Solar Energy Markets Solar Energy Markets an Analysis of the Global Solar Industry

Total Page:16

File Type:pdf, Size:1020Kb

Solar Energy Markets Solar Energy Markets an Analysis of the Global Solar Industry Solar Energy Markets Solar Energy Markets An Analysis of the Global Solar Industry Philip G. Jordan The Economic Advancement Research Institute Wrentham, MA, USA and BW Research Partnership, Inc. Wrentham, MA, USA AMSTERDAM • BOSTON • HEIDELBERG • LONDON • NEW YORK • OXFORD PARIS • SAN DIEGO • SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO Elsevier 32 Jamestown Road, London NW1 7BY, UK 225 Wyman Street, Waltham, MA 02451, USA Copyright © 2014 Elsevier Inc. All rights reserved No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher’s permissions policies and our arrangement with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein). Notice Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods, professional practices, or medical treatment may become necessary. Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information, methods, compounds, or experiments described herein. In using such information or methods they should be mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility. To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in the material herein. British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library Library of Congress Cataloging-in-Publication Data A catalog record for this book is available from the Library of Congress ISBN: 978-0-12-397174-6 For information on all Elsevier publications visit our website at store.elsevier.com This book has been manufactured using Print On Demand technology. Each copy is produced to order and is limited to black ink. The online version of this book will show color figures where appropriate. Acknowledgments I would like to offer my very special thanks to my colleague and friend Dr. Edward A. Cunningham. His advice has been a great help in the development of this book. I am particularly grateful to Barry Friedman of the National Renewable Energy Laboratory, Andrea Luecke of The Solar Foundation, and Tom Kimbis and Justin Baca from SEIA for their deep understanding of the importance of solar labor mar- ket issues and the assistance that they have given me in developing my career. I also wish to acknowledge Ryan Young, our research analyst at BW Research Partnership, who provided exemplary data collection and analysis for this text. I would also like to express my deep gratitude to Professor Zygmunt Plater and Professor Benjamin Sachs. Each played a pivotal role in my professional develop- ment and instilled within me a deep drive to discover, to learn, to teach, and to act. This book would not have been possible without the constant, patient support that I received from my wife, Anne. Thank you for the late night read-throughs and gentle nudges along the way. 1 Introduction: An Overview of the Solar Industry The 2007 US banking crisis was the first of a series of shocks to the global economy with trillions of dollars of wealth evaporating from the globe and years of scandal and upheaval to follow. Economic markets have been slow to recover, and labor markets even slower. Few industries have grown, let alone thrived. Despite these unprecedented downward global pressures, the solar industry has experienced a global revolution with profound implications for business, government, and the environment. This text is intended to provide a unique, global perspective of the US solar industry, exploring the differences between the solar industry today and previous growth spurts such as the 1970s brief solar boom. This book relies on information from the nation’s first comprehensive solar industry survey, pioneering survey work from adjacent industries, and insights from key thought leaders in the energy sector in the United States, and from international leaders in solar development. At its most basic level, solar power is a broadly defined term for harnessing the power of the sun to generate heat or electricity, which humans have been doing for at least 5000 years! There are many different technologies at use in the commercially available products that capture solar energy, from passive design features of buildings to advanced thin film photovoltaic (PV) panels. Each of these products share similari- ties, such as shared incentives and market drivers, as well as many differences from their technological innovations to their economic viability. Generally speaking, the solar industry is categorized by the various technology- driven product lines that make up the array of choices for the global consumer. The three largest categories by technology