ON RECENTLY PASSED DAM SAFETY BILL By: Heidi Rene, Apr 19, 2018, actionnewsnow.com Below is the closed-captioninG text associated with this video. Since this uses automated speech to text spellinG and Grammar may not be accurate. ... a new set of rules for dam safety and maintenance have been adopted for the state of California. What exactly does that mean? Action News now reporter Hayley Skene talks with Assemblyman James Gallagher. He wrote the bill on dam safety that was passed into law exactly one year after the spillway ruptured. Good morning, I’m here in TC with James Gallagher who's behind a lot of bills and one of the greatest accomplishments many would say this year was the dam safety bill - tell me how that beGan and why it's so important? "In the aftermath of the Oroville crisis we started lookinG at Copy obtained from the National Performance of Dams Program: http://npdp.stanford.edu the law .
    [Show full text]
  • Evs in Paradise: Planning for the Development of Electric Vehicle Infrastructure in Maui County
    EVs in Paradise: Planning for the Development of Electric Vehicle Infrastructure in Maui County Submitted by: University of Hawaiʻi Maui College 310 W. Kaʻahumanu Avenue Kahului, HI 96732-1617 December 12, 2012 Revised February 12, 2013 1 | Page Prepared by: Anne Ku, Susan Wyche, and Selene LeGare for Maui Electric Vehicle Alliance (Maui EVA) An electronic version of this report can be downloaded from: http://mauieva.org This report was funded by the United States Department of Energy through the Clean Cities Community Readiness and Planning for Plug-In Electric Vehicles and Charging Infrastructure DE-FOA-0000451 award no. DE-EE0005553. The report is issued by the University of Hawaiʻi Maui College and is intended for public release. For questions or comments regarding this report, please contact: Office of the Chancellor, University of Hawaiʻi Maui College, 310 W. Kaʻahumanu Ave., Kahului, HI 96732, Tel. 808-984-3500. Disclaimer: The Maui EVA, established by the University of Hawaiʻi Maui College, prepared this document to guide the planning and implementation of mass adoption of electric vehicles (EV) and charging infrastructure for Maui County. The recommendations within this report were written at a time when EV-related laws, regulations, and industry practices are undergoing rapid change. As a result, state and county governments and the organizations that serve them must strive to continuously update their knowledge regarding industry, utility, resident and visitor expectations and requirements for the deployment of charging infrastructure. The recommendations provided herein are intended to assist the stakeholders to advance EV readiness but do not represent a definitive legal framework for the installation of charging infrastructure.
    [Show full text]