are PV (electric power generation), solar thermal (electric power generation), and solar water heating. Solar space heating and cooling are also growing areas with particularly strong potential in the northeast United States, though such applications are clearly well behind the other uses in terms of market penetration. Solar thermal products use solar energy to heat water or other liquids. These can be used for heating water for domestic/commercial use or to produce electricity through the use of a steam turbine system. Solar water heaters employ a simple design utilizing aluminum fins and insulated storage tanks to supply hot water for pools or domestic use. To generate electricity, however, much more heat is needed, and the most common mechanism for obtaining this heat is through concentrating solar power (CSP). CSP uses mirrors to focus solar rays to provide intense heat that generate significant steam, which can then be passed through a variety of steam turbine systems. The majority of this book will focus on the largest segment photovoltaics, but will also include pertinent details in each chapter regarding solar thermal technologies. Solar Energy Markets. DOI: http://dx.doi.org/10.1016/B978-0-12-397174-6.00001-5 © 2014 Elsevier Inc. All rights reserved. 2 Solar Energy Markets Due to recent price declines in photovoltaics and the much lower maintenance required (PV panels have no moving parts!), many projects throughout the southwest United States that were planned to use CSP have been changed to PV projects. Across the globe, recent significant price drops in traditional PV panels have signif- icantly changed the solar industry, shifting interest away from producing more efficient products towards producing traditional photovoltaics even more efficiently. With price declines of approximately 70% over a 2-year period, the economics of PV power sys- tems have improved dramatically and far outcompete rival solar technologies. PV products represent the lion’s share of the solar industry. In a recent survey of solar employers in the United States, over 90% of all solar installation companies work with PV products.1 Photovoltaics operate by using arrays of semiconductors, typically made of monocrystalline or polycrystalline silicon, to produce direct cur- rent (DC) energy from solar radiation.2 The global rise in PV panel installation has led to significant growth of solar electric power in Europe and the United States, and dramatic increases in panel manufacturing throughout the globe.3 The United States has installed approximately 4 GW of solar power through 2011, tying it with Spain for fourth place in total generation, behind Germany, Italy, and Japan.4 Though the total amount of energy generated by photovoltaics has increased dramatically over the last 10 years, the overall demand growth over the first part of that period has meant that PV merely kept up with other technologies, as the percent- age of electricity produced by PV systems had not changed significantly over time.5 This inability to capture increasing share of the electrical profile shifted in 2009, when the solar capacity of the United States experienced incredible growth, with no signs of a slowdown. During this solar boom, for the first time in generations, the United States experienced energy demand declines due to the great recession and accompanying slow recovery. And the pace continued to quicken; utility-driven PV installations increased 109% alone in 2011 representing an additional 758 MW of solar power.6 Installations only tell part of the US solar story. Despite widespread miscon- ceptions, perpetuated by media stories, the United States is a net exporter of solar products, meaning that US manufacturers produce more solar components than are installed domestically. Historically, only 30% of the photovoltaics installed in this county are domestically sourced, but the United States exports large quantities of solar products to other nations. In 2010, for example, the United States imported $3.7 billion of solar products, while exporting $5.6 billion, resulting in a net export of nearly $2 billion in the industry.7 Every mainstream discussion on photovoltaics eventually leads to China, but it is becoming increasingly apparent that it is for the wrong reasons. Though it is true that Chinese contribution to the global industry has been primarily related to production 1 The Solar Jobs Census 2011. The Solar Foundation, October 2011. 2 See http://science.nasa.gov/science-news/science-at-nasa/2002/solarcells/. 3 http://www.eia.gov/cneaf/solar.renewables/page/solarphotv/solarpv.html. 4 BP Statistical World Energy Review 2011 (retrieved 8.08.11).
Recommended publications
  • Improving the Performance of Solar Thermal Power
    The Oil Drum: Australia/New Zealand | Improving the Performance of Solar Therhmtatpl :P/o/wanezr.theoildrum.com/node/6279 Improving the Performance of Solar Thermal Power Posted by Big Gav on March 12, 2010 - 1:23am in The Oil Drum: Australia/New Zealand Topic: Alternative energy Tags: bill gross, concentrating solar power, esolar, solar power, solar thermal power [list all tags] The US Department of Energy granted a US$1.37 billion loan guarantee to Brightsource Energy last week which could help clear the way for over 15 gigawatts of solar thermal power projects in California. Brightsource built a pilot plant in Israel to prove their technology and has tested it over the past 18 months. Their flagship Ivanpah project in California got a big boost when construction giant Bechtel agreed to build the plant. Solar thermal is a way of harnessing the largest source of energy available to us, so in this post I'll have a look at the upswing in interest in the use of this technology for electricity generation in recent years and look at some of the approaches being pursued to make it economically competitive with coal fired power generation. Photo credit: http://www.flickr.com/photos/jurvetson/ The US Department of Energy granted a US$1.37 billion loan guarantee to Brightsource Energy last week which could help clear the way for over 15 gigawatts of solar thermal power projects in California. Brightsource built a pilot plant in Israel to prove their technology and has tested it over the past 18 months. Their flagship Ivanpah project in California got a big boost when construction giant Bechtel agreed to build the plant.
    [Show full text]
  • Beyond Renewable Portfolio Standards: an Assessment of Regional Supply and Demand Conditions Affecting the Future of Renewable Energy in the West
    (This page intentionally left blank) Beyond Renewable Portfolio Standards: An Assessment of Regional Supply and Demand Conditions Affecting the Future of Renewable Energy in the West David J. Hurlbut, Joyce McLaren, and Rachel Gelman National Renewable Energy Laboratory Prepared under Task No. AROE.2000 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. National Renewable Energy Laboratory Technical Report 15013 Denver West Parkway NREL/TP-6A20-57830 Golden, CO 80401 August 2013 303-275-3000 • www.nrel.gov Contract No. DE-AC36-08GO28308 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof. This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.
    [Show full text]
  • Town of Amherst Request for Proposals
    TOWN OF AMHERST REQUEST FOR PROPOSALS FOR OLD LANDFILL REUSE PROPOSAL Presented by: In partnership with: Letter of Transmittal............................................................................................................... 5 Executive Summary ................................................................................................................ 8 1. Evaluation Criteria ............................................................................................................ 10 1.1. Proposal protects the existing landfill caps. ...............................................................................10 1.2. Proposal protects operation of landfill gas systems...................................................................10 1.3. Experience of team proposing project........................................................................................10 1.4. Risk to human, health and the environment..............................................................................11 1.5. Effect on the environment..........................................................................................................11 1.6. Project compatibility with neighboring properties.....................................................................12 1.7. Noise levels from use of site.......................................................................................................12 1.7. Best compensation to Town of Amherst ....................................................................................13
    [Show full text]
  • Solar ABS 101
    Project Bond Focus U.S. Residential Solar ABS 101 U.S. Residential Solar ABS 101 ABC Introduction and PPAs contracts is typically responsible for the installation and maintenance of the solar equipment throughout the term of the contract. Asset-backed securities (ABS) secured by residential solar financing contracts continue to emerge as a new sector of Leases the U.S. securitization market. The key drivers of expansion are the overall growth of the U.S. rooftop solar market, as Customers pay a fixed amount per month, generally well as institutional investors' increasing comfort for this escalating every year and benefiting from the production of new asset class. the panels installed by the developer providing the lease, regardless of actual consumption. The contracts typically The residential solar sector has experienced solid growth in include a minimum production guarantee to mitigate the risk recent years, with a peak of more than 2.5GW of capacity of equipment underperformance. The minimum production installed in 2016, representing approximately 325 thousand guarantee payments are typically made by the installers to households. After a 16% decrease in installation in 2017 the homeowner and do not reduce lease payments (no due to lower customer acquisition in California and netting). In some contracts, true-up payments at year-end Northeastern states, as well as regulatory uncertainty in may be required for over/under performance. Nevada, the residential solar market grew by 7% in 2018. Historically leading states seem to be transitioning to more PPAs stable growth rates, while Texas, Florida and Nevada are Homeowners pay every month for the actual solar energy experiencing higher growth.
    [Show full text]
  • The Unseen Costs of Solar-Generated Electricity
    THE UNSEEN COSTS OF SOLAR-GENERATED ELECTRICITY Megan E. Hansen, BS, Strata Policy Randy T Simmons, PhD, Utah State University Ryan M. Yonk, PhD, Utah State University The Institute of Political Economy (IPE) at Utah State University seeks to promote a better understanding of the foundations of a free society by conducting research and disseminating findings through publications, classes, seminars, conferences, and lectures. By mentoring students and engaging them in research and writing projects, IPE creates diverse opportunities for students in graduate programs, internships, policy groups, and business. PRIMARY INVESTIGATORS: Megan E. Hansen, BS Strata Policy Randy T Simmons, PhD Utah State University Ryan M. Yonk, PhD Utah State University STUDENT RESEARCH ASSOCIATES: Matthew Crabtree Jordan Floyd Melissa Funk Michael Jensen Josh Smith TABLE OF CONTENTS Table of Contents ................................................................................................................................................................ 2 Executive Summary ............................................................................................................................................................. 1 Introduction ......................................................................................................................................................................... 1 Solar Energy and the Grid ............................................................................................................................................
    [Show full text]
  • Solar Thermal Energy an Industry Report
    Solar Thermal Energy an Industry Report . Solar Thermal Technology on an Industrial Scale The Sun is Our Source Our sun produces 400,000,000,000,000,000,000,000,000 watts of energy every second and the belief is that it will last for another 5 billion years. The United States An eSolar project in California. reached peak oil production in 1970, and there is no telling when global oil production will peak, but it is accepted that when it is gone the party is over. The sun, however, is the most reliable and abundant source of energy. This site will keep an updated log of new improvements to solar thermal and lists of projects currently planned or under construction. Please email us your comments at: [email protected] Abengoa’s PS10 project in Seville, Spain. Companies featured in this report: The Acciona Nevada Solar One plant. Solar Thermal Energy an Industry Report . Solar Thermal vs. Photovoltaic It is important to understand that solar thermal technology is not the same as solar panel, or photovoltaic, technology. Solar thermal electric energy generation concentrates the light from the sun to create heat, and that heat is used to run a heat engine, which turns a generator to make electricity. The working fluid that is heated by the concentrated sunlight can be a liquid or a gas. Different working fluids include water, oil, salts, air, nitrogen, helium, etc. Different engine types include steam engines, gas turbines, Stirling engines, etc. All of these engines can be quite efficient, often between 30% and 40%, and are capable of producing 10’s to 100’s of megawatts of power.
    [Show full text]
  • Estimating the Quantity of Wind and Solar Required to Displace Storage-Induced Emissions † ‡ Eric Hittinger*, and Ineŝ M
    Article Cite This: Environ. Sci. Technol. 2017, 51, 12988-12997 pubs.acs.org/est Estimating the Quantity of Wind and Solar Required To Displace Storage-Induced Emissions † ‡ Eric Hittinger*, and Ineŝ M. L. Azevedo † Department of Public Policy, Rochester Institute of Technology, Rochester, New York 14623, United States ‡ Department of Engineering & Public Policy, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States *S Supporting Information ABSTRACT: The variable and nondispatchable nature of wind and solar generation has been driving interest in energy storage as an enabling low-carbon technology that can help spur large-scale adoption of renewables. However, prior work has shown that adding energy storage alone for energy arbitrage in electricity systems across the U.S. routinely increases system emissions. While adding wind or solar reduces electricity system emissions, the emissions effect of both renewable generation and energy storage varies by location. In this work, we apply a marginal emissions approach to determine the net system CO2 emissions of colocated or electrically proximate wind/storage and solar/storage facilities across the U.S. and determine the amount of renewable energy ff fi required to o set the CO2 emissions resulting from operation of new energy storage. We nd that it takes between 0.03 MW (Montana) and 4 MW (Michigan) of wind and between 0.25 MW (Alabama) and 17 MW (Michigan) of solar to offset the emissions from a 25 MW/100 MWh storage device, depending on location and operational mode. Systems with a realistic combination of renewables and storage will result in net emissions reductions compared with a grid without those systems, but the anticipated reductions are lower than a renewable-only addition.
    [Show full text]
  • Setting the PACE: Financing Commercial Retrofits
    Setting the PACE: Financing Commercial Retrofits Issue Brief Katrina Managan Program Manager, Institute for Building Efficiency, Johnson Controls Kristina Klimovich Associate, PACENow This report is the result of collaboration by the Johnson Controls Institute for Building Efficiency, PACENow, and the Urban Land Institute. February 2013 Table of Contents Introduction . 3 The Opportunity . 4 Background on PACE . 4 Early History of PACE . 5 PACE Market Activity Today . 6 PACE Financing . 7 Advantages of PACE Financing . 8 Financing Models . 10 Municipal Bond Funded Model (Figure 4) . 10 Privately Funded Model (Figure 5) . 11 Model Examples and Implications . 12 Program Administration . .13 Eligible Technologies and Projects . 14 Technologies and Measures . 14 Toledo, Ohio . 15 Transaction Size . 15 Loading Order Requirements . 16 Minimum Energy Savings Requirement . 17 Eligible Asset Classes, Target Market . 18 Building Owner Engagement . 18 Marketing and Outreach . 19 PACE Project Process . 20 Prologis HQ in San Francisco . 21 Conclusion. 22 Appendix 1: Research Methodology and Interview Questions . 23 Appendix 2: Active PACE Programs as of January 2013 . 24 Appendix 3: Building Efficiency Financing Options . 25 Appendix 4: Efficiency Measures Eligible in Each Program . 26 Appendix 5: Acknowledgements. 27 2 Institute for Building Efficiency www.InstituteBE.com Introduction Property Assessed Clean Energy (PACE) finance is a new and growing municipal approach to support energy efficiency and renewable energy upgrades in commercial buildings in the United States. As of February 2013, there were 16 commercial PACE programs accepting applications to finance building efficiency projects. Most of these have been active for less than a year, and some are just now working on their first projects.
    [Show full text]
  • Alphabet's 2019 CDP Climate Change Report
    Alphabet, Inc. - Climate Change 2019 C0. Introduction C0.1 (C0.1) Give a general description and introduction to your organization. As our founders Larry and Sergey wrote in the original founders' letter, "Google is not a conventional company. We do not intend to become one." That unconventional spirit has been a driving force throughout our history -- inspiring us to do things like rethink the mobile device ecosystem with Android and map the world with Google Maps. As part of that, our founders also explained that you could expect us to make "smaller bets in areas that might seem very speculative or even strange when compared to our current businesses." From the start, the company has always strived to do more, and to do important and meaningful things with the resources we have. Alphabet is a collection of businesses -- the largest of which is Google. It also includes businesses that are generally pretty far afield of our main internet products in areas such as self-driving cars, life sciences, internet access and TV services. We report all non- Google businesses collectively as Other Bets. Our Alphabet structure is about helping each of our businesses prosper through strong leaders and independence. We have always been a company committed to building products that have the potential to improve the lives of millions of people. Our product innovations have made our services widely used, and our brand one of the most recognized in the world. Google's core products and platforms such as Android, Chrome, Gmail, Google Drive, Google Maps, Google Play, Search, and YouTube each have over one billion monthly active users.
    [Show full text]
  • Chapter 6. Innovative Business Models and Financing Mechanisms
    Chapter 6 Innovative Business Models and Financing Mechanisms for Distributed Solar Photovoltaic (DSPV) Deployment in China Sufang Zhang April 2016 This chapter should be cited as Zhang, S. (2015), ‘Innovative Business Models and Financing Mechanisms for Distributed Solar Photovoltaic (DSPV) Deployment in China’, in Kimura, S., Y. Chang and Y. Li (eds.), Financing Renewable Energy Development in East Asia Summit Countries. ERIA Research Project Report 2014-27, Jakarta: ERIA, pp.161-191. Chapter 6 Innovative Business Models and Financing Mechanisms for Distributed Solar Photovoltaic (DSPV) Deployment in China17 Sufang Zhang Abstract Following my report ‘Analysis of Distributed Solar Photovoltaic (DSPV) Power Policy in China’, this report looks into innovative business models and financing mechanisms for distributed solar photovoltaic power in China by reviewing existing literature and conducting interactive research, including discussions with managers from China’s policy and commercial banks, and photovoltaic projects. It first provides a comprehensive review of literature on business models and financing mechanisms. Then, the paper looks into the rapidly evolving business models and financing mechanisms in the United States, one of the countries leading the deployment of DSPV. The emerging innovative business models and financing mechanisms for DSPV projects in China are next discussed. The report concludes that: (a) innovative business models and financing mechanisms are important drivers for the growth of DSPV power in the United States; (b) enabling policies are determinant components of innovative business models and financing mechanisms in the country; (c) innovative business models and financing mechanisms in the Chinese context have their advantages and disadvantages; and (d) support through government policies is imperative to address the challenges in the emerging innovative business models and financing mechanisms in China.
    [Show full text]
  • 2011 Indiana Renewable Energy Resources Study
    September 2011 2011 Indiana Renewable Energy Resources Study Prepared for: Indiana Utility Regulatory Commission and Regulatory Flexibility Committee of the Indiana General Assembly Indianapolis, Indiana State Utility Forecasting Group | Energy Center at Discovery Park | Purdue University | West Lafayette, Indiana 2011 INDIANA RENEWABLE ENERGY RESOURCES STUDY State Utility Forecasting Group Energy Center Purdue University West Lafayette, Indiana David Nderitu Tianyun Ji Benjamin Allen Douglas Gotham Paul Preckel Darla Mize Forrest Holland Marco Velastegui Tim Phillips September 2011 2011 Indiana Renewable Energy Resources Study - State Utility Forecasting Group 2011 Indiana Renewable Energy Resources Study - State Utility Forecasting Group Table of Contents List of Figures .................................................................................................................... iii List of Tables ...................................................................................................................... v Acronyms and Abbreviations ............................................................................................ vi Foreword ............................................................................................................................ ix 1. Overview ............................................................................................................... 1 1.1 Trends in renewable energy consumption in the United States ................ 1 1.2 Trends in renewable energy consumption in Indiana
    [Show full text]
  • Electricity Storage in the German Energy Transition
    Electricity Storage in the German Energy Transition Analysis of the storage required in the power market, ancillary services market and the distribution grid STUDY Electricity Storage in the German Energy Transition IMPRINT SUMMARY OF STUDY ACKNOWLEDGEMENTS Electricity Storage in the German Energy Transition We would like to thank the members of the consultative Analysis of the storage required in the power market, group for their input to the discussions The results and ancillary services market and distribution grid conclusions do not necessarily represent the opinion of the members of the group. Responsibility lies ex- Study BY clusively with Agora Energiewende and the research Agora Energiewende institutions involved. The following institutions were Rosenstrasse 2 | 10178 Berlin | Germany represented in the advisory group: 50Hertz Transmission GmbH | Bavarian Ministry of Project leaders: Economic Affairs and Media, Energy and Technology | Daniel Fürstenwerth Bundesverband der Energie- und Wasserwirtschaft [email protected] e.V. (Federal Association of the German Energy and Lars Waldmann Water Industries) | Bund für Umwelt und Naturschutz [email protected] Deutschland e.V.( German Federation for Environment Editor: and Nature Conservation) | Federal Ministry for Eco- Mara Marthe Kleiner nomic Affairs and Energy | Bundesverband Energie- speicher e.V. (Germany Energy Storage Association) | ANALYSIS BY Dena (German Energy Agency) | Deutsche Umwelthilfe Coordination of analysis, assumptions and
    [Show full text]